Take-Home Exam of Theoretical Computer Science. January 2012.

1. Let NV denote the set of the natural numbers. Show that f: N — N such that
f(z)=if z <3 then 1l else x x f(z —1) x f(x —2)

is a primitive recursive function.

2. Let N denote the set of the natural numbers. Show that the inverse f~! of an injection f: N — N
which is a partial recursive function, is itself a partial recursive function.

3. Let N denote the set of the natural numbers. Let PRF be the set of all partial-recursive-functions
from N to N (p.r.f, for short). Show that the set of the total p.r.f. is not a recursive subset of PRF.

4. Let N denote the set of the natural numbers. Consider the function sum : N x N — N defined as
follows:

for all n € N, sum(0,n) =n

for all m,n € N, sum(succ(m),n) = succ(sum(m,n)),
where succ is the successor function on the natural numbers.

Show by mathematical induction on two variables, that for all m,n € N, sum(m,n) = sum(n,m).

5. Consider a definite logic program P. Give the definition of (i) an interpretation of P, (ii) a Herbrand
interpretation of P, (iii) a model of P, (iv) a Herbrand model of P, and (v) the least Herbrand model
of P.

6. Show that - (3z [x = t A A(z)]) <> A(t) if t is free for x in A(z) and x does not occur in t. Show
that the two conditions above are necessary.

7. Given a continuous function f : D — D, where D is a cpo with bottom. Show that:
(1) Unew ML) = Af-(Unew f"(L)), and
(ii) fiz(f) = f(fir(f)) where fiz is defined as follows: | | . (Af.f"(L)).
8. Prove the total correctness of the following program (division in binary arithmetics):
{P>0AQ >0}
r:=P; m:=Q; k:=0; ¢q:=0;
while r>m dom:=mx2; k:=k+1 od;
while m#Q dom:=m/2; k:=k—1,;
if r>m then begin r :=r—m; ¢:= ¢+2* end
od
{0<r<@ N P=Qxq+r}

9. Let N be the set of natural numbers. Show that for any a,b € N, for any function ¢c € N — N, for
any function f € N — N defined by the following equations:

f0)=a f)=2b f(n+2) = c(f(n))
we have that the following program:
{K =0}

k:=K;

if even(k) then res := a else res := b;

while k>1 do res := c(res); k:=k—2 od

{res = f(K)}

is totally correct.
10. Find the weakest precondition F'(z) of the statement =z :=0; while Q(z) Az>0do z:=xz+1
and the postcondition Q(z). Show that for all formulas P(x) such that the Hoare triple

{P(x)} x :=0; while Q(z) Az>0do z:=x+ 1 {Q(z)}
holds, we have that P(x) — Q(x).



11. Find all formulas P(z,y) such that the Hoare triple
{y>1} x:=0; while y>x A P(z,y) doz:=y — 1 {z=0Ay>1}

holds. Explain your answer.

12. Let us consider a cpo (D,C). U subset of D is said to be open iff (i) Vd,e € D. (d C e and
deU)=ecU,and (ii) for all chains dy E dy C ... in D we have | |, d, €U = Incw.d, €U.
Show that: (i) 0 and D are open, (ii) any finite intersection of open sets is open, and (iii) the union
of any set of open sets is open.

13. Let N be the discrete cpo of the natural numbers. Explain the meaning of the commutativity of
the following diagram, where f is a continuous function:

XxY f - F

curry(f) x id apply

Y

Y 5 E]xY

Give the explicit definition of the functions apply and Af. curry(f), in the case where: (i) X =Y = E =
N, and (ii) f is Azxy. sum(x,y), where for all z,y € N, (ii.1) sum(0,y) = y, and (ii.2) sum(succ(x),y) =
succ(sum(z,y)).

14. We say that a binary relation < C X x X is well-founded on a set X iff there is no infinite
descending sequence ... < x; < ... < x1 < zg of elements of X. Let f: A — B be a function and <p
be a well-founded relation on B. Show that <4 is a well-founded relation on A, where <4 is defined
as follows: a <4 a' iff f(a) <p f(d).

15. Let us consider two cpo’s D and E and a continuous function f from D to E. Show that if @ is
an inclusive subset of £ then P = f~(Q) is an inclusive subset of D.
Recall that a set P is said to be inclusive iff for each w-chain dy C d; T ... in P we have that

(Useo,d:) € P.

16. Let N denote the discrete cpo of the integers and N denote the flat cpo of the integers. Let us
consider the following function, expressed in the REC language:

ack(m,n) = if m then n + 1 else
if n then ack(m —1,1) else
ack(m — 1, ack(m,n — 1)).
Prove that for all m,n > 0, (i) ack(m,n) terminates in the call-by-value semantics, and (ii) ack(m,n)
terminates in the call-by-name semantics.

17. Consider the following three rewriting rules:
ack(0,m) — s(n)
ack(s(m),0)  — ack(m,s(0))
ack(s(m), s(n)) — ack(m, ack(s(m),n))
where, as usual, the natural numbers 0, 1,2, ... are denoted by 0, s(0), s(s(0)), ..., respectively.
Prove that for all m,n > 0, every sequence tg, t1,... of terms, such that: (i) t¢p = ack(m,n), and
(ii) for all ¢ > 0, t;4+1 is derived from ¢; by applying in any subterm of t; any of the above rewriting
rules, is finite.

18. Consider the equation f(x) = if z < 3 then 1 else z x f(x — 1) and the associated functional
@ =AfAx.if x < 3 then 1 else z x f(z —1).
(i) Compute the function d,, : N — N, where N is the discrete cpo of natural numbers, defined



as the minimal fixpoint of ¢ in call-by-value semantics. (ii) Compute the function &, : N — N
defined as the minimal fixpoint of ¢ in call-by-name semantics.

19. Check whether or not in lazyl denotational semantics for any F': 7 — 7, for any environment p,
we have that [[F(RF)]]p = [[RF]]p, where R is rec y.(Af.f(yf)). Do the same check in the case the
lazy2 denotational semantics.

20. Check whether or not for any environment p,

([rec f.(\ze)]] p = [Ay-(let f' <= (rec f.(Az.)) in /()] p
in eager, lazyl, or lazy2 denotational semantics. Assume that: (i) z, y, f, and f’ are pairwise distinct,
and (ii) neither y nor f” occurs free in e. Obviously, f may occur free in e. Recall that in eager, lazyl,
or lazy2 denotational semantics we have that [[let z < ¢ in t]]p = [[(Az.t) t1]]p.

21. Show that the bisimulation equivalence in pure CCS is an equivalence relation and not a congruence
relation.

22. Assume that, given a formula A, the formula vX.(A A [.]X) holds in a state, say s, of a given
process. Explain in words the meaning of vX.(A A []X) for the state s.

Projects.

Al. Define a higher order lazy language, call it EL, which is an extension of the Lazy language and
write a Prolog program for the operational semantics of EL.

A2. Write a simple local model checker in Prolog and use it for proving the correctness of a mutual
exclusion protocol or a cache coherence protocol.



