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Abstract

We present a dynamic programming algorithm for solving the single-Unit Commitment (1UC)
problem with ramping constraints and arbitrary convex cost function. The algorithm is based
on a new approach for efficiently solving the single-unit Economic Dispatch (ED) problem with
ramping constraints and arbitrary convex cost functions, improving on previously known ones that
were limited to piecewise-linear functions. For simple convex functions, such as the quadratic ones
typically used in applications, the solution cost of all the involved (ED) problems, comprised that
of finding an optimal primal and dual solution, is O(n?). Coupled with a “smart” visit of the state-
space graph in the dynamic programming algorithm, this enables one to solve (1UC) in O(n?)
overall.
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1. Introduction

The single-Unit Commitment problem (1UC) requires to optimally operate one generating thermal
unit within a certain discretized time horizon. The cost (or revenue) for generating power varies
with each time instant. The generating unit is subject to some technical restrictions, most notably
minimum up- and down-time constraints, as well as upper and lower bounds over the produced
power when the unit is operational.

(1UCQC) is a mixed-integer nonlinear problem, hence in general nontrivial to solve. It is particularly
relevant because it appears as a sub-problem to be repeatedly solved within Lagrangian schemes
for (multi-)Unit Commitment (UC) problems, that require to coordinate the operations of several
generating units, within a certain discretized time horizon, to satisfy a given power demand at
minimum cost. These Lagrangian schemes are among the most efficient solution techniques for this
class of difficult, large-scale mixed-integer nonlinear problems [1, 4, 5, 6, 10, 12], not least because
they are easily extended to accommodate contributions from other types of generating units, such
as hydro-electric ones. Also, Lagrangian techniques can be relatively easily extended to consider
constraints arising from selling the generated power on a free market [7].

Within a Lagrangian approach, one (1UC) per each generating unit is repeatedly solved with
varying objective function, whence the need for efficient solution methods for this problem. When
no ramping constraints are imposed, (1UC) can be solved by means of a two-stage process: first
the optimal generated power, if the unit is committed, is independently computed for each time
period, and then the optimal set of time periods where the unit has to be committed is computed,
taking into account the results of the previous phase, by means of a simple dynamic programming
procedure. The resulting algorithm has a complexity of O(n), n being the number of time instants
in the discretized time horizon, if the start-up cost of the unit is time invariant, and O(n?) if the
start-up cost of the unit is time dependent, i.e., the cost of committing the unit at a certain time
instant depends on how long the unit has been uncommitted.

Unfortunately, this approach fails when ramping constraints need to be considered. Ramping
constraints limit the maximum increase or decrease of generated power from one time instant to
the next, and reflect the thermal and mechanical inertia that has to be overtaken in order for the
unit to increase or decrease its output. These phenomena cannot be disregarded for large units or
if the time discretization interval is “small” (e.g., 15 minutes). The reason of the failure is that the
variables representing the power output are no longer independent, once that commitment decisions
have been taken; rather, they are linked by the ramping constraints. Hence, it is no longer possible
to determine the optimal generated power, if the unit is committed, independently for each time
period. Thus, the “classical” dynamic programming procedure can no longer be used to determine
the optimal commitment. Discretizing the power variables space one may keep using a standard
dynamic programming procedure [3], but the computational burden increases considerably, and the
obtained solution is an approximated one.

In [8], an approach is presented for efficiently solving (1UC) with ramping constraints when
the cost function is piecewise-linear. The approach is based on the following idea: re-define the
state space of the dynamic programming procedure so that computation of the state costs reduces
to an “easy” (although still harder than in the standard case) problem, the Economic Dispatch
with Ramping Constraints (ED). The efficiency is obtained by using a constructive dynamic pro-
gramming procedure that solves (ED) with a piecewise-linear cost function, similar to that of [2]
and [11]. Thus, two nested dynamic programming procedures are employed in order to obtain an
overall efficient approach.

However, in most cases the cost function of the real unit is approximated, in (1UC), with a
quadratic function. Closely approximating the quadratic function with a piecewise-linear one may



require a large number of pieces, thereby increasing the cost of the overall solution procedure. We
propose an efficient algorithm for (ED) with general convex cost functions that solves all the O(n?)
(ED)s required to perform the dynamic programming procedure on the commitment decisions in
O(n3) in the case of quadratic cost functions. The algorithm is simple to implement and works for
a very general form of (1UC) with time-varying upper and lower limits over the generated power,
as well as time-varying and different limits for ramp-up and ramp-down constraints. Coupled with
a “smart” visit of the state-space graph in the dynamic programming algorithm, this enables one
to solve (1UC) in O(n?) overall.

The structure of the paper is as follows. In Section 2 a formulation of (1UC) is briefly presented.
In Section 3 the dynamic programming procedure, similar to that of [8], for solving (1UC) is
recalled, the corresponding (ED) problems are discussed, and the “smart” visit is described that
allows one to solve the problem in O(n?) once that all the node costs have been computed. Then, in
Section 4 the algorithm for solving (ED) is presented and analyzed. Finally in Section 5 conclusions
are drawn.

2. Formulation

The single-Unit Commitment problem (1UC) is as follows. A thermal generating unit, burning

some type of fuel (oil, gas, coal, ...) 1is given. The unit is characterized by a maximum and
minimum power output, I and u!, respectively, for each time instant (e.g., hour or half-hour)
inaset T = {l,...,n}, covering some time horizon (e.g., a day or a week). If the unit is

committed (actively generating power) at time instant ¢, it is subject to a convex power generating
cost function f?(p;), where p; is the amount of power produced. In the following we will only
assume that f* is closed convex and that f%(0) = 0 (any constant term in f! can be “attached”
to commitment variables, as discussed next). The operation of the unit must satisfy a number of
technical constraints, typically the minimum up- and down-time ones: whenever the unit is turned
on it must remain committed for at least 7T consecutive time instants, and, analogously, whenever
the unit is turned off it must remain uncommitted for at least 7~ consecutive time instants. It is
therefore useful to introduce binary variables z; indicating (if 1) the commitment of the unit at
time instant t. We then define X as the set of schedules respecting minimum up- and down-time
constraints; also, for any x € X, we define ¢(z) as the cost of the schedule: this may comprise
fixed generating cost and time-dependent or time-invariant start-up cost. Other combinatorial
constraints and costs could be included as well, as long as they are consistent with the dynamic
programming procedure discussed in the next section.

The last set of technical requirements are the ramping constraints. These require that the max-
imum increase of generated power from time instant ¢ to the next be limited to AiL > 0, and,
analogously, the maximum decrease of generated power from time instant ¢ to the next be limited
to A® > 0. Note that this definition can be applied only if the unit is committed in both time
period ¢t and ¢t + 1. We therefore consider a general form of ramping constraints where an upper
bound /%, I! < [* < !, is known on the maximum amount of power that can be generated if the
unit is turned on in time period ¢ (that is, it was uncommitted in ¢ — 1) and, analogously, an upper
bound @, I! < @' < !, is known on the maximum amount of power that can be generated if the
unit is turned off at the end of time period ¢ (that is, it will be uncommitted in ¢ + 1).

A formulation of (1UC) is:

min c(z) + th(pt) (1)

teT

Iz < pp < ulmy teT (2)



DPt+1 Spt—Fthz_—I—(l—xt)l_tH tZO,...,’n—l (3)
Pt < piy1 + $t+1At, + (1 — ZEH_l)ﬂt t=20,...,n—1 (4)
reX (5)

Constraints (3) are ramp-up constraints, i.e., they limit the maximum increase in power attainable
at time instant ¢ (assuming that the unit is committed in ¢). Note that we assume to know the
state of the unit at the time instant prior to the beginning of the operation, i.e., its commitment z
and the generated power pg. Also, for the sake of minimum up- and down-time constraints, we
assume to know how long the unit has been on (if zy = 1) or off (if zp = 0). Constraints (4) are
ramp-down constraints, i.e., they limit the maximum decrease in power attainable at time instant ¢.
We remark that this formulation is more general than those usually considered (cf. [2, 8, 11]) not
only because the cost functions need not be piecewise-linear, but also because we allow different
limits A%, and A’ for ramp-up and ramp-down constraints, and we allow them to depend on the
time instant ¢.

It is well-known that, if constraints (3) and (4) are not present, (1UC) is easily solvable by a
two-stage procedure. First, the unconstrained optimum of each f*

pr = argmin {f*(p) : peR} (6)

(assumed unique for simplicity) is computed, and used to find the optimal power production level
if the unit is committed

pf = min { v!, max { p;,1' } } = argmin { fi(p) : ' <p<u'} (7)

by simply projecting 5; over the feasible set [I*,u!]. The value 2z = f!(p}) is the contribution of
variable p; to the objective function value if the unit is committed at time instant ¢ (z; = 1),
while 0 is the contribution if the unit is uncommitted (z; = 0). Thus, 2! is the cost (or revenue)
of committing the unit, to be considered together with fixed costs and start-up costs, effectively
eliminating the p; variables from the problem. The remaining combinatorial problem in the x;
variables alone can be easily solved by dynamic programming.

In the simple case where start-up cost are time invariant, that is, the cost of starting up the
unit at a certain time instant does not depend on how long the unit has been uncommitted (but it
may depend on the specific time instant), the state space of the dynamic programming — the set
of nodes of the graph over which the shortest path problem is computed — is made of 2n nodes,
say (t,1) and (¢,0) for ¢t € T, representing respectively the unit being committed (z; = 1) or not
(z¢ = 0) at time instant ¢, plus a “source” s and a “sink” d. There are arcs between nodes (t,1) and
(t+1,1) for all ¢ < n, representing the fact that the unit, that has already passed the 7+ periods of
mandatory commitment, is kept on in time instant ¢, labeled with the sum of the corresponding z*
and fixed cost (if any). Analogously, there are arcs between nodes (¢,0) and (¢ + 1,0) for all
t < m, representing the fact that the unit, that has already passed the 7~ periods of mandatory
uncommitment, is kept off in time instant ¢, labeled with zero cost. Then, there are arcs for state
switches, i.e., arcs from (¢,1) to (¢ + 77,0), with zero cost, indicating the shutdown of the unit at
time instant ¢ + 1 and its remaining uncommitted for the following 7~ periods, and arcs (¢,0) to
(t+71,1), indicating the start-up of the unit at time instant ¢+ 1 and its remaining committed for
the following 71 periods, with the proper start-up cost plus the generating and fixed costs for all
the interval. When ¢ + 77 (77) is larger than T, the arcs go to the sink d, and the cost is properly
modified. Then, there are arcs from the source s to the nodes compatible with the initial state of
the unit. That is, if the unit is initially uncommitted since 7° time periods, there is an arc from s



to (max{r~ —79,1},0); if 7~ > 70 this indicates that the unit has to remain uncommitted for the
first 7= — 70 time periods. Analogously, if the unit is initially committed since 79 time periods,
there is an arc from s to (max{r* — 7% 1},1); if 7% < 77 this indicates that the unit has to remain
committed for the first 7+ — 70 time periods, with appropriate cost. Finally, there are zero-cost
arcs from (n,1) and (n,0) to the sink d.

Clearly, every s —d path on this graph represents a feasible solution to (1UC), and the cost of the
path is equal to the cost of the solution. Hence, (1UC) is reduced to a shortest path problem on
an acyclic graph, that can be solved in linear time on the number of arcs, roughly 4n, i.e., in O(n).

If time-dependent start-up costs have to be considered, the graph has to be expanded somewhat,
introducing nodes (¢, —k) indicating that the unit has remained uncommitted for the last k con-
secutive time instants, and properly modifying the arcs. The maximum value of k that has to be
considered is the number of time instants after which the unit has completely “cooled off”, i.e., a
restart has the same cost than a cold start; in general, this value may be as large as n, although
usually it is smaller. Thus, the size of the graph grows from O(n) to O(n?) in the worst case, and
the complexity of the procedure increases accordingly.

This procedure, however, fails if constraints (3) and (4) are present. In fact, the p; variables are
no longer independent, once that the z; variables are fixed, since they are linked together by the
ramping constraints; hence, it is no longer possible to determine the optimal generated power pj,
and the corresponding contribution z! of variable p; to the objective function value, independently
for each time period.

3. The dynamic programming procedure

In order to solve (1UC) with constraints (3) and (4), a different dynamic programming procedure
can be used. As in [8], the state space of the dynamic programming comprises, in principle, all
pairs (h,k) for h € T and k > h, plus a “source” s and a “sink” d. The meaning of each state
(h,k) is: “the unit is turned on at time instant h (i.e., it was uncommitted at time instant A — 1),
and it will be turned off again at time instant & (i.e., it will be uncommitted at time instant k& + 1).
Clearly, all states such that k£ < h + 77 — 1 correspond to infeasible operations and need not to be
constructed.

In the state graph G, there is an arc between node (h,k) and node (r,q) if r > k+ 7 + 1,
i.e., it is feasible to turn on the unit at time instant r given that it has been turned off at time
instant k. Each of these arcs are labeled with the start-up cost of the unit at time instant r; note
that time-dependent start-up cost are easily handled within this framework. There are also arcs
from the source s to all nodes (h, k) compatible with the initial state of the unit. That is, if the
unit is uncommitted since 7° time periods there is an arc from s to each node (k,k) such that
h 4710 —1 > 77; these arcs are labeled with the corresponding start-up cost. If instead the unit is
committed since 70 time periods, there is an arc from s to each node (1,k) such that k + 7% > 71,
labeled with zero cost. Finally, there is a zero-cost arc from each node to the sink d.

Clearly, every s — d path on this graph represents a feasible solution to (1UC). By now, the cost
of the path only represent the contribution of start-up costs to the objective function. Obvioulsy,
fixed generating costs (if any) can also be easily included: we can associate with each node (h, k)
the sum of all fixed costs of all periods from h to k (extremes included) as cost of the node, since
the unit will be committed in that interval.

Furthermore, for each node (h, k), the optimal contribution of the variable generating costs, that
depend on the p; variables, can be “easily” computed. In fact, it is the optimal value of the following



Economic Dispatch with Ramping Constraints problem for the interval [h, k]:

k
min ) f!(p:) 8)

t=h
I'<py <ut h<t<k 9)
pn <1" (10)
prr1 <pr+ AL t=h,....k—1 (11)
pr < pry1 + AL t=h,....k—1 (12)
pe < Uk (13)

We will denote problem (8) — (13) as (EDpy). Since all the relevant binary variables are fixed,
this is an optimization problem with convex objective function and linear constraints. Hence, its
optimal objective function value 2}, = z(EDp;) can be “easily” computed. By summing z}, to the
weight of each node (h, k), the cost of each s — d path on the graph is that of the feasible solution
it represents. Hence, once again (1UC) is reduced to a shortest path problem on an acyclic graph
with O(n?) nodes and O(n*) arcs. Thus, the problem can be solved in O(n*) once that all the data
has been computed.

However, the complexity of the visit can be reduced by exploiting some structural properties of
the state-space graph G. Consider the set of nodes (h, k) in G partitioned into levels V, = {(h, k) :
1 < h <k} for k>1 (level V) contains only the starting node s). From the definition of G, it
immediately follows that:

e all nodes in Vi have the same set of adjacent nodes;

e the cost of the arc between (h, k) and (r,q) only depends on k and r.

Therefore, it is possible to visit G in ascending order of level k, avoiding to explicitly explore the
forward star of all but one node for each level.

More in detail, the procedure works as follows. For each kK = 1,...,n we keep a list Sy C Vj of
the reached nodes in Vi, with the label dp; corresponding to the length of the shortest path found
so far. Sy contains s with label 0. For £ =0, 1,...,n we repeat the following steps:

e evaluate 2z}, = (EDyy) for all nodes in Sy, (for £ = 0 the result is zero);
e find the node (h, k) in Sy with smallest value of 2}, + dp;

e visit all the adjacent nodes of (h, k) updating their labels, if appropriate, and insert them in
the corresponding list V; if they do not already belong to it.

Clearly, the chosen order is a valid one, and the visit terminates having determined a shortest
s — d path. In principle, all the O(n?) nodes of G are visited, and therefore the computation of
all the corresponding 2}, values is required. However, for each k£ we only consider the node (h, k)
associated with the shortest path from s, so that we need only checking its O((n — k)?) outgoing
arcs. Therefore, the complexity of the visit is reduced to O(n?) plus the cost of solving the O(n?)
convex problems (EDpy), with up to n variables.

Despite the relatively low size of the problem, this may turn out to be an heavy task, especially
considering that several (1UC) problems are typically solved at each one of the many iterations of
Lagrangian approaches to more complex (UC) problems (cf., e.g., [1, 4, 5, 6, 7, 10, 12]). Hence,
solving (EDpy) efficiently — or, more to the point, solving all the O(n?) of them efficiently — is
crucial. In the next section we will develop an efficient dynamic programming algorithm for the
solution of (sequences of) (EDpy).



4. Solving the economic dispatch problem

We will devise an algorithm for efficiently solving sequences of (EDpy) problems for k = h,...,n.
It is necessary to introduce the parametric problem (EDpk(p)), i-e., the restriction to (EDpy)
corresponding to fixing the “last” variable py to the fixed value p (equivalently, imposing the
extra constraint py = p). We then study the properties of the optimal objective function value
of (EDp(p)) as a function of the parameter p. To simplify matters somewhat, however, it is
convenient to give a slightly different definition of the function under examination:

2 (p):{miﬂ{fh(z?h) 0 (9), (10), pp=p} if h =k,
ik min{ S>F , fi(p;) : (9), (10), (11), (12), pr =p } otherwise.

That is, we allow p to assume any value in the interval [I¥, u*], even those values such that fixing
pr = P in formulation (8) — (13) would result in an infeasible problem due to the stricter upper
bounds imposed by constraints (11) or (13). This is done since we will use zp to compute zp(j11);
in the latter problem, constraint (13) corresponds to variable py1, and therefore it is no longer
binding for py.

We first state some general properties of the function:

Proposition 4.1. The function zpy is convex. Moreover, it has a piecewise nature, that is, it is
finite-valued only in v + 1 intervals [mg, m1], [m1,ma] ... [Mmy, Myy1], with I¥ < mg, myy1 < uF
and v < 2(k — h), in which

2hk (D) = 2'(P) if p € [mi, miq]

where each function z* is the sum of at most k — h + 1 functions f* for t € [h,k] (and therefore it
is conver).

Convexity of zp; is a consequence of well-known general properties that need not be discussed
here beyond noting that zpx is the wvalue function [9] of the convex program (EDpk(px)) with
respect to the right-hand side pj of its constraint p; = pg. Its piecewise nature, and the more
specific properties will be demonstrated next by outlining the steps for efficiently constructing the
piecewise representation of zj.

We will proceed by induction to prove that the claimed properties are true; equivalently, we will
(efficiently) construct piecewise representations of the functions zxh, 2p(h41)s - - - 2hk, in this order.
At each step we will exploit the previously computed representation to construct that of the next
problem. During the process, for each step k we will also (efficiently) compute and exploit

p;(zk: = a‘rgmin{ th(p) 1 pcE [lkauk] } )

that is, the k-th (last) component of the optimal solution of (E'Dpy) where constraint (13) is relaxed.

At the basis of the induction process, the case k = h is straightforward, since
2 (P) = f™(P)

for all p € [I",u"]. Hence, there are v + 1 = 1 intervals and v + 1 = 1 functions with the required
properties (i.e., 0 = v < 2(h — h) = 0). In this case, p}, is just pj as computed with formulae (6)
and (7).

Now, we assume the claim proved for some value of kK — and the corresponding set of intervals and
functions to have already been explicitly computed — and proceed in proving that Proposition 4.1



holds for k+1, too. We will denote m; the extremes of the intervals for zp 1), Z* the corresponding
functions and ¥ + 1 their number.
Consider any fixed value p € [I**1, u*+1]. Constraints (11) and (12), written for py, 1 = p and py,
result in
p—AL <pe<p+ak.

Since zpy, is infinite-valued for py outside [mg, my11], one has to set mo = max{I¥*!,mg — A*} and
Myy1 = min{uf1 m, 1 + Aﬁ}; in fact, zp(ky1) is clearly infinite-valued outside this interval, and
finite-valued inside it.

Now, consider how the optimal solution to (EDp41)(p)) can be computed, exploiting the (al-
ready computed) piecewise representation of zp;. The problem can clearly be rewritten as

Znk+1) () = FEHUB) + min{ zpk(pr) + Mo < pp <My, P— A% <pp <p+AF L

In other words, the optimal solution to (EDj;41)(p)) — at least, its k-th component — is just the
constrained minimum of zpj, in the intersection of the intervals [p — Ai, p+AF] and [mg, myi1]; we
will denote that minimum as pj(p). In order to trace the function zj(;41)(p), it is only necessary
to understand how pj (p) behaves as p changes. This is, however, very simple to picture.

Consider the constrained minimum pj, of zxx over [mg, my41] (or, equivalently, (¥, u*]), that we
assume to have already computed: since zpj, is convex, p;(p) is just its projection over the feasible
interval

[p— A%, 5+ AY) (14)

(cf. (7)), that is,
Py (D) :min{ﬁ—kA’i,maX{pzk,ﬁ—Aﬁ}}. (15)

Note that we are assuming p;, to be unique; however, the following arguments can be easily
extended to cases where zp, has a (known) non-pointed interval as set of optimal solutions.

We can pictorially describe the process as follows, with the help of Figure 1. Basically, as p
“travels” from mgy to mg1, three different cases can arise:

(a) When p is on the leftmost part of the interval [, 7y4+1] Where 2j(x41) is finite-valued, e.g.,
P = mo, p}, is “on the right” of the feasible interval (14); hence, p}(p) = p + A¥, that is,
Py (P) is a linear function of p.

(b) As p increases, eventually py, “enters” the feasible interval (14): then, p;(p) is equal to pj,
remaining “still” even if p “moves”.

(c) Finally, p becomes large enough such that p;, “exits again” from the feasible interval (14),
this time remaining “on the left”; then on p}(p) = p — AX, so, again, p}(p) increases linearly
as p does.

Of course, not all three cases (a), (b) and (c) need necessarily happen. For instance, pj, may
already belong to (14) for p = My, or it may never leave it even if p = myy1, and so on. However,
the above three cases cover all that can possibly happen.

It is now easy to see how, given the explicit description of zp; in terms of the v+ 1 sub-intervals of
[mg,my+1] and the associated functions z*, we can efficiently construct a piecewise representation
of zp(k41) with v + 1 intervals where v < v + 2.

0) Set p = mg, © =0, and let 0 < ¢ < v be the index of the interval to which p}(p) = p + Ak
belongs (if it is a breakpoint, choose the interval on the right). Set & = min{u**!, m,1+AX}.
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Figure 1: Evolution of p}(p) as p varies

1) If case (a) is not verified goto step 2), otherwise set 2%(p) = f¥*1(p) + 2%(p + A¥). Compute
the maximum value of p such that pj(p) remains in the g-th interval, pj, remains outside
the feasible interval and p remains feasible, that is, p = min{mg; — Ak DPr — AF a}. Set
1=0+1, my =P, ¢ =q+ 1 and repeat step 1).

2) If case (b) is not verified goto step 3), otherwise set 2%(p) = f**1(p) + 29(p},). Compute the
maximum value of p such that pj, remains inside the feasible interval and p remains feasible,
that is, p = min{p}, + Aﬁ_,ﬂ}. Set o = v+ 1, my = p and goto step 3).

3) If p = @ then terminate, otherwise set 2% (p) = f¥*1(p) + 27(p — A% ). Compute the maximum
value of p such that p}(p) = p — A’j_ remains in the g-th interval and p remains feasible, that
is, p = min{mg 41 + A’i,a}. Set v =9+ 1, my =P, ¢ = q+ 1 and repeat step 3).

Clearly, the total number of intervals for z(;y1) is at most equal to that for zzx plus the two
ones corresponding to py, “entering” and “leaving” the feasible set, that is, the former interval ¢
in step 2) is replaced by at most 3 new intervals. Note that the intervals “on the left” of these new
ones, if any, correspond to intervals for zp; “shifted left” by A*  while the intervals “on the right”
of the new ones, if any, correspond to intervals for zp; “shifted right” by Aﬁ. The final number of
intervals may well be strictly less than v + 3. Also, since each z* is composed of the sum of at most
k — h+1 original functions f*, each z/ is composed of the sum of at most k—h+2 = (k+1)—h+1
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original functions f*. This completes the proof of Proposition 4.1.

During the above process, it is very easy to compute not only p;(k 41y but also the optimal
solution of

min{ zk11)(p) : p € [FtL Akt Y

that is, the last component of the optimal solution of (EDp k1)), where constraint (13) is imposed.
Thus, the above procedure can be used to solve (EDyy) problems.

The complexity of the procedure depends on the actual form of the functions f?; if the functions
are quadratic, as common in practical applications, each step of the procedure is O(1). Therefore,
assuming that (EDj;_1)) has already been solved (with the same method), the complexity to
solve (EDpyy) is O(k — h), and, consequently, the complexity to solve all the problems (EDyp),
(EDpas1))s - - - (EDpg) is O((k —h)?). Hence, solving all the O(n?) (ED) problems in the dynamic
programming procedure of the previous paragraph has O(n?®) complexity. All in all, combining the
“smart” visit of the state-space graph G with the above efficient procedure for solving (EDyy), we
can solve (1UC), for the quadratic case, in O(n?®). The same complexity bound holds for any other
class of convex functions closed under the sum operation and such that an O(1) closed-form formula
exists for computing the unconstrained minima, such as, among others, polynomial functions of
degree at most five. The approach is however likely to prove efficient even for other classes of
functions, since univariate unconstrained optimization approaches can be used to compute the
required unconstrained minima. This is likely to be much more efficient than the corresponding
multivariate constrained optimization approaches required to solve (EDpy) as a whole.

Although the optimal objective function value of each (EDyy) problem is all that is needed for
solving (1UC), the optimal solutions are then required to reconstruct a full optimal solution —
both in the commitment variables and in the power variables — of the problem. More specifically,
the optimal solutions of all the (EDjyy) problems corresponding to all nodes in the optimal path
are needed. However, those solutions are easily found with a “backward pass”, using the available
information constructed in the “forward pass”. In fact, consider a given problem (EDj). As
discussed above, the optimal value of the “last” variable py, say Py, is available when the problem
is solved. Then, it is immediate to compute the optimal value py_1 of the previous variable p;_1
(if & > h) by just computing the projection of the available constrained minimum p;*l( k—1) (of 2 (k—1)5

over [I¥=1 k1) onto [py, —Aﬁ_l,ﬁk—i—A’fl]. Iterating this procedure, the whole solution of (EDpy)
can clearly be found in O(k—h). Since only the optimal solution of the “relevant” (EDpy) problems
— those corresponding to nodes in the optimal path — is required, and the total number of time
instants in which the unit is committed, in those nodes, is at most n, the optimal solution to (1UC),
in terms of the power variables, can be found in O(n).

It is easy to see that the dual optimal solution to each (EDpy) can also be constructed, during
the “backward pass”, together with the optimal primal solution. In fact, each p; for h <t < k is
the constrained minimum of z; subject to (9) — (13), that ultimately define a nonempty interval
in the real line. Thus, if p; lies in the strict interior of the interval, i.e., none of the constraints is
active, then all the corresponding optimal dual variables are zero. Assume instead that exactly one
constraint, say (11), is active in p; and that zp; is differentiable in p; (the argument can be easily
extended to the case of multiple active constraints). The Karush-Kuhn-Tucker conditions require
that

2 (Dt) =
where 7 is the optimal dual variable of (11). Similar formulae can be easily derived for all other

constraints. Hence optimal dual information is readily available at the only cost of computing
the derivative of zp;. In the quadratic case, where this is O(1), the total cost of retrieving the
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dual optimal solution to (EDpy) is O(k — h). Clearly, the above technique can be extended to a
nondifferentiable zp;; only, left and right derivatives are to be computed.

Somewhat surprisingly, it does not appear that the procedure can be significantly streamlined or
simplified if further assumptions are made on the data. For instance, in many practical applications
one has I* = [, ' = u, AL = A}, = A <wu—1 (for if A > u— [ then ramping constraints are
redundant), I' = ' = [ + A for all t € T, and f'(p) = ap® + byp (that is, only the linear part of
the quadratic objective function depends on the time instant). Yet, it does not appear that the
worst-case complexity results can be improved even if all the above assumptions are made.

However, it is possible to improve the performances of the method in practice by avoiding to
(forming and) visiting all the state-space graph G of the dynamic programming procedure. This
can be done by observing that every arc and node in G “covers” a certain number of (consecutive)
time instants in 7', and each s — d path in G ultimately “covers” exactly n time instants. Thus,
adding to the cost of each arc and node a quantity proportional to the number of time instants
it covers, say M times the number of time instants where M is the same for all arcs and nodes,
the cost of every s — d path increases by Mn, and therefore the optimal solution does not change.
Actually, one may even define a different value M; for each t € T and add it to each node/arc
that “covers” t. This allows us to make the cost of every arc and node in G nonnegative by simply
choosing M large enough. In typical applications we do not even need to compute the actual cost
of every arc and node for being able to compute a suitable value for M; in fact, only the costs of
the nodes can be negative, hence, computing z; = min{f*(p) : p € [I!,u!]} (cf. (7)) and setting
M = —min{min{ zf : ¢t € T },0} one ensures that all the resulting node (and arc) costs are
nonnegative.

Then, knowing the objective function value of one — hopefully, good — solution, that is, the
cost of one s — d path, it may be possible to early terminate the visit of some part of the graph,
avoiding to generate some of its nodes and the corresponding arcs. In fact, having all arc and node
costs being made nonnegative, the cost of any partial s — d path cannot be smaller than the cost of
any s — d path containing it. Thus, if a partial path is found whose cost is larger than that of the
best known solution, the visit of the graph from its last node can be interrupted. In a Lagrangian
setting [1, 4, 5, 6, 7, 10, 12], a reasonable choice for the initial “incumbent” s — d path could be the
optimal solution of the (1UC) problem corresponding to the same unit at the previous Lagrangian
iteration. Of course, as soon as a better s — d path is found during the visit, the value of the
“incumbent” can be updated.

5. Conclusions

We have proposed an efficient dynamic programming algorithm for solving (1UC) with ramping
constraints and general convex cost functions. The algorithm requires to solve O(n?) “simple”
convex programs, with up to n variables each, in order to compute the data for the dynamic
programming procedure; the main contribution of the paper is precisely the proposal of a new
efficient algorithm for solving these problems. The resulting algorithm is simple to implement and
works for a very general form of (1UC) with time-varying upper and lower limits over the generated
power, as well as time-varying and different limits for ramp-up and ramp-down constraints. Coupled
with a “smart” visit of the state-space graph in the dynamic programming algorithm, this enables
one to solve (1UC) in O(n3) overall for suitable cost functions, such as quadratic ones.

It is worth noting that the proposed approach can be extended to more general versions of (1UC)
as well:

e Data dependent on the history of the unit. It is easy to see that the approach immedi-
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ately extends, with almost no change, to problems where the data of (EDj, ) — (coefficient
of the) cost functions, coefficients of the ramping constraints, maximum and minimum pro-
duction levels — depend not only on ¢, but on A as well, that is, on how long the unit has
been committed. This may be useful, e.g., to exploit better data fitting for the coefficients of
the cost functions, in order to more accurately reflect the true operational cost of the unit.
Note that a “monolithic” Integer NonLinear Programming model implementing this feature
would be significantly larger than (1) — (5), and therefore significantly more difficult to solve
by standard means, while our approach handles this generalization almost for free.

Different discretization intervals for commitment and power variables. In some
cases, one may want to use different — typically, finer — discretization intervals for power
variables than for commitment decisions. This may be due either to specific regulations of the
operating context, or to the need to better reflect the operating characteristics of the unit. It
is easy to see that our approach can be easily extended to handle this case as well; the total
complexity becomes O(m?n), where m(> n) is the number of power variables.
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