
Università di Pisa

Dipartimento di Informatica

Technical Report: TR-04-23

Experiments with

“extended crossover”

approaches for network flow

problems

Antonio Frangioni Claudio Gentile

December 22, 2004

ADDRESS: via F. Buonarroti 2, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Experiments with “extended crossover”

approaches for network flow problems

Antonio Frangioni ∗ Claudio Gentile †

December 22, 2004

Abstract

Interior Point algorithms for Min-Cost Flow problems have been shown

to be competitive with more established “combinatorial” approaches, at

least on some problem classes and for very large instances. A fundamental

contribution to the efficiency of these approaches is provided by the spe-

cialized crossover routines that can be implemented for this problem; they

allow early termination of the IP approach, sparing it with the “nasty”

iterations where the core linear systems become very difficult to solve by

iterative algorithms. Because crossover procedures are nothing but one

step of a combinatorial approach to MCF, we propose to extend this con-

cept to that of extended crossover : use the initial part of an Interior Point

algorithm to MCF to warm-start a “combinatorial” algorithm. We report

our experiments along this line using, as “combinatorial companion”, a

primal-dual algorithm for MCF that has a natural way for exploiting the

information provided by the IP approach. Our results show that the

efficiency of the combined approach critically depends on the accurate se-

lection of a set of parameters among very many possible ones, for which

designing accurate guidelines appears not to be an easy task; however,

they also show that the combined approach can be competitive with the

two original approaches in isolation, at least on some “difficult” instances.

Keywords: Min Cost Flow problems, Interior Point algorithms, Relax-

ation Method, Crossover.

1 Introduction

The linear Min Cost Flow (MCF) problem is the following Linear Program

min { cx : Ex = b , 0 ≤ x ≤ u } , (1)

∗Università di Pisa, Dipartimento di Informatica, Largo B. Pontecorvo 1, 56127 Pisa –
Italy, e-mail: frangio@di.unipi.it

†Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” del C.N.R., Viale Manzoni
30, 00185 Rome – Italy, e-mail: gentile@iasi.cnr.it

1

where E is the node-arc incidence matrix of a network G = (N, A), c is the
vector of arc costs, u is the vector of arc upper capacities, b is the vector of
node deficits, and x is the vector of flows. This problem has a huge set of
applications, either in itself or – more often – as a submodel of more complex
and demanding problems. This is testified by the enormous amount of research
that has been invested in defining efficient solution algorithms for MCF, either
by specializing LP algorithms, such as the simplex method, to the network case,
or by developing ad-hoc approaches [1].

Interior Point (IP) methods for Linear Programming have grown a well-
established reputation as efficient algorithms for large-scale problems. A de-
tailed description of the IP algorithms and their underlying theory can be found
in the extensive literature on the subject and in many recent linear program-
ming textbooks, e.g., [14, 15]. In these methods, at each iteration, one or more
linear systems of the form

(EΘET)∆y = d (2)

have to be solved, where Θ and d are respectively an m × m diagonal matrix
(m = |A|) with positive entries and a vector of R

n (n = |N |) which depend on
the current iteration and on the specific IP variant chosen. General-purpose LP
solvers typically use direct methods, such as the Cholesky factorization; however,
for structured LPs – like MCF – iterative approaches, such as Preconditioned
Conjugate Gradient (PCG) methods, have shown to be competitive [5, 13, 12].
Indeed, appropriate preconditioners that “closely approximate” M = EΘET

can be found by exploiting the structure of the problem [13, 12, 6].
For MCF, approaches carefully implementing the above ideas have been

shown [13] to be competitive with “combinatorial” approaches, like primal-dual
[3] cost-scaling [8] algorithms or simplex methods [10], albeit on some cases and
for very large instances. Closely examining the results reveals that a funda-
mental contribution to the overall efficiency of the approach is provided by the
specialized crossover routines that can be implemented for MCF algorithms.
These algorithms attempt to construct an optimal (basic) solution out of the
information provided by the Interior Point approach; if successful, the whole
algorithm is stopped. Indeed, this always happens relatively early in the opti-
mization process, sparing the IP approach with several of the final iterations;
this is particularly important because:

• the linear systems (2) become more and more ill-conditioned, and therefore
difficult to solve by iterative approaches, as the algorithm nears an optimal
solution;

• the linear systems (2) can be approximately solved during the IP algo-
rithm, thereby making iterative methods an attractive option, but the
required accuracy has to be increased as the algorithm nears an optimal
solution.

Thus, early termination is crucial for IP approaches to MCF. Because crossover
procedures are basically simplex-like approaches [11, 2], one may restate the

2

above observations as: in the MCF case, the “continuous” IP approach is useful
to quickly providing an extremely good starting point to a simplex algorithm,
which then exploits the combinatorial structure of the problem to quickly “finish
it off”. This suggested us to experiment with the following generalization of the
above idea, that we call extended crossover : combine an Interior Point method
and a combinatorial algorithm for MCF problems, using the former to produce
warm-starting information for the latter.

Thus, the aim of our study is to verify whether there are choices of the many
forms of IP algorithm, and their many algorithmic parameters, such that the
combined process is more effective than each of the original approaches in iso-
lation. Clearly, this also depends on the “combinatorial companion” employed;
since simplex methods have already been used in standard crossover procedures,
we focus our attention on the other class of efficient combinatorial algorithms
for MCF, namely, primal-dual approaches. We show by extensive experiments
that the results critically depend on the accurate selection of some parameters
among very many possible choices, for which designing accurate guidelines ap-
pears not to be an easy task. However, the results also show that the combined
approach can be competitive with the two original approaches, especially on
some classes of “difficult” instances.

The structure of the paper is the following: in Section 2 (several variants of)
Interior Point algorithms are recalled, and the relevant algorithmic issues are
discussed, focusing in particular on the MCF case. In Section 3, primal-dual
approaches to MCF are rapidly sketched, and the way in which information
can be exchanged between an IP approach and a primal-dual one is discussed.
In Section 4 the results of a computational experience, aimed at assessing the
effectiveness of the hybrid method, are presented, and conclusions are drawn.

2 Interior Point algorithms

Interior Point algorithms for MCF can be described by considering (1), rewritten
as

min { cx : Ex = b, x + s = u, x, s ≥ 0 } (3)

where x ∈ R
m and s ∈ R

m are respectively the primal variables and the slacks
of the box constraints, and its dual

max { yb − wu : yE + z − w = c, z, w ≥ 0 } , (4)

where y ∈ R
n, z ∈ R

m and w ∈ R
m are respectively the dual variables of the

structural constraints Ex = b, the dual slacks and the dual variables of the box
constraints x ≤ u.

2.1 Variants of Interior Point algorithms

A number of different IP algorithms can be constructed, which all start from
the “slackened” version of the KKT optimality conditions of the above pair of

3

dual problems:
Ex = b (5)

yE + z − w = c (6)

x + s = u (7)

XZe = µe (8)

SWe = µe (9)

(x, s, z, w) ≥ 0

Here, µ ≥ 0 is a parameter, e is the vector of 1’s of proper dimension, and each
uppercase letter corresponds to the diagonal matrix having as diagonal elements
the entries of the corresponding lowercase vector. For µ = 0, the above system
characterizes all the optimal solutions of (3) and (4). For µ > 0, the unique
solution of the system (5) – (9) lies on the central path, a continuous trajectory
which, as µ tends to 0, converges to an optimal solution of (3) and (4) (more
precisely, it converges to the analytic centers of the primal and dual optimal
faces).

Path-following (also known as barrier) algorithms attempt to reach close to
these optimal solutions by following the central path. This is done by performing
a damped version of Newton’s iteration applied to the nonlinear system (5) –
(9). These algorithms can be divided into primal, dual or primal-dual according
to how exactly the Newton step is done.

Primal methods In the primal method, a primal (not necessarily feasible)
point (x, s) is kept as the center of the Newton iteration, and dual variables
(y, z, w) corresponding to the direction (∆x, ∆s) are derived from proper lin-
earizations of the equations of the system. More precisely, from (8) one obtains

z = µ[X + ∆X]−1e,

which is then linearized with a first-order Taylor expansion as

z = µ[X−1e − X−2∆x].

A similar formula for w can be obtained by linearizing (9), and, by using these
relations in the remaining equations, one obtains explicit formulae for y, ∆x
and ∆s.

Dual methods In the dual method, the dual point (y, z, w) is kept as the
center of the Newton iteration, and primal variables (x, s) corresponding to the
direction (∆y, ∆z, ∆w) are derived from proper linearizations of the equations
of the system. From the first-order Taylor expansion of (8) one obtains

x = µ[Z−1e − Z−2∆z],

from which explicit formulae for s and (∆y, ∆z, ∆w) can be derived.

4

Primal-dual methods In the primal-dual method, both a primal point (x, s)
and a dual point (y, z, w) are kept as the center of the Newton iteration, and
a primal-dual Newton direction (∆x, ∆s, ∆y, ∆z, ∆w) is sought for. This is
obtained by rewriting (8) – (9) as

(X + ∆X)(Z + ∆Z)e = µe

(S + ∆S)(W + ∆W)e = µe

and then linearizing the above nonlinear system by dropping the second-order
terms ∆X∆Z and ∆S∆W .

Once that a Newton direction – in the primal and/or dual space – has been
obtained, an appropriate stepsize is selected which moves the current point
“closer” to the central path for the current value of µ, then µ is reduced by
multiplying it for a factor 0 < ρ < 1 and the whole process is repeated. With
appropriate choices of the stepsize, a sequence of primal and/or dual points
converging to an optimal solution is constructed.

Further variants Several variants of the above methods have been defined.
For instance, in the predictor-corrector variant of the primal-dual method an
iterative approach is taken for refining the solution of the nonlinear system by
iteratively substituting the obtained values of ∆X , ∆Z, ∆S and ∆W in the
neglected quadratic terms and re-solving the modified linear system; this comes
at the cost of multiple solutions of the system for each iteration, but usually
improves on the number of overall IP iterations. Also, affine variants of all the
above IP algorithms have been developed, where the formulae for the Newton
direction are taken as the limit for µ → 0 of the formulae in the path-following
case; this simplifies the formulae, making them faster to compute and completely
eliminating µ from them, thereby avoiding the problem of tuning its decrease.
On the other hand, affine variants tend to be less numerically stable than barrier
variants.

2.2 Solving the core sistems

Remarkably, all the formulae for all the variants of the IP method boil down
to a set of linear operations plus one (or more) solution(s) of a “core” linear
system of the form (2). The solution of (2) typically represents by far the main
computational burden of the IP algorithms; for a structured LP like MCF,
developing a specialized approach for the solution of (2) allows to construct
more efficient, specialized IP approaches to the problem. Note that, since the
form of the core system is independent from the specific variant of IP algorithm
used, the same specialized solver for (2) can be used to implement all the variants
of IP algorithms.

Preconditioned Conjugated Gradient methods using subgraph-based precon-
ditioners have been shown to provide good performances in the MCF case. The
basic idea is to select a large-weight “triangulated” subgraph S of G – the
arc weights being the diagonal elements of Θ – so that the restricted matrix

5

ESΘSET
S is very easy to invert; these preconditioners can be further improved

by adding them a multiple of the diagonal of the “disregarded” part of the
matrix. Possible classes of triangulated graphs are trees [13, 12, 9] or “Brother-
connected trees” [6].

These preconditioners usually tend to become more and more efficient as the
IP algorithm proceeds, since the interior point solution tend to more and more
closely resemble a basic solution; hence, the arc weights Θ tend to “concentrate”
on the arcs of the basic tree, which are easily selected by the preconditioner,
so that the total weight of the columns not “covered” by the preconditioner
tend to become negligible. On the other hand, (2) become more and more ill-
conditioned, and therefore difficult to solve, as the IP algorithm proceeds, partly
counterbalancing the positive effect of the better preconditioner. Furthermore,
while (2) can be only approximately solved during the IP algorithm, thereby
making iterative methods an especially attractive option, the required accuracy
has to be increased as the IP algorithm nears an optimal solution. The combina-
tion of all these effects results in complex fluctuations of the “difficulty” of (2),
with some sequences of IP iterations, especially – but not only – towards the end
of the IP algorithm, showing relatively “hard” systems (2) to solve, at least by
the PCG approach. Samples of this behavior can be seen in Table 1, where we
report some data about the number of iterations required to solve problems of
two different sizes for three different classes of networks; the exact details about
the networks are not relevant here, and they will be explained in Section 4. For
each network type and size, we report seven rows corresponding to the systems
solved at IP iterations 0, 1, k/4, k/2, 3k/4, k − 1 and k, where k is the index
of the last iteration and 0 is the system solved for the crash-start (see Section
2.3); this is a significant sample of the systems solved during the IP algorithm.
The Table clearly shows that significant variations on the difficulty of solving
(2) by an iterative approach have to be expected, especially towards the end of
the IP algorithm; since that step is by far the computational bottleneck of the
IP approach, avoiding the “nasty” iterations is crucial for the overall efficiency
of current IP algorithms for MCF.

goto grid net

12.8 12.256 12.8 12.256 12.8 12.256
0 135 379 22 8 15 7
1 40 10 17 8 14 8

k/4 65 107 17 11 12 10
k/2 42 96 36 13 16 13

3k/4 23 67 27 14 11 14
k-1 17 30 10 17 6 18

k 17 30 2 18 6 19

Table 1: PCG iterations at various stages of the IP process

6

2.3 Crash start of the IP algorithms

Like every iterative approach, IP algorithms require a starting point (“crash
solution”) to initiate with. This has to be a primal solution (x, s) for a primal
method, a dual solution (y, z, w) for a dual method, or both for a primal-dual
method. Since the IP algorithms naturally cope with infeasibilities, these do not
need to be primal or dual feasible, nor even with respect to “simple” constraints
like yE+z−w = c or x+s = u, only provided that (x, s, z, w) > 0. Surprisingly,
not much is said, in the literature, about how to choose these solutions: (many
different variants of) simple formulae are reported as “working”, with little or
no discussion of the alternatives. This may be due to the fact that IP algorithms
– especially primal-dual ones – are so robust that their overall performances are
only marginally impacted by the choice; alternatively, it may be one of those
“little secrets” that practical developers of IP algorithms keep to themselves
in order to get an edge on competition. Whatever the reason, it is difficult
to get accurate guidance on this subject even in the “standard” context of the
solution of a LP by means of a IP algorithm; even more so in our case, where
the choice of the crash solution may clearly have a much broader impact since
the IP algorithm is (very) early terminated, and therefore it may not have time
enough to “neutralize” a bad choice of the initial solutions.

Thus, we resorted to collecting all proposals of crash solutions we could
find and testing all possible combinations. In general, the primal solution and
slacks (x, s), the dual solution y and the dual slacks (z, w) can be chosen almost
independently, although there are cross-dependencies (e.g., typically (z, w) are
chosen after y in order to have yE + z − w = c) and there are also cases of
combined formulae. We now report on the variants that we implemented and
tested.

Dual crash For the dual variables y, the following three variants have been
proposed:

D1) y = 0;

D2) y = (EET)−1Ec;

D3) y = b‖c‖∞/‖b‖∞.

After having fixed y, the vector c̄ = c−yE is the residual of the dual constraints
that need to be zeroed if a dual feasible solution is sought for; this is typically
used in the formulae for (z, w).

Primal crash For the primal solution and slacks (x, s), the following five
variants have been proposed:

P1) xi = τui, where τ > 0 if fixed;

P2) xi = τui if c̄i ≥ 0, xi = (1 − τ)ui otherwise;

P3) x = ET (EET)−1b;

7

P4) x = (1/2)(u+(1/τ)(ET λ−c)), where λ = (EET)−1((τ/2)b+E(c−u/τ));

P5) xi = ui/2+τ/c̄i−κi if c̄i > 0, xi = ui/2+τ/c̄i+κi if c̄i < 0, and xi = ui/2
otherwise, where κi =

√

(ui/2)2 + (τ/c̄i)2.

For all the cases where x is not guaranteed to be bound-feasible (x ≤ u), each
of the above formulae can be modified (as in P2 with τ < 1) in order to obtain
x + s = u; this is not necessary but clearly results in a different crash solution,
thus the number of alternatives is nearly doubled.

Dual slack crash For the dual slacks (z, w), the following three variants have
been proposed:

S1) if c̄i ≥ 0 then wi = σ and zi = c̄i + σ, otherwise zi = σ and wi = σ − c̄i,
where σ is fixed;

S2) zi = σ/xi, wi = σ/si;

S3) zi = σ/ui + c̄/2 +
√

(σ/ui)2 + (c̄i/2)2, wi = σzi/(uizi − σ).

Clearly, only some of the above formulae produce a dual feasible solution (such
that yE + z − w = c).

Combined crash formulae Finally, a combined formula has been proposed
that constructs x, z and w simultaneously so that it belongs to the “central
path” for a given value of µ, except that constraints Ex = b are ignored: this
boils down to

zi = (2µ + c̄ui +
√

4µ2 + (c̄iui)2)/(2ui),

wi = (2µ − c̄ui +
√

4µ2 + (c̄iui)2)/(2ui),
xi = µ/zi.

(10)

Clearly, choosing the right combination of the above formulae and their
parameters (τ in Px, σ in Sx, . . .) is by no means trivial.

2.4 Crossover

Early termination of Interior Point methods can be obtained by means of
“crossover” procedures. The idea is that as the IP method converges towards
an optimal solution, information can be extracted about the set of active (pri-
mal and dual) constraints at optimality, thereby being finally able to build an
optimal base. For the general IP case, crossover procedures have been primarily
developed for two different purposes:

• being able to show that the algorithm can be finitely stopped attaining
an “exact” optimal solution (in polynomial time), since the IP algorithm
would naturally produce an infinite solution sequence;

• being able to combine IP approaches with traditional simplex methods
in order to exploit the superior reoptimization capabilities of the latter,
especially in some crucial applications like Branch & Bound algorithms.

8

That is, for the general IP case the crossover procedure is not mainly perceived
as an “early termination” rule: the IP algorithm is brought at convergence with
very high precision (say, 1e-8 relative) and the crossover is only performed if the
additional features of a basic solution (comprised the more accurate precision
of, say, 1e-12 relative) are required.

For the reasons mentioned above, for MCF the situation is quite different.
Indeed, the specialized crossover algorithms for MCF [13] are a crucial element
for the overall efficiency of the IP approach. Different crossover procedures
can be constructed. The easiest one is perhaps to test whether the maximum-
weight spanning tree of G with arc weights Θ – typically, already computed
by the preconditioners – provide, possibly with minimal variations, a primal
and dual feasible basis for MCF. This is analogous to the standard simplex-like
crossover procedures for the general IP algorithm [11, 2] except that, due to its
negligible cost, the procedure can be repeated at every iteration (of the final
sequence) discarding the results if feasibility is not achieved. Alternatively, the
current dual solution of the IP algorithm can be used to construct an “admissible
subgraph” of G such that every feasible flow on that graph, if any, is an optimal
solution to the problem [13]; since seeking for a feasible flow only requires a
very fast max-flow computation, this can be done at every iteration (of the final
sequence). As it will become clearer in the next section, this latter approach can
be seen as one “primal” step of a generic primal-dual algorithm for MCF where
no “dual” step is allowed; once again, the – successful – crossover procedures
are nothing but one step of an existing – efficient – combinatorial approach to
MCF.

All this suggested us to try to extend the concept of crossover to that of
extended crossover : use the initial part of an (efficient) Interior Point algorithm
to MCF to warm-start an (efficient) combinatorial algorithm. Clearly, this re-
quires one way in which the combinatorial approach can exploit the information
provided by the “continuous” IP method. Primal-dual algorithms for MCF have
a very natural way for doing this, as described in the next section.

3 Primal-dual algorithms for MCF

In the following, we give a brief description of the characteristics of primal-dual
algorithms for MCF problems that are relevant to our application; for a more
detailed description, the reader is referred to [1] and [4].

3.1 A generic primal-dual algorithm

Any vector m-vector x such that 0 ≤ xij ≤ uij for each (i, j) ∈ A is a pseudoflow ;
given x, the surplus gi(x) of node i ∈ N w.r.t. x is

gi(x) = bi −
∑

(i,j)∈A

xij +
∑

(j,i)∈A

xji ,

9

i.e., the violation of the flow conservation constraints in (1). The surplus of a
subset S of nodes w.r.t. x is the sum of the surpluses of the nodes in S, and the
total surplus of x is the sum of the positive surpluses of the nodes in G; x is a
flow if and only if it satisfies all the flow conservation constraints, i.e., its total
surplus is zero.

A dual solution y of MCF is also called a vector of node potentials ; this is the
“essential” part of any dual solution, since, given y, the best possible z and w
are z = [c− yE]+ and w = [yE − c]+, where [·]+ denotes the non-negative part.
Given a scalar ε ≥ 0, a primal-dual pair (x, y) satisfies the ε-complementary
slackness conditions (ε-CS for short) if x is a pseudoflow and there holds

xij < uij ⇒ −ε ≤ cij − yi + yj ∀(i, j) ∈ A ,

0 < xij ⇒ cij − yi + yj ≤ ε ∀(i, j) ∈ A

where cy
ij = cij − yi + yj is the reduced cost of the arc (i, j). It is well-known

that 0-CS are necessary and sufficient conditions for optimality of a primal-dual
pair (x, y) where x is feasible; analogously, a primal-dual pair satisfying ε-CS is
said ε-optimal.

Primal-dual methods for the solution of MCF problems consider at each
iteration a preflow x and a vector of potentials y satisfying ε − CS. Max-flow-
type computations are used to send flow on the arcs of the reduced graph (i.e.,
such that |cy

ij | ≤ ε) in order to reduce the total surplus; if a flow is found, ε
is reduced and the process iterated. Otherwise, a cut of the graph is identified
such that its surplus is larger than its residual capacity; this gives an ascent
direction in the dual space that is used to modify y. Algorithms that work
with a variable ε are said of the cost-scaling type, while ε is kept fixed to zero
in unscaled techniques; furthermore, different methods (augmenting paths or
push-relabel computations) can be used for the primal phase.

3.2 The RelaxIV solver

The RelaxIV solver [4] implements an unscaled primal-dual algorithm which
use augmenting paths techniques – using all arcs with zero reduced cost – to
push flow from nodes with positive surplus to nodes with negative surplus. The
code implements checks for early termination of the primal phase (the max-flow
computation), in order to avoid performing flow operations as soon as a dual
ascent direction is found, that is, when it becomes clear that no feasible flow
exists that satisfies 0-CS with the current vector of potentials y.

The RelaxIV solver can start from any pair (x, y) satisfying 0-CS; this makes
it very convenient for implementing the extended crossover idea. In fact, any IP
method, stopped after any fixed number of IP iterations, provide a primal-dual
pair (x, y) that can be easily used to initialize RelaxIV. The dual values y can
be directly used as the current vector of potentials, since, as previously shown,
the best possible corresponding z and w can be easily obtained; actually, this is
not even required by the code. By contrast, the primal solution x may have to
be modified in order to satisfy 0-CS; however, this is also very easy. First, if x

10

is not bound-feasible (0 ≤ xij ≤ uij ∀(i, j) ∈ A) it can be made so by setting
xij = max{0, min{uij , xij}}; then, one can set xij = uij if cy

ij < 0 and xij = 0 if
cy
ij > 0, leaving all other values unchanged. Because the x variables provided by

an early stopped IP method, especially a dual one, may not be very significant,
it is also possible to use x = 0 (eventually adjusted according to the reduced
cost) instead.

Thus, we have modified RelaxIV in such a way that it accepts externally
provided values for the initial vector of potentials and (possibly) pseudoflow;
the latter is then internally adjusted to satisfy 0-CS. This can be seen as an
alternative initialization phase with respect to the one originally provided by
the code, that is consequently skipped. A useful characteristic of RelaxIV in
this context is that it is virtually a “zero parameter” code; once the initialization
is done, in whatever way, the algorithm requires no other special setting. This
contrasts with scaling-type approaches, where at the very least the possibly
critical decision about the initial value of the scaling parameter ε has to be
taken, adding at least another degree of freedom to the system.

4 Computational Results

In this section, we present the results of a large-scale computational test aimed
at assessing the effectiveness of the extended crossover idea.

4.1 Testing environment

For our tests, we used a “generic” by-the-book Interior Point code that we
developed. The code is contained in a C++ class, IPClass, and implements all
the variants of IP algorithm described in Section 2, comprised all the crash-start
rules. The code is generic in that the base class does not provide any means
for solving the core systems, demanding this to derived classes where all the
information about the structure of the coefficient matrix is hidden; this allows
to easily implement specialized IP algorithms for linear programs with special
structure, such as MCF. IPClass also provides support for approximate solution
of the core systems (2), which is crucial if iterative approaches are to be used. In
fact, as shown, e.g., in [13], rather “crude” solutions of (2) can be used to provide
improvement directions at the initial iterations of the IP method, provided that
the accuracy is properly increased as the optimal solution is approached. This
requires a nontrivial exchange of information between the IP solver and the
PCG algorithm.

For MCF, we developed a PCG-based solver of the core systems (2) that can
use several different subgraph-based preconditioners, as described in [6]. This
is used within IPClass to obtain a (family of) specialized IP algorithm(s) to
MCF. Clearly, no crossover is used in this context.

As “combinatorial companion” of the IP approach, we used the C++ version
of the RelaxIV solver available as a part of the MCFClass project

http://www.di.unipi.it/di/groups/optimize/Software/MCF.html

11

The code has been modified, as described in the previous paragraph, in order
to accept a (primal and) dual solution as an externally-provided warm-start,
thereby skipping all the built-in initializations.

We performed our tests on a PC with an Athlon MP 2400+ and 1Gb RAM,
running Linux. The code was compiled using the GNU g++ compiler version
3.3, using standard optimization option “-O2”.

4.2 Test instances

For our tests, we selected five well-known random generators of MCF problems:
goto (GridOnTOrus), gridgen, gridgraph, mesh, and netgen. We also im-
plemented a complete random generator for complete graphs. Apart from the
latter and netgen, which produces graphs with random topology, all the other
generators produce mesh-type graphs with different characteristics. goto and
mesh generate toroidal mesh graphs where each node is connected to all arcs
upon a certain distance (decided in the input parameters); however, while goto

produces instances with a single source and a single destination “far away” from
each other, mesh generates a circulation problem (with all-0 node deficits) with
negative cost arcs. gridgraph generates instances similar to goto except on
a regular 2-dimensional grid plus random arcs. gridgen also constructs grid
graphs where arcs are directed in alternate directions in each row and column.
For goto, gridgen, mesh and netgen we generated several families of instances
named genk.d, where gen is the specific generator, n ≈ 2k is the number of
nodes and d is the average density. For complete and gridgraph we gener-
ated instances named genk, where k has the same meaning as above. In each
family, 5 different instances were generated by simply changing the seed of the
pseudo-random number generator; in the tables below, all the results have to
be intended as the average over the five instances of the same family. Source
code for the generators is widely available; however, it can also be requested,
together with the parameters for reproducing the instances, to the authors.

4.3 Preliminary experiments

It is clear from the previous discussion that there are very many possible options
for implementing the extended crossover idea; these comprise at least:

• which variant of IP algorithm (primal, dual, or primal-dual) is used;

• whether or not an affine variant is used;

• for the primal-dual method, how many “multiple centrality corrections”
are performed;

• how many iterations of the IP method are performed before switching to
the combinatorial approach;

• which of the applicable crash-start rules are used, and how their parame-
ters (τ , σ, . . .) are chosen;

12

• whether or not the pseudoflow x is used to warm-start the combinatorial
approach together with the node potentials y.

Even restricting some of the above choices by heuristic decision (e.g., always
setting τ = 0.5 in the primal crash formulae Px and testing only two different
values for σ in the dual slack crash formulae DSx) led us to more than 7000
variants. Furthermore, several other possibilities could have been tested. Other
combinatorial approaches may have parameters of their own (e.g., the ε param-
eter for scaling-type primal-dual approaches) to tune according to the starting
point. The selection of the preconditioner for solving (2) has been done accord-
ing to the guidelines set forth in [6], but those guidelines have been developed
for the complete solution of MCF via an IP approach rather than for performing
only a few IP iterations. However, further increasing the degrees of freedom of
the system would have lead to an unmanageable number of alternatives. Thus,
we performed our computational tests focusing our attention only on the above
parameters.

The computational experiments were performed in two phases. In the pre-
liminary phase, a significant subset of the instances were tested with all possible
variants of extended crossover, in order to find out the most promising alterna-
tives. The detailed results of this phase cannot clearly be reported here in full;
collecting and analyzing the data was a very long and intensive process, whose
results can be briefly described as follows:

• the solution of the IP approach often provides useful information to the
combinatorial algorithm (leading to a decrease of its running time) very
early, possibly as early as the crash start phase;

• the dual and primal-dual method, in their non-affine variants, are typically
much better than the primal method at providing warm starts; for the
primal-dual, the cost of more than one centrality correction is not worth
the effect on the quality of the obtained warm start;

• due to the high iteration cost of the IP approach, only very few IP itera-
tions can be performed in order to obtain an overall competitive extended
crossover approach (although exceptions exist, as discussed below);

• the impact of the crash formulae is indeed significant; this should be ex-
pected in view of the above point;

• using the pseudoflow x provides little benefit, but it does no harm, either.

Perhaps the most important result from the preliminary phase, however, was
the extreme difficulty in selecting a small set of “best” parameters. Many vari-
ants are dominated, often significantly, by other variants for some families of
instances, while dominating them on other families. Finally, we resorted to se-
lecting four variants which showed the best compromise between performances
on all families; these differ for using the dual or the primal-dual algorithm and
using the dual slack crash formula S1 (together with the primal crash formula

13

P0) or (10), while all performing one iteration of the IP approach, using formula
D0 for the dual crash variables1, and passing the pseudoflow x as a part of the
warm-start. The experiments on the full set of instances were finally performed
only on these four variants. We stress that this choice consistently underesti-
mates the best performances attainable on some of the families; in particular,
for goto instances considerably better results can be obtained by allowing the
IP algorithm to run for a considerably larger number of iterations, as described
in the next paragraph.

4.4 Final experiments

The results of the final set of experiments is reported in Table 2 for all families
except those obtained with the goto generator, and in Table 3 for the latters.
In all tables, columns RIV and IP report the solution time in seconds of the
RelaxIV and the IP solver in isolation (for the latter, the final required precision
is 1e-8 relative). In Table 2, columns D-1 and D-C report the solution time for
the extended crossover variant using the dual IP approach and dual slack crash
formula S1 or (10), respectively, and analogously for columns PD-1 and PD-C
for the primal-dual method. In Table 3, column PD reports the solution time
for the extended crossover variant using the primal-dual IP approach and (10),
since this variant is found to be the most efficient on this family of instances.
All other parameters are set as described in the previous paragraph, except for
the number of IP iterations for the results of Table 3, that is set to 8 instead
of 1 as in all other cases, since this resulted in a very significant improvement
of the efficiency of the extended crossover approach.

The results in the tables clearly show that the IP algorithm without any form
of crossover is not competitive with the combinatorial approach. The extended
crossover algorithm may provide significantly better results than RelaxIV, with
improvements ranging from a few percentage points (e.g., mesh15.40) to 50%
(grid16.8, net14.8). On goto instances, which are notoriously “difficult” for
both IP [6] and combinatorial approaches [7], improvements range from a factor
of 3 to a factor of 35. However, the results also show that the improvements
are not uniform; on several families, the extended crossover is at best on par
or marginally slower than RelaxIV, at least if, as in our experiments, only a
small set of the many possible variants of extended crossover is allowed. Also,
there does not seem to be any obvious relationship between the characteristics
of the instances (graph topology, size, density, . . .) and the relative efficiency
of the extended crossover versus the combinatorial approach. Hence, further
research is required in order to make extended crossover approaches routinely
usable for solution of MCF problems. Yet, the consistently positive results that
can be obtained on some instances show that the approach deserves further
development.

1Formula D1 provides significantly better potentials but requires the solution of one extra
system (2) with all arc weights equal, that can be very costly to solve in some cases as shown
by the goto instances in Table 1.

14

problem D-1 D-C PD-1 PD-C RIV IP
grid8.32 0.024 0.020 0.022 0.024 0.020 0.431
grid8.64 0.064 0.070 0.070 0.072 0.070 0.900
grid12.8 1.036 0.870 0.874 0.870 0.933 5,212
grid12.64 5.644 5.470 5.542 5.594 5.460 35.36
grid12.256 16.41 16.46 16.75 16.51 15.09 209.73
grid16.8 32,72 31,75 31,67 32.06 73.78 1058.94
complete2 0.010 0.006 0.008 0.010 0.010 0.46
complete4 0.712 0.758 1.022 1.024 0.650 103.05
ggraph10 0.430 0.428 0.450 0.448 0.290 9.51
ggraph12 5.224 5.234 5.226 5.240 4.214 83.35
ggraph14 8.180 8.174 8.188 8.188 8.433 204.00
net8.32 0.018 0.020 0.020 0.014 0.010 0.31
net12.8 0.718 0.728 0.726 0.720 0.790 3,24
net12.64 3.580 3.590 3.596 3.604 2.540 28,44
net12.256 11.35 11,38 11.58 11.64 9.56 540.44
net14.8 4.724 4.774 4.812 4.740 7.370 207.85
net14.64 14.27 14.38 14.60 14.62 13.82 272.48
mesh14.8 3.288 3.286 3.322 3.340 2.940 36.18
mesh14.40 15.24 14.37 14.45 14.46 11.88 518.03
mesh14.64 18,00 17.41 17.56 17.59 15.98 864.59
mesh15.40 83.41 83.61 83.69 83.82 88.67 1972.77
mesh15.64 85.78 88.60 89.12 89.21 96.41 4098.99
mesh17.10 158.91 158.77 159.10 159.25 130.82 5532.27

Table 2: Comparison of extended crossover versus IP and RelaxIV in isolation

4.5 Conclusion

Combining Interior-Point and “combinatorial” approaches for the solution of
Linear Programs is a very well-established technique; without crossover, the
usefulness of Interior Point algorithms would be severely limited in several con-
texts. For general LPs, the only combinatorial approach that can be paired with
IP algorithms is the simplex method; however, for structured LPs like MCF,
other specialized combinatorial companions can be used instead. The extended
crossover approach brings further this idea by trying to combine the strengths
of the different algorithms: the fast global convergence of IP methods with the
extreme speed of “local” optimization moves of combinatorial approaches.

Our results show that extended crossover approaches are quite successful in
some relevant cases. However, they require a delicate tuning of the several possi-
ble options (IP algorithm employed, crash start formula and parameters, number
of iterations, . . .), which makes them currently unsuitable for general-purpose,
“fire-and-forget” MCF solvers. The need for developing accurate and depend-
able guidelines about when and how the extended crossover can be successfully
used brings about some issues at the frontier between Interior-Point algorithms

15

problem PD RIV IP
goto8.8 0.05 0.15 0.14
goto8.16 0.11 0.81 0.45
goto8.32 0.22 2.35 1.15
goto12.8 12.82 65.32 67.46
goto12.64 129.88 4718.60 2458.87
goto12.256 5782.43 25203.44 31289.30

Table 3: Extended crossover versus IP and RelaxIV in isolation: goto instances

for MCF [6] and the study of warm-starts for combinatorial algorithms to MCF
[7], namely: are there metrics that allow to measure how good, say, a primal-
dual pair (x, y) is as a warm start to some combinatorial MCF approach? and,
is there some variant of IP algorithm that is particularly well-suited for rapidly
producing such good solutions? We believe that further investigation on these
issues could bring results of interest in their own right, as well as allowing to im-
plement effective general-purpose MCF solvers based on the extended crossover
approach.

Acknowledgments

This research has been partly funded by Line 2.4 of CNR/MIUR Project “Sim-
ulazione e Ottimizzazione per Reti: Software e Applicazioni (SORSA) – SP7”.
We are also grateful to Ares Salvadori for his help in performing the computa-
tional tests and analyzing the results.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: theory, algo-

rithms and applications. Prentice Hall, New Jersey, 1993.

[2] E.D. Andersen and Y. Ye. Combining interior-point and pivoting algo-
rithms for linear programming. Management Science, 42(12):1719–1731,
1996.

[3] D.P. Bertsekas and P. Tseng. Relax-IV: A faster version of the Relax code
for solving minimum cost flow problems. LIDS-P-2276. November 1994. De-
partment of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology.

[4] D.P. Bertsekas and P. Tseng. RELAX: A Computer Code for Minimum
Cost Network Flow Problems. Annals of Operations Research, 13:127–190,
1988.

16

[5] J. Castro. A specialized interior-point algorithm for multicommodity net-
work flows. SIAM Journal on Optimization, 10:852–877, 2000.

[6] A. Frangioni and C. Gentile. New Preconditioners for KKT Systems of
Network Flow Problems. SIAM Journal on Optimization, 14(3):894–913,
2004.

[7] Frangioni, A. and Manca, A. A Computational Study of Cost Reoptimiza-
tion for Min Cost Flow Problems. INFORMS Journal on Computing, to
appear, 2004.

[8] A.V. Goldberg. An efficient implementation of a scaling minimum-cost flow
algorithm. J. of Algorithms, 22:1–29, 1997.

[9] J.J. Jùdice, J.M. Patŕıcio, L.F. Portugal, M.G.C. Resende, and G. Veiga.
A Study of Preconditioners for Network Interior Point Methods. Compu-

tational Optimization and Applications, 24(1):5–35, 2003.

[10] A. Löbel. Solving large-scale real-world minimum-cost flow problems by
a network simplex method. Technical report, Konrad-Zuse-Zentrum für
Informationstechnik Berlin, Germany, 1996.

[11] N. Megiddo. On finding primal- and dual-optimal bases. ORSA Journal

on Computing, 3:63–65, 1991.

[12] L.F. Portugal, M.G.C. Resende, G. Veiga, and J.J. Jùdice. A Truncated
Primal-infeasible Dual-feasible Network Interior Point Method. Networks,
35:91–108, 2000.

[13] M.G.C. Resende and G. Veiga. An Implementation of the dual affine scaling
algorithm for minumum cost flow on bipartite uncapacited networks. SIAM

Journal on Optimization, 3/3:516–537, 1993.

[14] T. Roos, T. Terlaky, and J.-Ph. Vial. Theory and Algorithms for Linear

Optimization: An Interior Point Approach. John Wiley and Sons, Chich-
ester, 1997.

[15] S.J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia,
PA, 1997.

17

