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creation situates itself in the light of evolution as an event which extends itself
through time -- as a continual cteation -- in which God becomes visible to the
eyes of the believer as ‘creator of heaven and earth',
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Adequacy, Consistency, Powet, and Limitations
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Abstract. We illustrate the tole of formalized languages for the realization of
hardware and software systems, and we indicate that a tight correspondence
between a piece of reality and its desctiption in a formalized language is crucial
for the realization of high performance systems. We describe a technique based
on the notion of bisimulation which can be used for checking that
correspondence and showing the adequacy of a theory with respect to a given
piece of reality. Bisimulation allows for some aspects of the reality not to be
represented in the descrption. We then consider the problem of providing
sound definitions within formalized theories and we show that even non-well-
founded definitions are acceptable when interpreted on suitable mathematical
domains. We illustrate some known results on the limitations of formalized
theories. In particular, we consider the problem of proving consistency of a
given theory, that is, the absence of contradictory statements. We indicate that
in a formalized theory with enough descriptive power, it is impossible to find a
proof of its consistency by making use of the proof techniques available within
that same theory.

1. Introduction

The use of formalized languages, like those defined in Logic and
Mathematics, is crucial in the development of theoties and artifacts in science
and technology. Systems with high petformance and sophisticated behaviout,
such as computer systems and communication systems, can be constructed
only as a result of a complex intellectual and engineeting process which is
based on formalized languages.

This process of constructing systems includes the following steps.

Step 1: The description of physical or intellectual objects, that is, the
construction of models in a formalized language. This description
should express the properties which may influence the behaviour and
the performance of those objects.

Step 2: The validation of models via experiments and measures.

Step 3: The design of systems by making use of models.

1 JOHN PAUL 1, quoted in Frofution and Creation by Rev. W. CRAMEER, National Catholic Register (May
12,1985, p. 114.
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Step 4: The construction of systems according to their design.
Step 5: The use of systems and their maintenance.

As a simple example of such a five step process, we may consider the
construction of a clock. At Step 1 one studies the oscillations of a pendulum
and describes them by using differential equations. At Step 2 the theoty of
oscillations and its differential equation model is validated via experimental
results. At Step 3 one uses some facts of that theory, for instance, Galileo’s law
of isochronicity, to design a clock based on the oscillations of a pendulum. At
Step 4 one constructs that clock, and finally, at Step 5 that clock is used and
maintained for measuring time according to the facts holding in the theory (for
instance, the petiod of one oscillation corresponds to the duration of one
second).

One can give much more complex examples than this one concerning the
construction of a clock, but we believe that in evety case when a significantly
high precision or sophisticated performance has to be obtained, one has to go
through a similar five step process which inevitably requites in the first step the
construction of models in formalized languages. Thus, before building
hardware or software systems we have to build “models” of some “physical ot
intellectual objects” by using symbols taken from a formalized language and
denoting suitable properties (or qualities) of the objects of interest. By taking
advantage of these properties, we may be able to construct systems with the
desired performance.

The models to be constructed at Step 1 are intellectual objects in which the
propetties of interest, such as the period of the oscillations and the length of a
pendulum in the case of a clock, are related via suitable mathematical
equations. In this case as in many other cases, the formalized language of
mathematical equations provides a powetful tool for expressing the properties
of the piece of reality which are relevant to the construction of the systems we
want to build.

Thetefore, it is important on the one hand, to develop the language and
the theories of Mathematics, and on the other hand, to develop the
understanding of the reality via experiments, so to express its laws by using, for
instance, equations and formal mathematical statements.

We do not want to illustrate here the techniques for a correct development
of the mathematical language and a cotrect understanding of physical ot
intellectual realities. We will, instead, present some results obtained in
Theoretical Computer Science, which may be of some use in the construction
of models of the reality and in their validation.
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In Section 2 we present the method of bisimulation which is a technique
for establishing the relationship between the descriptions (or models) and the
objects which they desctibe. The method of bisimulation may also be used for
relating vatious descriptions of the same object. In Section 3 we present a
conttibution to the theoty of desctiptions by indicating how one can provide
sound mathematical meaning to non-well-founded definitions and also to
impredicative definitions. In Section 4 we present some achievements which
show the power of formalized languages in the area of automatic theorem
proving. In Section 5 we indicate some well known limitations of formalized
languages based on unsolvability results and Gédel’s Incompleteness Theorem.

2. The bisimulation technique for checking the adequacy of a
description with respect to a piece of reality

When describing a piece of reality we make use of formalized theories, that
is, theories written in a formal language. As an example let us consider the
situation depicted in Fig. 1 below. We take the piece of reality which is the
elastic collision between two balls. We may describe that phenomenon by
using equations as usually done in classical Mechanics. Such description, also
called 70del, requires an abstraction (denoted by the function @ in that figure), so
that some features of the balls are forgotten (for instance, their colour) and
only their masses, dimensions, positions, and velocities are taken into account.
These quantities are, indeed, the elements which enter into the description,
called d-before, and that description in classical Mechanics is sufficient to
describe the effects of the elastic collision and, in particular, it is sufficient to
compute the state of the system in any future instant, that is, the future
positions and velocities of the two balls. The dynamics, that is, the evolution n
time, of the physical reality is computed by using the dynamic laws of
Mechanics so that the description, called d-after, can be derived from the
description 8-before by solving equations.

The description of the piece of reality we consider is given by a sati part,
that is, the one relative to the two balls, and a dynamic part, that is, the law of
consetvation of momentum which is the invariant preserved while reality
evolves. These two patts together, the static and the dynamic part, contain
enough information to desctibe the future behaviour of the system at least with
respect to the mechanical properties, that is, positions and velocities.

A different example of abstraction is the one concerning the reality of a
physician and his formalized description as a computer program, that is, “an
expert system for medical diagnosis”. The expert system should agree with the
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behaviour of the physician in the sense that it should be able to petform the
same diagnoses performed by the physician when given the same input data.

Dynamics of
DESCRIPTION OF THE ReALITY: _ theTheory
Theory in a Formalized Language, 8-before
also called Model.

abstractionat | (1) abstractiono | (3)
Dynamics of
the Real]ty
ReaviTy:
Reality-before Reality-after

Iigure 1. Bisimulation between a description with respect to a picce of reality.

The abstraction function o is made out of two components:

() a theoretical component, which is a set of sentences in a formalized language L,
and defines the codomain of o, and

() an experimental component, which describes a piece of reality by generating the
corresponding sentence in L, and defines the mapping o as a set of <piece
of reality, description> pairs.

The first component (i) is the result of a theoretical, mental activity which
abstracts away from the experimental facts and introduces a working theory to be
used for the description of th¢ reality. The second component (ii) is the result
of an experimental activity which via suitable measurements, generates values
and allows us to get the sentence of L which describes the piece of reality
under observation.

These two components are not independent and we may change an old
working theory and adopt a new working theory, when this change is suggested
by the existence of pieces of reality which cannot be desctibed in an old
working theory.

Together with the abstraction function o we may also consider a
concrefization function y which goes in the opposite direction, and maps a
sentence into a piece of reality. If the pair <oy> of functions determines a
Galots insertion, then abstract interpretations may be used for analyzing the
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relationship between the pieces of reality and their descriptions’. We will not
enter into this topic here.

We say that an abstraction o which generates a description of a piece of
reality, is adeguate if and only if there exists a relationship, called bisimulation,
between that reality and its desctiption in the sense which we now define.

Definition 1. We say the there exists a bisimulation between a reality and its
description in a fomalized language L (and thus, abstraction o is adequate) if
and only if

() whatever change occuts in the given reality from the state ‘reality-before’ to
any state ‘reality-after’, then it is possible to derive from the description
d-before a suitable description d-after, so that the observations on the state
‘reality-after’” agree with the properties described by d-after, and

(i) whatever description d-after can be computed from the description
0-before via the deductive rules of the formalized language used, then
there exists a state ‘reality-after’ in the evolution of the reality so that the
observations on that state agree with the properties described by d-after.

The changes in the reality take place according to the so called “ Dynamics
of the Reality”, and the deductive rules of the formalized language L describe
the so called the “Dynamics of the Theory™.

Thus, the adequacy of the abstraction i, that is, the validation of the
description of the reality, is checked by: (i) considering a set of possible
expetiments which stimulate changes (or obsetve autonomous changes) of the
reality, and (ii) verifying via measurements that the results of the experiments
ate in accordance with the cotresponding desctiptions 6-after.

The definition of bisimulation we have given above, derives directly from
the one introduced by Milner and Park® for relating nondeterministic
behaviouts of machines and establishing equivalences among them. The use
we make hete of the notion of bisimulation is informal, because only one of
the two entities, that is, the desctiption of the reality, is assumed to be
expressed using sentences of a formalized language, while the other entity, that
is, the reality itself, is not assumed to be a formal system. The reality can only
be obsetved by means of experiments ot obsetvations, and by such

"N D. JONES - 1% NIELSON, bt Tnterpretation: a Sermantics-Based “Tool for Prognm Analysis, in S,
ABRAMSKY, D. ML GABBAY, and 'L 8. 18 MAIBAUM (cds.), FHlandbook of Togic in Computer Science. Vol 42 Semantic
Modelling Oxford Science Publications, Clarendon Press, Oxford 1995, pp. 527-636.

2 R MUNER, Commmication and Conenrrency, Prentice Fall, 1989; 1. NL R. PARK, Comwrrency and Automata
on Infinite Sequences, 1 ecture Notes in Computer Science n. 104, Springer Verlag (1981), pp. 167-183.
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expetiments it produces values in a formalized language. Those values allow us
to check whether or not the desctiption is adequate.

The use of bisimulation is also related to the idea of “testing equivalence”
among systems by petforming experiments, as described by De Nicola and
Hennessy’. We cannot enter into the details here.

In the above Definition 1 it may seem too restrictive to require that the
reality should evolve according to the deductive rules of the formalized
language L, and indeed, one may release that condition by allowing that some
desctiptions which can be deduced, may not correspond to states reached by
the evolution of the reality.

Notice also that the notion of bisimulation may allow for some changes
occutting in the reality not to be representable by suitable descriptions, because
the obsetvations may not be capable of determining the values of the quantities
which ate changed. In particulat, the bisimulation allows for some “internal
interactions” among patts of the reality not to be observed by experiments and
represented by descriptions. Thus, we can incotporate within this framework
“approximated descriptions” of the reality. This is an important feature because
the formalized language cannot always be expressive enough to completely
describe the systems we consider. Approximations are imposed on the
descriptions of the physical world if we assume that Heisenberg’s uncertainty
principle holds.

It should be noticed that the reality we have considered in Fig, 1, can itself
be an intellectual entity. Thus, the bisimulation concept can also be used
between different desctiptions of the same piece of reality. Indeed, it may be
necessaty to construct different models of the same piece of reality because we
have to abstract away in different ways from some details of that reality. We
encounter this situation very often in vatious sdentific fields, such as
Mathematics, Physics, Logic, and Computer Science. For instance, in Logic we
can view the propositional calculus as an abstraction of first order predicate
calculus, and in Computer Science we can view the class of minimal finite-state
automata as an abstraction of the class of finite-state automata.

When the reality is an intellectual entity, the experiments by which we
derive values and check the adequacy of the models, have to be performed in a
mental way by applying the rules, that is, the dynamlcs of the corresponding
formal theoties.

3R, DENICOLA - M. C. TTENNESSY, Testing Lguiralence for Proesies, 'Theoretical Computer Science 34
(1984), pp. 83-133,
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In order to clatify this point we now present a simple example of
bisimulation between intellectual entities. It is the bisimulation between
otdinary arithmetic and arithmetic modulo 9. With reference to Fig. 1, let us
take the ‘reality’ to be the natural numbers with the addition operation and let
us consider the abstraction petformed in the ‘9-proof-technique’, that is, the
abstraction which abstracts a number into the sum modulo 9 of its figures.

For instance, let us assume that the reality-before is 33+47, the reality-after
(that is, after petrforming the addition) is 80, d-before is 6+2 (because 3+3=6,
4+7=11, and 1+1=2), and d-after is 8 (because 8+0=8). The dynamics of the
reality in this case is determined by the rules of addition, and the dynamics of
the desctiption is determined by the tules of addition modulo 9.

Let us now consider the case in which two distinct descriptions of the
same physical or intellectual reality are taken into consideration (see Fig, 2). The
two descriptions refer to two different abstractions, say a1 and 2. In this case
if we require that a bisimulation exists between each description and the reality,
then the two descriptions should be, in some sense, in accordance with each

other.
Dynamics of
DBSCR]P'I‘[ON 1: Th 1
__________ 61 before L
Theory 1
Dynamics of
DESCRIPT[ON 2: N Th 2
—————————— 82-before =
Theory 2
abstraction Q1
abstraction| 0.2
Reaury:
Dynamlcs of
f the Reality

Reality-before Reality-after

Figure 2. The case of two distinct descriptions of the same reality.

The relation T we have used in Fig. 2, is the mathematical way of
expressing that accordance. Thus, in particular, if the description 82 is more
detailed than the desctiption 81 then it should be the case that both 82-before
implies 81-before and 82-after implies 81-after.

The study of the abstract, algebraic properties of the bisimulation relation
leads us to the discovery of the rules for a cotrect use of the descriptions. For
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instance, one such rule derives from the commutativity of diagrams. In
particular, if we go viaT from 82-before to d1—before and then we apply the
dynamics of Theory 1 we should obtain the same result we can get if we apply
the dynamics of Theory 2 to 82-before and then we go via T from d2-after to
Ol-after.

This commutativity property should be preserved when different
descriptions refer to the same reality. This commutativity also forces suitable
correspondences between different theoties, such as Physics and Chemistry,
when describing the physical world, and it can also be viewed as a way of
controlling different levels of formal reasoning and deductions across different
sciences.

3. The power of formalization to give meaning to definitions

In this section we illustrate an important issue related to the use of
formalized languages when descnbmg pieces of reality. In parucular we present
a few approaches concerning vatious techmques for g1v1ng meanings to
definitions. Only definitions which convey a unique meaning, ensure a firm
basts for developing theories which are free of contradictions, and only such
theories may be used for desctibing pieces of reality.

We will give a few examples of non-trivial definitions in the formalized
language of Mathematics and we will provide their formal meaning even if
sometimes it may seem difficult to do so. We will show that in these cases,
closed mathematical structures, that is, domains which are closed with respect
to suitable operations, are sufficiently powerful tools for providing the desired
meaning.

Example 1. We start from a familiar example we all encountered at school.
In this example the definition of entities, also called #nknowns, are given in
terms of each other by means of a syt of equations. Take, for instance, the
system of the following two equations:

@O x=-yt2 y==tl

which indeed define the two rational values: x = 1/2 and y=3/2

In this case the unique meanings of the unknowns x and y is provided by
rational numbets because the domain of the rational numbers is closed with
respect to the operations of addition, subtraction, multiplication, and division.
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Example 2. This example refers to the definition of mathematical functions
via recursive equations. Take, for instance, the following recursive equation which
defines the factorial function:

(@) factoral(x) = if iszero(x) then 1 else xxfactodal(x-1)

We have that factorial(0) = 1 and factorial(3) = 3x(2x(1x(factotial(0)))) =
3x(2x(1x1)) = 6.

A computqtlon process based on matchings and replacements, provides a
unique meamng to Definition (2) for any non-negative integer value x, because
there exists a well-founded ordeting on the set of natural numbers, that is, in
the set of natural numbers it does not exist an infinite descending sequence of
the form: ... <x-2 < x—1 <x, for any natural number x.

Indeed, for any given value x > 0, the computation of factotial(x) requites
the computation of factorial(x—1) which in turn may requite the computation
of factorial(x—2), and so on. This process is bound to terminate because the set
of natural numbers is well-founded and eventually we are requited to compute
the value of factorial(0) which is 1.

Excample 3. This is more complex example and it is related to the so called
domain equations'. Let us consider, for instance, the following domain equation:

(3) X=A+BxX+X—->X

which is supposed to define a domain X of objects, given the two domains
A and B.

In Equation (3) the symbols plus (+), times (x), and arrow (—) denote the
union, the cartesian product, and continuous function space opetatots,
respectively. The unique meaning of the domain X is obtained in this case by
considering the theory of the so called Scott’s domains®. This theory allows us
to solve isomorphisms of the form: X = X—X, and also isomorphisms such as
Equation (3). The difficulty in this example derives from the fact that in
ordinary Set Theory there is no isomotphism between a set X and the set of all
functions from X to X, when the caldlmhty of X is larger than 1.

Having Scott’s domains at our disposal, it is also possible to provide
meaning to recursive definitions with se/fapplication. Let us consider, for
instance, the following equation:

* D. Scott, Continmons 1atlizes, in: Proc. 1971 Dalhousi Conference, LAVWERE (cd)), Topases, Alghuic
Geomtetry and 1 i, 1 ccture Notes in Mathematics 274, Springer Verlag (1972), pp. 97-136.
> . ScoTt, Continons 1 attices, cit.
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(@) factoral(x) = Y (Ag. Ax. if iszero(x) then 1 else xxg(x—1)) x
where Y =M ( Ax.f(xx)) Ax.f(xx)) )

For the non-expert reader we recall that in Equation (4) we have used the
lambda notation to denote mathematical functions. In this lambda notation the
function which given an input value x produces the expression e as output, is
written as Ax.e. For instance, the addition function will be written as Ax.Ay.x+y.

In Equation (4) there is a form of self-application: x has x itself as
argument. The solution of the domain equation X = X—X using Scott’s
domains allows us to overconde this problem because we can view an element
of X as a function from X to X and vice versa, by applying the function which
defines the isomorphism X = X—X.

The self-application mechanism is not so strange as it may seem, and
expressions such as Y above, are indeed used in the implementation of modern
computer languages.

Example 4. In this example we consider other forms of definitions, the so
called smpredicative definitions, and we need to use suitable categorical structures to
provide meaning to them.

A definition is said to be impredicative if it refers to the collection of
objects which is defining. For instance, a set S defined as follows:

S = {x | Vy€A.P(xy)}

is said to be defined in an impredicative way if S is an element of the set A.
This is an impredicative definition of the Peano natural numbers:

N = {n | VX (0 €X and Vx. (EX — x+1EX)) = nEX)}

Another example of an impredicative definition can be given in the type
system F of J.-Y. Girard. In the system F there is the collection of all types,
called Types, and one allows for the following type:

VX € Types. A
for any given type A. Thus, we'get that: (VX € Types. A) € Types. Despite this

circularity, one may show that the system F is coherent, that s, no
contradiction can be derived in it. Categotical semantics for type systems of
this form have been provided by Longo and Moggi.

¢ G. LONGO - i NOGGI, Constractive Natural Deduction and its Onmega-Set Interpretation, Matheratical
Structures in Computer Science, vol. 1, n. 2 (1991), pp. 215-254.
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Before closing this section we would like to mention other kinds of
definitions which are given as formulas of the first order predicate calculus. We
can provide a definite meaning to them by using the so called “three-valued
Interpretations™.

Example 5. To fix our ideas let us consider the following example (which,
for simplicity, refers to the propositional calculus, rather than the first order
predicate calculus):

©) b < true

© p<—gb

In these formulas, called causes, the symbol <— stands for ‘reverse implication’,
and - and comma stand for the logical connective ‘not’ and ‘and’, respectively.
We can view formulas (5) and (6) as the definition of the truth value of the
propositions b and p, respectively. Formula (5) says that the truth value of b is
‘true’” unconditionally, while formula (6) says that the truth value of p 1s ‘true’ if
the truth value of q is ‘false’ and the truth value of b is ‘true’. Here we face the
problem of deciding whether or not the truth value of q is “false’ because we do
not have any formula from which we can derive it.

The approach based on three-valued interpretations solves this problem as
follows. For simplicity we will desctibe this approach in the case of the
propositional calculus and assuming that: (i) precisely one propositional letter
occurs to the left of ‘e, and (ii) negated propositions occur only to the right of

‘5 3‘

Let P denote the conjunction of some given clauses. Let P~ denote the
same conjunction where the negated propositions are deleted, that is, the truth
value of negated propositions is assumed to be ‘true’. Let P denote the same
conjunction where the clauses with negated propositions are deleted, that is,
the truth value of negated propositions is assumed to be ‘false’.

Thus, in our case

Pis: b < true
p<b (P~ is detived from P by assuming that
—q has truth value ‘true’) and
Ptis: b < true (P is detived from P by assuming that

—q has truth value ‘false’).

K. R APT - R N. BOL, 1ggsc Progrumming and Negation: A1 Surrey, Journal of Logic Programming 19-20
(1994), pp. 9-71.
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We then consider the least Herbrand models of P~ and P, denoted by
M(P-) and M(P), respectively. We recall that the least Herbrand model of a
conjunction of clauses without negated propositions, is the minimal set of
propositions whose truth value can be shown to be ‘true’ by using modus ponens
(Le., by using the rule by which for any proposition a and b, from b and a <= b
we deduce a). .

In our case we have that M(P™) = {bp} and M(P1) = {b}. We then
consider the complement of M(P~), denoted by M—(P~), with respect to the set
of all propositions occurting in P. In our case we have that:

M) = {bp.q} — {bp} = {q}-

Now we compute new versions of the conjunctions P~ and P, starting
from the initial conjunction P. These new versions are computed by suitable
deletions of propositions ot clauses by assuming that:

()  the truth value of a negated proposition, say 7q, is ‘true’ if q occurs in M~

(P~) and it is “false’ if q occurs in M(P™T), and
() the truth value of the remaining negated propositions it assumed to be

‘true’ for the computation of P~ and it assumed to be ‘false’ for the

computation of P,

We then continue by considering the new values of M—(P~) and M(P™)
until the values of M—(P~) and M(P™) do not change by considering new
versions of the conjunctions P~ and P, thatis, until a fixpoint is reached. The
value of M(P™) at the fixpoint is assumed to be the meaning of the definition

In our case the meaning of the clauses (5) and (6) is that both b and p have
truth values ‘true’.

4. The power of formalization to achieve high quality reasoning

In this section we present two important properties of formalized
languages. They illustrate the powet of formalization when denoting
computations, and they will also indicate what automatic tools and computer
progtams can do for improving the quality of human reasoning.

(@) First property: formalization improves precision and speed in
mechanical computations.

This property is essential in real time systems where the results of some
computations have to be computed within given time bounds: a result which
arrives too late may no longer be useful or may cause disasters. This may be the
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case when ‘we need to solve the differential equation which describes the
motion of the Moon and we need to compute for how long an engine should
work for a correct landing of a spacecraft on the Moon. If the solution artives
too late, it may be useless or, indeed, a disaster may happen. Having the
formalized language of Mathematics, we may apply the techniques which are
available within Mathematics to compute the solutions of differential
equations. We may also estimate how long it takes to compute the solutions
and thus, we may also evaluate whether or not we can meet some given safety
requirements.

(i) Second property: formalization allows machines to enhance the
deductive and inductive capabilities of human intelligence.

Indeed, through suitable formal theoties, one can build expert systems
which can improve the intellectual performance of people. It is a reality of the
present technology that one can construct computer programs which can
safely take the place of aircraft pilots, perform medical diagnoses, suggest
chains of chemical reactions to synthesize molecules with given properties,
assist in geological prospectings, play chess games with very high performance.

Here, in particular, we would like also to recall that computer programs
based on formalized theoties such as modal logics and temporal logics, can
verify other software products, safety critical systems, and communication
protocols by applying theorem proving techniques. Experience shows that
software products already in use, have actually been proved erroneous by using
computer programs which were able to discover etrors beyond the ability of
trained persons in the field.

Recently, softwate systems which help humans in deriving programs from
given initial specifications have been developed’. These systems are very
powerful and often new and very efficient programs, much more efficient than
those known before, have been derived.

Recent work also shows that inductive capabilities of humans can be
enhanced by using computer programs. Among many other results, we would
like to mention the one reported by Stinivasan ef 2/, where it is shown that via
Inductive Logic Programming a new indicator of molecular mutagenicity, that
is, the capability of molecules of causing mutations in the DNA sequence (and

8D, RSNIIH, Mechanising the Derelgpment of Sofinare, in M. BROY (ed.), Calwdational Syster Design,
Proceedings of the International Summer School Marktoberdorf, NATO ASI Serics, IOS Press, Amsterdam
1999. Also: Kestrel Tnstitute Technical Report KIES.U.99.1, March 1999.

2 AL SRINIVASAN - S, I MUGGLETON = R. 1. KING - M. J. Ii STERNBERG, T X’(’(J/Yi’.\‘_/i)l‘ nttagenicily: /1
sty of first order and feature based indvction, Artificial Tntelligence 85 (1996), pp. 277-199.
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often producing cancer), was found within a subset of previously published
data.

Together with these practical achievements, we would like to mention also
some theotetical achievements which show how powerful formalized theoties
and mechanical theorem provers based on those theories can be. Important
and complex theorems of Mathematics and Mathematical Logic such as
Cantor's Theorem (stating that a set has smaller cardinality than its powerset),
the Church-Rosset property of A-calculus, and Goédel’s Incompleteness
Theorem have recently been proved using mechanical theorem provers™.

Let us make two final rematks before closing this section.

The fitst remark is that all the achievements we have mentioned above in
the area of softwate production, do not provide a satisfactory answer to the
question about the meaning of ‘intelligence’ and in what sense intelligence is
beyond “high quality computing” or “high quality deductive or inductive skill”.

The second temark is about the ability of constructing theories, called 7zeza-
theories, desctibing other theoties, called object-theories, and the ability of
formalizing in suitable meta-theoties the deductive or inductive apparatus of
given object-theories.

These meta-theoties allow one to produce vety powerful and sophisticated
tools for enhancing people’s intellectual abilities. However, the ‘self-
consciousness’ expetience of people who while thinking, are able to think
about theit own thoughts, appeats to be much beyond the ability of using
meta-theoties to teason about the deduction or induction process which
occurs within object-theoties. We will not discuss these issues here.

5. The limits of formalization regatdless the growth of technology

In the previous section we have illustrated the power of formalization and
we have indicated through some examples how formalization can be used for
enhancing human intellectual capabilities. There are, however, some inherent
limitations in the use of formalization. Indeed, when we use a formalized
language for expressing concepts and stating problems, then it may be the case
that those problems ate #nsolvable, that is, no computing device exists by which
we can provide a solution to those problems.

Here is a simple example of an unsolvable problem. It is the problem of
the equivalence of context-fre€ languages. It can be stated as follows.

O N. SHANKAR, ftp://fip.csutexas.edu/pub/boyer/ngthm/nqthm-1992/ examples/shankar.
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Let us consider a set L of upper-case and lower-case letters and let us
consider a set R of rewriting rules of the form:

A—=>BC (an upper-case letter produces the sequence of two
uppet-case letters)

ot
A—a (an upper-case letter produces a lower-case letter)

where in each rewriting rule the upper-case letters and the lower-case letters are
taken (possibly with repetition) from the set L.

Using a set R of rewriting rules and starting from an upper case letter, say
A, we may get a set S(R) of strings of lower-case letters. For instance, given the
set of rules R = {B — A B, A — a, B — b}, starting from B we detive all
strings which begin by zero or more a’s and terminate by b.

It can be shown that no computing device M exists such that for any given
sets R1 and R2 of rules, M terminates after a finite number of computation
steps and M returns ‘yes’ if and only if SR1) = S(R2), that is, M can tell us
whether or not S(R1) = SR2).

In more formal terms, no total recutsive function M exists such that for

any given sets R1 and R2 of rules M returns ‘yes’ if and only if S(R1) = S(R2).

One more unsolvable problem is the so called foltjng problem. The
unsolvability of the Halung problem tells us that no computing device M exists
such that for any given computing device N and input value i, the device M
tells us after a finite number of computation steps whether or not N terminates
on lnput i

One should also notice that,the limitations we have indicated through the
existence of unsolvable problems are inttinsic to the formalization and they do
not depend on the achievements of the technology, that is, on how fast or how
powerful future computing devices can be.

We now illustrate the limitations of formalized languages through a
negative result which holds within Peano Arithmetic, that is, the theoty of
natural numbers with the operations of addition and multiplication and the
induction rule which says that for any formula P(x) we can infer that Vx.P(x)
holds if P(0) holds and (Vx. P(x) implies P(x+1)) holds.

This negative result is the Godel’s Incompleteness Theorem (1931), which
says that there are true sentences in Peano Arithmetic which are not provable
in Peano Arithmetic itself. In particular, the consistency of Peano Arithmetic
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(Le., the fact that in Peano Arithmetic there is no sentence F so that F and =F
can be proved) cannot be proved within Peano Arithmetic.

More recently Fredman (1981) has found a statement called the
Friedman's Finite Form (FFF) Theorem, which is true in Peano Arithmetic
and it cannot be proved within Peano Arithmetic. The FFF Theorem is a
statement much simpler than the one which expresses the consistency of
Peano Arithmetic. Due to its simplicity, it gives us a deeper understanding of
the limitations of the formalized language of Peano Arithmetic and the
limitations due to Godel’s Incompleteness Theorem. In order to express the
FFF Theorem we need the following preliminary definitions.

A partial order over a set D, which we denote by (D, <), is a reflexive,
symmetric, and transitive binary relation over the set A. We denote by glb a
binary operation, called greatest lower bound, over DxD such that: (i) glb(x,y)
< x, (1) glb(x,y) <y, and (i) if z < x and z < y then z < glb(xy).

A total order over a set D, which we also denote by (D, <), is a partial
order over D such that for any x and y in D either x<y or y<x holds. In this
case we say that D is a totally ordered set.

A sequence on a set S is a function from the set of natural numbers to S.

A finite tree T is a partial order (T, <) such that T has a smallest element
with respect to < (often this smallest element is called o) and if a € T then {x
x < a} is a totally ordered set.

An embedding between two partial orders (T'1, <j) and (T2, <p) is a
function f from T1 to T2 which pleserves the greatest lower bounds, ie.,
flglbi(xy)) = glba(f(x),£(y)), where for i = 1, 2, by glb; we denote the greatest
lower bound in Ti. (Thus, an embedding is a monotonic function.)

We write T1 < T2 to mean that there is an embedding between the trees
T1 and T2.

This is the statement of the FFF Theorem:

For any n there exists m such that for any finite sequence (Tl, T2, .., Tm) of
finite trees such that Ti has at most n x (i+1) elements, there exist j and k such
that j<k<m and Tj < Tk.

For the expert we recall that the FFF Theorem is a finite form of Kruskal's
Theorem and itis a TIS statement.

6. Concluding remarks

We have seen in what sense a formalized language is strong and weak at
the same time. It is strong because: (1) it gives meaning to definitions which are
recursive or non-well-founded or impredicative, and (2) it provides tools for
the mechanical derivations of theorems, and thus, it enhances the ability of the
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human mind when petforming deductions or inductions in formalized
theoties.

A formalized language is also weak because if it has high expressivity, then
it 1mpos<1ble to formally show consistency of some theories one may construct
using that language, and thus, one runs the risk of constructing in that language
trivial theoties where all sentences are true.

How can we overcome this problem? How can we look for truth in a
highly expressive language and at the same time, keeping our reasoning within
a formalized framework?

I propose two paths to follow. The first path is “intellectual optimism”, by
which I mean that our reasoning abilities, if well trained and used with
discipline, lead us towards correct statements. Moreover, even if we cannot
show that a given theory is consistent, nevertheless, we can use for our
purposes a portion of that theory which is free from conttadlcuons

This intellectual optimism is acceptable in a very practical sense: firstly,
because in the history of science many theories have been used and were useful
without having the proof of their consistency, and secondly, because some
achievements of the present technology such as computers,
telecommunication systems, aeroplanes, and medical instruments, “go beyond
the limitations” of showing the consistency of the theory which supports their
design. This is also true on the negative side, in the sense that the destructive
power of most weapons does not really depend on the proof of the
consistency of the scientific theoties on which their design is based.

The second path I would like to suggest for a sound search for truth, is
“moderate formalization”, which can also be considered as a sort of intellectual
optimism. By moderate formalization I mean that the use of formalization
should be advised “up to a certain degree”, leaving some basic notions or
notations as intuitively clear or unambiguous, and ultimately relying on the
consistency of some mathematical theories, such as Set Theory or Peano
Arithmetics. Those theoties may be assumed as a sufficiently firm ground for
the development of formalized reasoning in Mathematics and in other formal
sciences.

In communicating to other people our ideas about some “pieces of
reality” using formalized theories, we should not concentrate too much on the
formalism we use, and on the contrary, we should somewhat rely on the ability
of our listener to understand our ideas beyond the limitations of the language
we use for expressing the “piece of truth” our statements convey. The two-way
dialogue with our listener will increase the amount of “truth” we will be able to
share with him as time progresses, by decreasing the inevitable ambiguity of the
statements we use and eliminating imprecision and useless redundancy.

The objective of “moderate formalization™ is that our listener may receive
and understand our “piece of truth” with sufficient precision, so that he can
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use it cotrectly, according to the goals he sets for his own actions. Here is
whete orthgpraxis, that is, cotrect actions, and orthodoxy, that is, correct ideas,
have to interact in the unity of the human activity and human communication.

Finally, I would like to remark that some of the ideas for the correct use
and development of formalized languages in science atre strongly related to
some of the criteria which Cardinal J. H. Newman proposed for a correct
development of dogma in_A# Essay on the Development of Christian Doctirine (1845,
1878)", such as: (i) the logical cohetence, (i) the power of assimilation, (iii) the
consetvation of the past, and (iv) the anticipation of the future. I will not
discuss this relationship here. The reader may find an illustration of those
ctitetia in the contribution of Prof. Giuseppe Tanzella-Nitti in these
Proceedings

I also leave for future investigations the analysis of the relationship
between the bisimulation approach we have presented here and the theories of
explanation and confirmation in science™.
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Interpretazioni della meccanica quantica e realta
Sergio Rondinara

Fu un “venerdi nero” per la fisica classica quello del 14 dicembre 1900. In
quel giorno Max Planck, professore di fisica allUniversita di Betlino, presentd
la sua formulazione della legge di distribuzione spettrale della radiazione del
corpo nero alla Societa Tedesca di Fisica riunitasi nella capitale.

L’evento non desto inizialmente un particolare clamore e sembra che lo
stesso Planck fosse ben lontano dal prevedere la portata della sua intuizione per
Intera costruzione del sapere scientifico, anche se aveva confidato al figlio
Erwin — in una passeggiata nel parco — di aver scoperto qualcosa che poteva
essere considerata una tra le pit grandi scoperte della fisica dal tempo di
Newton.

Oggi possiamo considerare quel giorno la data ufficiale di nascita della
fisica qua_nt;ca I'inizio di un grande capovo]gunento nella nostra comprensione
della matedia. Con lavvento della “matunvstante ¥’ inizid un radicale
tinnovamento della Weltanschanung della fisica. Fu lo schiudersi di un orizzonte
che subito getto luce sulle relazioni radiazione-materia e da li a poco avrebbe
condotto all'interpretazione quantica della struttura atomica.

La fisica dei quanti, ma soprattutto la meccanica quantica (MQ) che ne
derivd hanno permesso la spiegazione accurata — almeno in termini matematici
— di un numero imptessionante di fenomeni nucleari, atomici, molecolati, dello
stato solido e delle particelle elementati, tale da poter affermare che nessun
esperimento di cui si abbia notizia ha contraddetto le predizioni della MQ negli
ultimi cinquanta anni'. Ma non solo, la fisica e la MQ hanno lanciato delle vere
e proprie sfide alla nostra interpretazione scientifica del reale.

Intetpretazione della Meccanica Quantica secondo Ia
Scuola di Copenaghen
Sul finire del secolo XIX la fisica — che oggi chiamiamo ‘classica’ — era

g1unta non senza anomalie, a una configurazione sintetica del proptio sapere
sui fenomeni naturali raggruppando essenzialmente i propri concetti in due

gruppi.

! CEP. C. W. DAVIES - |. R. BROWN, [fiantasma dellatono, Citth Nuova, Roma 1992, p. 56.




