L/\Sl |STITUTO DI ANALISI DEI SISTEMI ED INFORMATICA
u\l: CONSIGLIO NAZIONALE DELLE RICERCHE

A. Frangioni, C. Gentile

PERSPECTIVE CUTS FOR 0-1 MIXED INTEGER
PROGRAMS

R. 577 Novembre 2002

Antonio Frangioni — Dipartimento di Informatica, Corso Italia 40, 56125 Pisa (Italy). Email:
frangio@di.unipi.it.

Claudio Gentile — Istituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni 30
- 00185 Roma, Italy. Email: gentile@iasi.rm.cnr.it.

ISSN: 1128-3378

Collana dei Rapporti dell’Istituto di Analisi dei Sistemi ed Informatica, CNR
viale Manzoni 30, 00185 ROMA, Italy

tel. +4+39-06-77161

fax ++439-06-7716461

email: iasi@iasi.rm.cnr.it

URL: http://www.iasi.rm.cnr.it

Abstract

We show that the convex envelope of the objective function of a Mixed-Integer Programming
problem is the perspective function of the continuous part of the objective function. Using a
characterization of the subdifferential of the perspective function we derive a family of valid in-
equalities that can be used to substantially improve the performances of an enumerative (Branch
& Bound) approach for at least one particular model with the required structure, the Unit Com-
mitment problem in electrical power production.

Key words: Mixed-Integer Programs, Valid Inequalities, Unit Commitment problem

1. Introduction

In many real-world problems both discrete and continuous decisions have to be made about
the same entity. Omne of the most common cases is the one where a continuous variable p
is constrained to lie in the (disconnected) set {0} U [pmin, Pmaz] for some 0 < ppin < Pmagz-
This is, e.g., the case of a variable representing the output of a production process that can
either be “inactive”, and therefore nothing is produced, or “active”, and therefore the output
of the process must lie between some minimum and maximum amount. Examples can be found
in Distribution and Production Planning problems, Financial Trading and Planning problems,
the problem of synthesizing a processing system, or the problem of determining the optimal
positioning of a new product in a multiattribute space; see, e.g., [9], [1], [9], [2], [5] [13] and
the references therein. Indeed, this structure is so widespread that XPRESS-MP [4] and Cplex [§]
solver suites provide built-in special support for these semi-continuous variables.
As a mathematical program, this structure is usually expressed through the following Mixed-

Integer Program (MIP)

min f(p) + cu

Pminh <P < Prazth ; (1)

u € {0,1}

where p, Pmin and ppme, are, in general, n-vectors. In the following, we will assume that f :
R™ — R is a closed convex function that is finite everywhere in the hyperrectangle P = {p :
Pmin < P < Pmaz}- The binary variable u models the decision of “activating the process”, i.e.,
decides whether p = 0 or p € P, at the fixed cost c. We assume that f(0) = 0, because any
constant term in f can be embedded in the constant c.

Of course, (1) is usually only a small fragment of a larger problem where other constraints
are imposed on u and/or p. For instance, constraints may exist that confine p in a subset
of P; extending our treatment to this case is immediate, and we will not comment further on
this issue. More interestingly, many fragments of the form (1) can be simultaneously present
in a given model, with different data pin, Pmaz, f and c, to represent, e.g., different products
and /or different productive processes and/or different time instants and/or different geographical
locations. For instance, in the thermal Unit Commitment problem (cf. Section 3.1) in electrical
power production, the production process is that of a thermal generating unit that burns some
type of fuel (oil, gas, coal, ...). A set of generating units, with different capacities and generating
costs, can be used to satisfy the (forecasted) power demand over a discretized time horizon.
Hence, there are as many blocks of the form (1) as the number of generating units multiplied
by the number of time instants.

When a (MIP) comprising one or more blocks of the form (1) has to be solved with an
enumerative approach, such as a Branch & Bound or Branch & Cut algorithm, the continuous
relaxation of (1)

min f(p) + cu
Pminth < P < Pmazth (2)
u € [0,1]

is usually a part of the problem that is solved in order to derive lower bounds on the objective
function value of the original (MIP). In a Branch & Cut algorithm, these lower bounds can
be improved by adding cuts that provide a better description of the convex hull of the integer
solutions; these cuts, however, depend on the structure of the other constraints, e.g., those linking
different blocks (1) together, as the feasible region in (2) has only vertices with an integer value

for u. Here we focus on a different way for improving the lower bound that depends only on the
structure of a single block.

Problem (1) can be equivalently seen as the minimization over all (p,u) of the nonconvex
function

0 ifp=u=0
f(pau): f(p)+C ifu=1and ppin <P < Praz - (3)
+00 otherwise

The best possible convex relaxation of this problem is obtained by minimizing over all (p,u) the
function cof, i.e., the closed convex function with the smallest (in set—inclusion sense) epigraph
containing that of f; this is called the convezr envelope of f. In general, computing the convex
envelope is a nontrivial task (see, e.g., [10], [12]); in this particular case it can be readily done,
showing that ¢of (p,u) is nothing but a section of the perspective function of f(p), see, e.g., [7]
§IV.2.2. Using a result of [3] we can exploit this fact to derive valid inequalities for the problem,
related to those of [11], which can then be used within an enumerative approach to improve the
lower bound w.r.t. the one obtained by (2); this can be shown to result in a decrease of the
number of the nodes in the enumeration tree and in an improvement of the running time for at
least a class of relevant applications, that is, Unit Commitment problems.

The structure of the paper is the following: in Section 2 ¢of is characterized, some of its
useful properties are discussed and the valid inequalities are described. In Section 3, the use of
the valid inequalities within an enumerative approach is discussed, focusing in particular on the
case where f(p) is quadratic; some computational results are reported for Unit Commitment
problems that show how the proposed technique can considerably improve the performances of
an enumerative method. Finally, in Section 4 some conclusions are drawn.

Throughout the paper the following notation is used. Given a set X, Ix(z) =0if z € X
(and +o0o otherwise) is its indicator function, intX is its interior, extX the set of its extreme
points, coX is the convexr hull of X and coX is the closure of coX; when X is the epigraph of
a function f, i.e., X = epif = {(v,z) : v > f(z)}, we denote by cof = coX and cof = coX
the convez envelope of f and its closure, respectively. Given a convex function f, domf = {z :
f(z) < oo} is its domain, Of (x) is its subdifferential at x and f'(z;d) is its directional derivative
at z along direction d; we remind that for any finite convex function f'(z;d) = sup{sd : s €
Of(z)}. We will often use the shorthand p/u for (1/u)p, where p is a vector and u a scalar.

2. Characterization of cof

To characterize cof we just need to compute the convex hull of points in the epigraphical space
pertaining to the two disconnected “sides” of domf. In other words, given any 6 € [0, 1] and
p € P, we consider the point

(1-0)[0,0,0] + 0[f (p) + ¢, p, 1] = [0(f (D) + ¢),0p, 0] .

Since for § = 0 we obtain [0, 0, 0], we can assume 6 > 0 and make the following identifications

0=u pP=up

to obtain

[uf(p/u) + uc, p, u]

and therefore

0 ifp=u=0
h(p,u)=cof(p,u)=q uf(p/u) + cu if print < p < Prmacu, w€(0,1] . (4)
+o0 otherwise

In other words, h is just (a section of) the perspective function of f(p). F = dom h = co dom f
is the pyramid having as base P x {1} and vertex [0,0] (when n = 1, the triangle of vertices [0, 0],
[Prmins 1]5 [Pmazs 1])- Note that the explicit definition of h(0,0) in (4) is not strictly necessary as
the result is obtained by continuity: for every sequence {pg,ur} C F that converges to [0,0] we
have

0 < ug(f(pr/ur) +) < uy <c+ sup f(p)>

pEP

and therefore
lim ug(f(pr/uk) +c¢) =0
k—00

since f is finite over the compact set P.

The set epi h is a (section of a) cone pointed in the origin and having as “lower shape” that
of f(p); in other words, h is linear on the straight lines (segments) of the form p = pu with
u € [0,1] for any p € P, in fact

h(pu,u) = uf(p) + cu .
This is confirmed by first-order analysis: if f(p) is differentiable in P then h is differentiable
in ¢nt F and V£ (p/u)
p/u
VP = o) — o)V (o) + e
Since Vh depends only on p/u it is constant on all points of the form [pu,u].

The first-order analysis can be extended to the case where f(p) is nondifferentiable by char-
acterizing Oh; this has already been done in [3], but we include a short proof because it helps in
providing geometric insight on the shape of epi h. Since we know that A is linear on the lines
p = pu for p € P, its directional derivative along the direction [p,u] must be identical for all the
points of the line. Hence, the scalar product between any subgradient [s1,s2] € Oh(p,u) and
[p, u] must be identical; in particular, we have

[s1, s2][p, u] = h(p,u) = uf(p/u) + cu V[s1,s2] € Oh(p,u)
whence all the subgradients of & in (p,u) must have the form
[s1,c+ f(p/u) — s1(p/u)] -

But s; has to be a subgradient of h,(p) = h(p,u); using Theorem VI.4.2.1 in [7] it is easy to
prove that dh,(p) = 0f(p/u), hence

Oh(p,u) € {g(s) = [s,c+ f(p/u) — s(p/u)] : s € Of (p/u)} . (5)

It is easy to verify that every vector g(s) in (5) satisfies the subgradient inequality

h(p,u) 2 h(p,u) + [s1, s2]([p, u] — [p, ul) Vis1, 2] € Oh(p,u)

therefore it is a subgradient of h at (p,u), and “C” can be replaced by “=" in (5). Note once
again that Oh(p,u) depends only on p/u, and thus it is constant on the lines p = pu.

It is now possible to characterize the epigraph of the function h. All points [v,p,u] € epi h
must satisfy the subgradient inequality

v 2> h(ﬁ, Il_j’) + [31132]([177 u] - [ﬁ, Il_j’]) V[Sla 32] € ah(ﬁa ﬁ') (6)

for all [p,u] € F; since Oh(p,u) is constant on the lines p = pu, it is sufficient to consider only
points of the form [p, 1].

Theorem 2.1. The n + 2-dimensional set epi h is bounded by the following linear inequalities:
Pmin <P, P < Pmazt, u<1; (7)

v> () +e+ls,c+ f(B) - splpul —[5,1]) s€Of(p)peP. ®)

In particular, the 2n+ 1 inequalities (7) define mazimal faces of epi h of dimension n+ 1, while
the — possibly infinitely many — inequalities (8) define maximal faces of epi h of dimension at
least one.

Note that, since f is finite everywhere, df(p) is compact for all p € P; hence, from (9) we have
that all the linear constraints in (6) for one [p, 1] corresponding to subgradients s ¢ extdf(p) can
be obtained as a convex combination of (at most n+1) constraints corresponding to subgradients
in extdf(p). Hence, 0f (p) in (8) can be replaced with extdf(p) (of course the two coincide if f
is actually differentiable in p, as s = V f(p) is the only possible choice in (8)). In case n = 1, for
instance,

of(p) = [f(p), [(p)]

where f! and f) are respectively the left and right derivative of f, and

Oh(p,u) = co{g(fL (p/u)), 9(f} (p/u)} (9)

is a segment in R? whose extremes correspond to f’ (p/u) and f! (p/u). Hence, (8) becomes

v > f(p)+c+ [(D),c+ f(®) — f (2p)([p, u] — [p,1]) (10)
v > f(p) +c+ [fL(D),c+ f(B) — fL(D)p([p,u] —[7,1])

We refere to each inequality of the form (8) as a perspective cut.

It is interesting to contrast h for two special cases of f, namely the linear case f(p) = bp and
the (convex) quadratic case f(p) = ap® + bp (with @ > 0, and n = 1 for simplicity). In the
former case we get

h(p,u) =uf(p/u) +cu+Ir=bp+cu+Ir=f(p)+cu+Ir.

Hence, in the linear case the convex envelope of f is characterized, other than by the inequal-
ities (7), by the unique perspective cut v > bp + cu that defines a maximal face of epi h of
dimension n + 1. Thus, in the linear — and therefore piecewise-linear — case h coincides with the
objective function of (2), which is therefore the best possible convex relaxation.

In the quadratic case, instead, we get

h(p,u) = uf(p/u) + cu + Ir = (1/u)ap® + bp + cu + I . (11)

Hence, something can be gained by using h as the objective function: since u < 1, h(p,u) >
ap? + bp + cu. In particular, elementary calculus shows that the maximum of h(p,u) — (ap® +
bp + cu) over F is ap?,,,/4, attained at [p*,u*] = [Pmaz/2,1/2]. Thus, in the quadratic case
(a > 0) h is a better objective function, for a continuous relaxation, than f(p) + cu. It is
interesting to remark that the largest difference between the two is obtained for u = 1/2, i.e.,
that h “penalizes” precisely the “most nonintegral” points in F, which is, at least intuitively, a
positive fact.

In the quadratic case, however, using h as the objective function has a serious potential
drawback: h(p,u) is a much “more nonlinear” function than ap? + bp + cu and it is even
nondifferentiable at [0,0]. In other words, while (2) is a convex quadratic problem, and therefore
it is not substantially more costly to solve than a LP, a relaxation of a MIP with many blocks
of type (1) having h as a part of the objective function could be considerably more difficult to
solve. The interior-point method of [3] could be used here, but efficient implementations of that
approach are not widely available, and have not already been fully shown to be competitive with
the sophisticated LP and QP solvers available; furthermore, interior-point methods may be less
well-suited than simplex-like methods in the context of enumerative approaches. Alternatively,
Theorem 2.1 suggests using a partial characterization of epi h as the objective function by
iteratively collecting a finite subset of perspective cuts. This is analogous to what is done for
the feasible region in Branch & Cut approaches like that of [11], and — possibly more to the point
in this case — what is done for the objective function in several NonDifferentiable Optimization
algorithms (see, e.g., [6]).

In other words, given a (fragment of a) solution [v*,p*,u*] with a fractional value for u
corresponding to an approximation of h by a finite number of perspective cuts, it is very easy
to compute the true value of h(p*,u*) via (4) to check whether v* = h(p*,u*). If not, cuts (8)
corresponding to [p*/u*,1] are (strongly) violated by [v*,p*,u*], and therefore can be added to
the current set of inequalities, improving the approximation of h and, possibly, the lower bound.
This only requires to be able to compute at least one (preferably extreme) element of 9f(p).

This approach is strongly related to that of [11], which is more general; however, a number
of differences exist. First and foremost, because in our case the “convex combinator” u is a
variable of the original formulation rather than being added for algorithmic purposes, separation
of perspective cuts is very easy, while in the approach of [11] a potentially large-scale nonlinear
problem — with nonlinear constraints — have to be solved. We separate inequalities for each
block (1) individually rather than only one inequality for the entire problem, and therefore our
inequalities are global by nature and do not require lifting. Even if the approach of [11] is applied
to a single block (1), a smaller scale but potentially nontrivial nonlinear program still has to
be solved to compute the projection of [v*, p*,u*] over epi h under some norm; because of this,
the perspective cuts obtained by [11] and the ones we generate, for the same [v*, p*, u*], would
be different. Therefore, our approach is clearly simpler (even though not entirely immediate, as
shown in the next section) to implement using widely available and efficient tools with respect
to the approach proposed in [11].

3. Using perspective cuts in a B&B approach

In this section we will show that, despite of the low dimensionality of the faces of epi cof that
they represent, perspective cuts can significantly improve the performances of an enumerative
approach for the solution of a (MIP) containing fragments of the form (1). Let us remark that
these results are only meant to show that the proposed convexification procedure can significantly

improve the lower bound and the running time of a B&B algorithm with respect to a standard
continuous relaxation.

3.1. The Unit Commitment problem

The thermal Unit Commitment problem in electrical power production is as follows. A set I
of thermal units is given, where each unit ¢ € I is characterized by a maximum and minimum
power output pmm and pt, .., respectively, and by a convex quadratic power cost function
fi(p) = a’p?>+b'p+c’, when the unit is committed (actively generating power). Over a discretized
set T of time instants covering some time horizon (e.g., hours or half-hours in a day or a
week), an estimate d; for ¢ € T of the total power demand is available. The Unit Commitment
problem requires to generate, for each time period, enough power to meet the forecasted demand
at minimal total cost. The operation of thermal units must satisfy a number of technical
constraints: the most standard requirement is that whenever unit ¢ is turned on it must remain
committed for at least 7¢ consecutive time instants, and, analogously, whenever unit 7 is turned
off it must remain decommitted for at least Tlfl consecutive time instants.

Introducing binary variables u;; indicating the commitment of unit ¢ at time instant ¢ and p;;
indicating the corresponding power output, a basic formulation of the Unit Commitment prob-
lem is

minz Z a'p? + bipy + g (12)

i€l teT
Zpit = dy teT (13)

i€l

Wigir > Uig — Uig 1 ielteT,r=1,...,min{7l, |T| -t} (14)
Wigrr <1 —uip 1+ Uiy ieLteT,r=1,...,min{7}, |T| —t} (15)
Phaintiit < Pit < Plyazlit iel,teT (16)
uir € {0,1} iel,teT (17)

This basic formulation may have to be complicated in order to take into account other charac-
teristics of a real energy production problem. For instance, other technical constraints are often
imposed by either global security requirements, such as spinning reserve constraints or network
constraints, or by operating restrictions of the thermal units, such as ramp rate constraints.
Often, thermal units incur in a considerable start-up cost when they initiate production after a
period of inactivity, and the cost may depend on the duration of the inactive period. Further-
more, other types of generating units, such as hydro units or nuclear units, with very different
operating constraints can be used to satisfy part of the power demand in (13). It is out of the
scope of this paper to provide a detailed description of all variants of the Unit Commitment
problem; the interested reader is referred, e.g., to [2] and the references therein. In the following,
the formulation (12) — (17) will be assumed; it already contains |I| x |T'| blocks of the form (1),
which would therefore be contained in any more complex formulation.

3.2. Implementation details

In order to test the effectiveness of adding perspective cuts, we implemented a cutting plane
scheme on the objective function within a Branch & Bound algorithm for solving Unit Com-
mitment problems. The implementation was not entirely straightforward: in fact, although

Cplex 8.0 [8] provides a Branch & Cut algorithm for solving Mixed-Integer (convex) Quadratic
Programs, some of the — rather nonstandard — operations required for implementing our scheme
are not supported by the — otherwise very flexible — B&C algorithm contained in the Cplex 8.0
library. In particular, changing the quadratic part of the objective function during the execu-
tion of the B&C is not allowed by the API of the Cplex callable libraries; furthermore, when
an integer solution is found its objective function value for the “linearized” relaxation does not
provide a valid upper bound, that can be obtained only by evaluating the original quadratic
objective function. All this prevented us from relying directly on the efficient and sophisticated
B&C implementation in Cplex, using the many callback functions provided for tailoring it to
our specific application, and forced us to implement a standard B&B algorithm from scratch,
using Cplex only to solve the Quadratic Programs at each node of the B&B tree. The most
relevant details of our implementations are briefly described in the following.

The first Quadratic Program solved at the root node is just the continuous relaxation of (12) —
(17). At each node of the B&B tree, a standard cut separation phase can be executed: given
the current solution (p*,u*) of the relaxation, consider any pair (¢,t) such that u}, is not integer,
compute the (unique) perspective cut

oz (w2 0) s (ce (%)) a8

associated with the point (piy = pj;/ujy, 1) and add it to the formulation if it is violated (beyond
a certain threshold).

The first time that a cut is generated for a given pair (4,%), the corresponding fragment of the
quadratic function must be removed from the formulation, and the extra variable v;; must be
added to the model to represent the maximum between all the linear functions associated with
the pair (,%) (cf. (18)); in this case we also add to the formulation the cuts associated with the
two special points (pf,;,,1) and (p%,,., 1).

The cut separation routine have to distinguish whether or not the objective function corre-
sponding to the pair (7,t) has already been linearized; in the latter case we set v}, = a’ (p5)? +
bipft + ciu;-kt, while in the former case we read the value v}, from the solution of the continuous
relaxation. Then, the cut is violated if the following condition holds:

* i i) % i i(m \2) % i (Pf)” i, % i, *
viy < (2a'pi + ') Py + (c —a' (pit))uit —€=a J—*—I—bpit—kcuit — €,
it
where ¢ is a fixed threshold (10~* in our experiments).

The above separation procedure can be used in a number of different ways within the Branch &
Bound algorithm; in particular, the following three binary choices give rise to 2% = 8 alternative
strategies:

e the separation procedure is applied only at the root node (CUT = R) or throughout the
Branch & Bound tree (CUT = T);

e the original fragment of the quadratic function is restored when for a “linearized” pair
(pit, uit) the variable u; is fixed to 1 in a branching (DELIN =D), or the current piecewise-
linear approximation of h is kept even if u;; is fixed to 1(DELIN = L);

e the separation procedure is applied only once for each node of the B&B tree (SINGLE = S),
or the procedure is repeatedly applied, after reoptimization of the QP, until no new cuts
are found (SINGLE = M, for “multiple iterations”).

10.

In the tables, we will indicate each strategy with the corresponding triple CUT DELIN SINGLE;
so, for instance, the code TDM will indicate the B&B variant where new cuts are generated at
each node (T), the quadratic part of the objective function is restored for all u;; variables that
are fixed to 1 (D), and more than one round of cut generation may be performed at each node
(M).

We also tested our B&B algorithm without adding any perspective cut (CUT = 0, denoted by
code 000), and, for comparison, the efficient B&C implementation of Cplex 8.0, again without
any other cut apart the standard ones provided by the Cplex library. All the implementa-
tions therefore use the quadratic solver in CPLEX 8.0; actually, since two quadratic solvers are
available we experimented with both.

Since we were mainly interested on the effect of perspective cuts on the lower bound compu-
tation we did not include any heuristic in the B&B algorithm; instead, we provided each variant
an initial upper bound associated with a good feasible solution obtained by the Lagrangean
heuristic in [2].

3.3. Computational results

We tested all the above variants of B&B algorithms on a set of Unit Commitment instances
obtained as in [2]; the instances have 24 time periods and either 10 or 20 units (5 instances for
each dimension). The stopping criterion for all variants was either a relative gap lower than
0.1% or the maximum number of nodes (10000) being reached.

All variants were run on a PC with a 2.5 Ghz Pentium-4 processor and 512Mb RAM, run-
ning the Linux Debian 3.0 operating system (kernel 2.4.18). The codes were compiled with
gcc 2.95.4 using aggressive optimizations —-03.

In Table 1 and Table 2 we report the results for each of the nine strategies obtained while
using the barrier algorithm and the dual algorithm, respectively, for solving the QP at each node
of the B&B tree. For each instance we report the number of nodes in the B&B tree (n) and the
time in seconds (s) needed to solve the problem; if the required 0.1% accuracy is not reached
within 10000 nodes (this often occurs for CUT = 0, and sometimes even with CUT = R), we
also report the gap of the current best integer solution with the current best bound.

All the eight strategies using perspective cuts clearly outperform the pure B&B algorithm.
This is also explained by comparing the previous results with those in Table 3, where the time
required to obtain the lower bound at the root node (possibly solving more than one QP for
the variants with SINGLE = M) and the corresponding gaps are reported for the barrier and
dual simplex algorithm, respectively. Even one single pass of the cut separation routine reduces
the gap by almost a factor of 10 at a relatively low computational cost; comparing these results
with Table 1 and Table 2 shows that in most cases the gap reached by strategy 000 after 10000
nodes is still larger than the one reached by the other strategies at the root node.

As far as the comparison among the eight strategies is concerned, the following trends seem
to emerge from the results:

e CUT = T clearly outperforms CUT = R, i.e., “Branch & Cut” is better than “Cut &
Branch” in this case;

e the strategies TLx are usually better than the corresponding strategies TDx, i.e., delin-
earization seems to hurt performances; this is particulararly true when the dual simplex
algorithm is used, and it is probably due to a less efficient reoptimization when quadratic
terms are created in the objective function;

instance 000 TDM TDS TLM TLS
n t g% n t g% n t g% n t g% n t g%
P10.24.a | 2183 537 - 6 10 - 4 2 - 6 11 - 4 2 -
P1024b | 4214 1202 - 13 36 - 24 21 - 16 36 - 24 16 -
P1024.¢c | 10000 2925 0.55 20 68 - 68 58 - 24 79 - 70 62 -
P1024.d | 10000 2390 0.49 25 17 - 16 5 - 4 4 - 6 2 -
P1024.e | 10000 2287 0.43 0 1 - 1 0 - 0 1 - 1 0 -
average - - 13 26 23 17 10 26 21 16
P2024.a | 10000 6145 1.69 160 886 - 193 530 - 56 349 - 201 586 -
P2024b | 1891 1260 - 52 110 - 68 95 - 36 7 - 75 109 -
P2024_c 1852 1213 - 157 617 - 165 319 - 147 160 - 160 320 -
P2024.d | 10000 6040 1.93 157 950 - 335 1541 - 164 1007 - 390 1925 -
P2024.e¢ | 10000 6551 1.13 35 67 - 67 167 - 35 247 - 53 123 -
average - - 112 526 166 530 88 368 176 613
instance RDM RDS RLM RLS
n t g% n t g% n t g% n t g%
P1024.a 6 3 - 7 2 - 6 3 - 6 2 -
P10.24 b 29 12 - 52 19 - 38 15 - 35 13 -
P1024 ¢ 266 105 -| 1335 456 - 68 32 - 64 25 -
P1024.d 25 8 - 385 108 - 2 2 - 35 11 -
P1024e 0 1 - 5 1 - 0 1 - 1 0 -
average 65 26 357 117 23 11 28 10
P20.24 a 10000 10133 0.13 | 10000 9190 0.19 | 10000 10464 0.16 | 10000 9290 0.22
P2024 b 63 57 - 115 95 - 80 70 - 141 120 -
P20 24 ¢ 519 384 - 505 369 - 488 376 - 476 351 -
P2024.d 10000 10631 (.11 | 10000 10631 0.16 | 10000 11227 0.14 | 10000 10137 0.16
P20 24 e 698 709 - 698 709 -| 1032 1076 -| 5354 5052 -
average - - - - - - - -

Table 1: Results with the barrier algorithm

1

instance 000 TDM TDS TLM TLS
n t g% n t g% n t g% n t g% n t g%
P1024.a | 3001 559 - 5 7 - 11 11 - 5 6 - 7 4 -
P1024b | 4172 1353 - 79 158 - 39 50 - 79 59 - 68 43 -
P1024.c | 10000 2846 0.55 39 156 - 73 207 - 38 31 - 45 19 -
P1024.d | 10000 1781 0.43 3 3 - 4 2 - 2 1 - 3 1 -
P1024.e | 10000 1258 0.44 0 1 - 1 2 - 0 1 - 1 2 -
average - - 25 65 26 54 25 20 25 14
P2024.a | 10000 7137 1.68 116 1393 - 195 1804 - 160 413 - 162 216 -
P2024Db | 2123 1292 - 22 128 - 43 256 - 37 27 - 25 23 -
P20_24_c 2988 4007 - 144 358 - 147 356 - 140 220 - 146 193 -
P20.24.d | 10000 6129 1.94 179 3867 - 440 9576 - 191 353 - 336 520 -
P2024.¢ | 10000 7877 1.14 37 680 - 29 423 - 17 73 - 39 85 -
average - - 100 1285 171 2483 109 217 142 207
instance RDM RDS RLM RLS
n t g% n t g% n t g% n t g%
P10.24 a 20 18 - 12 8 - 7 1 - 12 2 -
P1024 b 84 75 - 49 47 - 84 21 - 82 22 -
P1024 ¢ 150 285 - 667 1042 - 60 9 - 75 7 -
P1024.d 3 2 - 374 277 - 2 1 - 31 3 -
P1024e 0 1 - 3 2 - 0 1 - 3 0 -
average 51 76 221 275 31 7 41 7
P20.24 a 10000 52411 0.13 | 10000 51277 0.20 | 10000 10000 0.16 | 10000 7661 0.22
P2024 b 39 210 - 47 246 - 45 16 - 64 18 -
P20.24 ¢ 481 858 - 503 824 - 492 829 - 538 830 -
P2024 d 10000 122579 0.12 | 10000 124517 0.16 | 10000 8640 0.15 | 10000 7671 0.18
P20.24 e 923 8320 -| 3213 26640 - | 1248 1277 - | 7372 7613 -
average - - - - - - - -

Table 2: Results with the dual simplex algorithm

¢l

with Barrier Algorithm

with Dual Simplex Algorithm

instance 000 xxM xxS 000 xxM xxS

g% t g% t g% t g% t g% t g% t
P10_24_a | 1.5202 0.10 | 0.3993 1.40 | 0.4599 0.22 | 1.5202 0.29 | 0.3993 1.22 | 0.4599 0.66
P1024b | 1.2159 0.10 | 0.2969 1.86 | 0.3157 0.25 | 1.2159 0.32 | 0.2888 1.65 | 0.3066 0.96
P10.24_c | 1.4372 0.11 | 0.2650 1.96 | 0.3109 0.24 | 1.4372 0.47 | 0.2645 4.13 | 0.3105 1.50
P1024.d | 1.2374 0.08 | 0.2410 2.45 | 0.3769 0.20 | 1.2374 0.26 | 0.2544 1.61 | 0.3769 0.82
P10.24.e | 0.9459 0.08 | 0.0871 1.28 | 0.1312 0.22 | 0.9459 0.28 | 0.0866 1.51 | 0.1273 0.79
P20_24_a | 2.3640 0.22 | 0.2338 3.55 | 0.2812 0.51 | 2.3640 1.45 | 0.2338 11.16 | 0.2812 4.27
P2024_b | 0.4851 0.22 | 0.1321 2.80 | 0.1343 0.50 | 0.4851 1.48 | 0.1320 4.62 | 0.1343 4.44
P2024_c | 1.2421 0.21 | 0.6927 0.98 | 0.6933 0.48 | 1.2421 0.88 | 0.6927 3.51 | 0.6933 2.11
P20_24.d | 2.3984 0.20 | 0.2489 4.97 | 0.2843 0.49 | 2.3984 1.68 | 0.2594 23.65 | 0.2843 8.61
P2024.e | 1.6305 0.23 | 0.1831 3.38 | 0.1979 0.55 | 1.6305 1.70 | 0.1831 20.60 | 0.1979 8.45

Table 3: Root node

: gap and solution times

€l

14.

e strategy TLS is usually faster than strategy TLM (although some exceptions exist), prob-
ably because successive separations at the same node add only cuts that can be also easily
obtained, if necessary, in the children of the node.

e on strategy TLS, the dual simplex algorithm has, on average, better performances than
the barrier algorithm; this shows that reoptimization is crucial in a B&B framework,
suggesting that an interior-point method such as that of [3] may not be the most efficient
in this setting.

We remark that these results are far from being conclusive, but they were not meant to; we
were interested only in proving that a B&C approach can significantly improve when perspective
cuts are used.

A more extensive comparison of the eight strategies for the Unit Commitment problem would
require a more detailed study within a well structured Branch & Cut algorithm including also
cuts for tightening the constraints of the formulation in the standard sense, and possibly even a
comparison with different approaches; this will be the subject of a future work.

Finally, in Table 4 we report the results obtained by B&C algorithm of CPLEX 8.0 on our
instances, with a time limit of 10000 seconds. While the MIQP solver in Cplex clearly outper-
forms our run-of-the-mill B&B implementation with CUT = 0, it is the latter which outperforms
the former with CUT = T. This seems to indicate that a more sophisticated implementation
of a B&C algorithm using perspective cuts could be remarkably efficient for solving Unit Com-
mitment problems, and probably also some of the many other problems which exhibit (1) as
substructure.

instance n t g%
P10_24_a 809 18 -
P10_24_b 1024 27 -
P10_24_c 73349 1048 -
P10_24.d | 25075 240 -
P10_24_e 85934 666 -
P20_24_a | 264179 10000 1.3391
P20_24_b 1205 73 -
P20_24_c 4083 258 -
P20_24.d | 331732 10000 1.5010
P20_24_e | 245582 10001 0.8741

Table 4: Results obtained with the CPLEX 8.0 MIQP solver

4. Conclusion

Starting by the observation that the convex envelope of a family of nonconvex functions that
appear as a fragment of the objective function of many important Mixed-Integer programs is
the well-known perspective function, we have proposed a family of perspective cuts for those
problems. We have also shown that, despite of the low dimensionality of the faces that they
represent, these cuts can be used, at least in one relevant case, to significanlty improve the
efficiency of enumerative approaches to the corresponding Mixed Integer Programs.

The proposed cuts are very easy to separate; in particular, they do not require the solution
of a nonlinear program — with nonlinear constraints — as in [11]. Yet, integrating them in a

15.

B&B approach requires a partial linearization of the objective function that is not completely
straightforward to implement using widely available optimization tools such as Cplex 8.0. Still,
the results seem to suggest that this technique may be valuable for a large class of optimization
problems; should this be confirmed by further experiments, some better support for this type
of approach could be expected in general tools in the future. Even at the current state of
technology, however, the improvements in the lower bounds provided by these cuts may largely
overbalance the extra computational burden required for handling them.

One interesting issue that still has to be explored is whether other widespread structures
in Mixed Integer Programs are amenable of analogous treatments, i.e., whether closed-form
convexification formulae can be used for other interesting fragments as well, avoiding the general
but potentially costly approach of [11]; we plan to investigate this issue in the future.

References

[1] S. Ahn, L. Escudero, and M. Guignard-Spielberg, “On Modeling Robust Policies for Finan-
cial Trading,” in Optimization in Industry 2 (T. Ciriani and R. Leachman, eds.), pp. 163
184, Wiley, Chichester, 1994.

[2] A. Borghetti, A. Frangioni, F. Lacalandra, and C. Nucci, “Lagrangian Heuristics Based
on Disaggregated Bundle Methods for Hydrothermal Unit Commitment,” IEEE Trans. on
Power Systems, vol. 18(1), pp. 1-10, 2003.

[3] S. Ceria and J. Soares, “Convex programming for disjunctive convex optimization,” Math-
ematical Programming, vol. 86, pp. 595-614, 1999.

[4] Dash Associates Limited, XPRESS-MP Reference Manual, 2003.

[5] M. Duran and I. Grossmann, “An Outer-Approximation Algorithm for a Class of Mixed-
Integer Nonlinear Programs,” Mathematical Programming, vol. 36, pp. 307-339, 1986.

[6] A. Frangioni, “Generalized Bundle Methods,” SIAM Journal on Optimization, vol. 13(1),
pp. 117-156, 2002.

[7] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I—
Fundamentals. Grundlehren Math. Wiss. 305, Springer-Verlag, New York, 1993.

[8] ILOG, ILOG CPLEX 8.0 User Manual, 2002.
[9] J. Kallrath and J. Wilson, Business Optimization. Macmillan Press Ltd., Houndmills, 1997.

[10] A. Rikun, “A Convex Envelope Formula for Multilinear Functions,” J. of Global Optim.,
vol. 10, pp. 425-437, 1997.

[11] R. Stubbs and S. Mehrotra, “A branch-and-cut method for 0-1 mixed convex programming,”
Mathematical Programming, vol. 86, pp. 515-532, 1999.

[12] M. Tawarmalani and N. Sahinidis, “Convex extensions and envelopes of lower semi-
continuous functions,” Mathematical Programming, vol. 93, pp- 515-532, 2002.

[13] J. Zamora and I. Grossmann, “A Global MINLP Optimization Algorithm for the Synthesis
of Heat Exchanger Networks with no Stream Splits,” Comput & Chem. Engin., vol. 22,
pp. 367-384, 1998.

