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Abstract

Graphs obtained by applying the gear composition to a givaplgH are calledgeared graphsWe
show how a linear description of the stable set polytsfied B(G) of a geared grapty can be obtained
by extending the linear inequalities definisg"AB(H) and STAB(H¢), whereH¢ is the the graph
obtained fromH by subdividing the edge.

We also introduce the class Gtperfect graphs, i.e., graphs whose stable set polytopesirithed by:
nonnegativity inequalities, rank inequalities, liftéelwvheel inequalities, and some special inequalities
calledgeared inequalitiegndg-lifted inequalities We prove that graphs obtained by repeated applica-
tions of the gear composition to a given grafghareG-perfect, provided that any graph obtained fréim
by subdividing a subset of its simplicial edgesjigerfect. In particular, we show that a large subclass
of claw-free graphs ig-perfect, thus providing a partial answer to the well-kngwablem of finding a
defining linear system for the stable set polytope of clawefgraphs.

Key words: stable set polytope, graph composition, polyhedral coatbnics.






1. Introduction

Given a graplG = (V, E) and a vectow € QK of node weights, thetable set probleris the problem
of finding a set of pairwise nonadjacent nodssble setpf maximum weight.

The stable set polytopedenoted byST AB(G), is the convex hull of the incidence vectors of the
stable sets ofr; it is known to be full dimensional. A linear systedr < b is said to bedefiningfor
STAB(G) if STAB(G) = {x € RV : Az < b}. Thefacet defining inequalitiefor ST AB(G) are
those inequalities that constitute the unique nonredundizfiming linear system 7T AB(G).

So, finding the defining linear system f68f" AB(G) is equivalent to transform the original optimiza-
tion problem into the linear programax{w”’z : Az < b,z > 0}. Indeed the existence of a “good”
defining linear system fo§T"AB(G) is equivalent to the existence of a polynomial time algonitfor
optimizing overST AB(G) (where “good” means that the separation problem for thisdirsystem can
be solved in polynomial time). Since the stable set probledv P-hard, it is unlikely to find such a
system for general graphs. Nevertheless there are clakgesphs for which such systems are known,
as bipartite graphs, line graphs [5], series-parallel lgsdft4], oddK4-free [9], and others. It is known
that, for these classes of graphs, the weighted stabledglepn is polynomial time solvable [12].

In [12], Grotschel, Lovasz and Schrijver present a momegal point of view. Instead of looking for
classes of graphs having a well-defined linear system désgrb 7" AB(G), they consider a sef of
valid inequalities forST' AB(G) and the following polyhedron

LSTAB(G) = {z € RY| x satisfiesC}.

Further they name-perfectthe graphsG having LSTAB(G) = STAB(G). Two basic questions
arise in this context: the first one is whether the optima@agproblem forLST AB(G) can be solved

in polynomial time (equivalently whether the separationlpem for LST AB(G) is polynomial time
solvable [11]); the second one is which graphs belong to desof L-perfect graphs. Different sets
L of inequalities have been considered in literature togetli the corresponding classes 6Hfperfect
graphs. We mention some of them in a non exhaustive list: pliggeodd-hole inequalities artgperfect
graphs [4]; clique plus odd-hole inequalities algberfect graphs; rank inequalities and rank-perfect
graphs [23].

Here, we consider a familg consisting of the following (lifted) inequalitiestank inequalities, 5-
wheel inequalities, geared inequalitiesd g-lifted inequalities The definition of rank and 5-wheel
inequalities is given later. The geared and the g-lifteduradities are generated by the graph composition
namedgear compositiorintroduced in [7]. This composition starts from a given drdp and builds a
new graphG by replacing a suitable edge &f with the fixed graphB (gear) shown in Fig. 1. This new
graphG is calledgeared graphgenerated byd and B.

Figure 1: The gear with nodek, b1, h1, hs, ¢, a, dsa, bs.

The gear composition has an important polyhedral propérpreserves the property of an inequality
of being facet defining. This means that a facet defining ialityuof ST AB(H) can be “properly
extended” to a facet defining inequality 81" AB(G) whend is a geared graph. The geared inequalities



were introduced in [7]; in this paper we identify anothersslaf inequalities generated by the gear
composition, the so-calleg-lifted inequalities Both classes of inequalities are essential in the linear
description ofST AB(G) whenG is a geared graph and we provide sufficient conditions fantbeing
facet defining. Then, we investigate the relations betwkempblyhedron

GSTAB(G) = {z € RY| z satisfiesG}.

and the stable set polytope of a graghobtained as the gear composition Bf and B. Clearly,
STAB(G) C GSTAB(G); here, we provide sufficient conditions to have equality,,iwe exhibit
classes of graphs which afeperfect. In particular, we consider the class of graghsobtained by
iteratively applying the gear composition to a given grdph We show that if the gear composition is
applied to “suitable” simplicial edges of a line graph then the graphs ig; are claw-free andj-
perfect. This allows us to exhibit the linear descriptiorthe polytopeST AB(G) for a large subclass
of claw-free graphs with stability number at ledstthus providing a partial answer to the well-known
problem of finding a defining linear system for the stable séitppe of claw-free graphs.

In Section 2, we recall the definition of gear composition adshow some of its polyhedral proper-
ties. In particular we show under which conditions the geamngosition preserves the property of a graph
of being facet producing. In Section 3, we show that, aparhfclique and-wheel inequalities, geared
inequalities and g-lifted inequalities are the only neveéininequalities involvind3 that are necessary to
describeST AB(G) whenG is a geared graph generated Hyand B alonge. Finally in Section 4, we
introduce the class of inequaliti€s Then we prove under which conditions the stable set potytifa
geared graph is described by nonnegativity constraints ipkegualities inG and we provide interesting
examples ofj-perfect graphs.

We denote byG = (V, E) any graph with node séf; and edge sek;. An edgee € Eg with
endnodes: andv will be denoted byuv. We denote by(v) the set of edges aF havingv as endnode
and by N (v) the set of nodes of; adjacent tow. A clique-cutset of7 is a complete subgraph whose
removal disconnect§'.

A k-holeC, = (v1,v9,...,vg) is a chordless cycle of length A 5-wheelW = (h : vy,...,v5) IS
a graph consisting of &holeC' = (vy,...,vs), calledrim of W, and a nodé: (hubof W) adjacent to
every node of”. A clawis the graphi; s.

A gear B is a graph of eight node§u, b1, b, ¢, dy,ds, h1, he} such thatly = (hy : a,dy,b1,c¢, h)
andWy = (hgy : a,ds, be, ¢, hy) are5-wheels (see Fig. 1); moreover, the edges of these wheethare
only edges ofB. When no confusion arises we shall denotdigs= (h; : C;) fori = 1,2, the two
5-wheels contained in the ge&.

If w: Vo — Q4 is any weighting of the nodes ©f, thena(G, w) denotes the maximum weight of
a stable set of;. We refer toa(G) = a(G, 1) (1 being the vector of all ones) as th&ability number
of G.

Given avectos € R™ and asubsef C {1,...,m}, definefs € Rl as the subvector gf restricted
on the indices o5 and3(S) = 3, ¢ ;. Given a subses C {1,...,m}, we denote by:* € R™ the
incidence vector of.

A linear inequality ;. mjz; < mo is said to bevalid for STAB(G) if it holds for all z €
STAB(G). For short, we also denote a linear inequalityz < my as(m, 7). A valid inequality
for STAB(G) definesa facet ofSTAB(G) if and only if it is satisfied as an equality By | affinely
independent incidence vectors of stable seté& dtalledroots or tight solution3. We also say that a
stable sefS is tight for (, o) if its incidence vector:® is a tight solution of 7, 7).

If the support of a facet defining inequality, 7) coincides withV;, we say that the grapfi supports
(or produce} the corresponding facet or equivalently tltat 7() has full support ori/;;.

A linear inequalityzjevc mjx; < mo is said to be aank inequalityfor ST AB(G) if m; = 1 for each
i€ S C Vg m=0foreachi € Vi \ S andmy = a(G[S]) whereG[S] is the subgraph off induced



by S. Given a 5-wheeW = (h : vy, va,v3,v4,v5), then the inequalit)Z?:1 Ty, + 2xp < 2is called
5-wheel inequality

We recall the definition of theequential liftingprocedure defined in [16] that will be used in the
following sections. Let” (&) denote the family of the stable sets@f If .y .\, mjz; < mois a
facet defining inequality o7 AB(G \ {v}), then the inequality

Z T + T, < 7o With m, = 7o — cey Gmﬁx 7(S)
ievanin €S (G\(N(v)u{v}))

is facet defining forST AB(G). This inequality will be callecsequential lifting of(my,,\ (v}, m0) and
7, Will be called thelifting coefficient ofv. This procedure can be iterated to generate facet defining
inequalities, simply calletifted inequalities in a higher dimensional space.

2. Geared inequalities and g-lifted inequalities

An edgev; v, of a graphH is said to besimplicial if K; = N(v1) \ {v2} andKy = N(vz) \ {v1} are
nonempty cliques off. Notice thatk; and K> may have nonempty intersection. Simplicial edges have
a trivial though very useful polyhedral property:

Proposition 2.1. Let H be a graph and{’ be a subgraph off that supports a facet defining inequality
(w,m9) of STAB(H) which is not a clique inequality. If{’ contains a simplicial edge;v-, then
v, = Ty, If H' contains a simplicial edge; v, subdivided with a nodg thenr,, = 1, = m.

Proof. Sincev; v, is simplicial we have thak'; = N (v1)\{v2} andKs = N(v2)\{v1} are nonempty
cliques of H'. Let us consider a tight stable s&t missing K; U {v;} (it exists since(r, 7p) is not a
clique inequality). Clearlyys € S; (since otherwis&; U{v; } would violate(r, m)). Hencem,, > m,,
(since otherwiseS; \ {va} U {v;} would violate(w, 7y)). A symmetric argument proves thaf, > m,,
and the first claim follows.

Consider now a simplicial edge, v, subdivided with a node. Obviously, v1¢t and tv, are both
simplicial. Hence, we have that, = m = m,, and the proposition followdl

We recall the definition of gear composition given in [7] tdggr with a picture describing how it
works:

Definition 2.2. Let H = (Vy, Ey) be a graph with a simplicial edge = v1v, and letB = (Vp, Ep)
be a gear. Thgear compositiomf H and B alongwvivs generates a new grap@d such that:

Vo=V \ {Ul,vg} U Vg,
Eq =FEg\ (6(v1)Ud(v2)) UERUF; UFy, whereF; = {d;ulu € K;} U {bjulu € K;}fori=1,2.

The graphG will be called thegeared graplgenerated byH and B along e and denoted byr =
(H,B,e).

Definition 2.3. Let H be a graph with a simplicial edge = v,v, and let H¢ be the graph obtained
from H by subdividinge with a new node.

An inequality (7, o) which is valid forST AB(H) is said to beg-extendablgwith respect tce) if
Ty, = Twy, = A > 0 and itis not the inequality,,, + x,, < 1.

An inequality (7, m9) which is valid for STAB(H®) is said to beg-liftable (with respect toe) if
Ty, = Tyy =Tt = A > 0.



Figure 2: (a) A graptH with a simplicial edge» vs; (b) The geared grapf = (H, B,v1v2).

Definition 2.4. Let H = (Vy, Ex) be a graph containing the simplicial edge= v v9, let B =
(Vs, Ep) be agear and letr, 7) be a valid inequality foiST AB(H) that is g-extendable with respect
to e. Then the inequalities

S Z Tix; + A Z i + 2N (xpy + Thy) < T + 2A @
’iEVH\{’Ul,UQ} ’iEVB\{thQ}

o Z T + A Z T <o+ A 2
’iEVH\{’Ul,UQ} ’iEVB\A

whereA € {{b1, ¢}, {bs, ¢}, {d1,a}, {da,a}, {a,c}}

are calledgeared inequalitieassociated witlir, 7). The unique geared inequality that has full support
on Vg is (1) and it will be calledbroper geared inequality

Geared inequalities are essential in the linear descnigifdhe stable set polytope of geared graphs.
Indeed, it was proved that:

Theorem 2.5.[7] Let G = (H, B, e) be a geared graph generated By and B alonge and let(r, 7)
be an inequality that is g-extendable with respect.tdf (7, ) is facet defining foST AB(H), then
the proper geared inequality (1) associated w(ith ) is facet defining foSTAB(G).

The above theorem can be extended to the geared inequéitias follows:

Theorem 2.6. LetG = (H, B, e) be a geared graph generated b and B alonge and let(w, o) be
an inequality that is g-extendable with respecktdf (7, mp) is facet defining foST AB(H), then the
geared inequalities (2) associated with, 7o) are facet defining foST AB(G) for eachA € {{b, ¢},

{b27c}7 {dlva}’ {d27a}’ {CL,C}}.

Proof. A sketch of the proof for the casé = {a, c} was given in [7]. For the sake of completeness,
we recall here the arguments used in that proof. ConsidegriighGG’ obtained fromH by subdividing
the edge= = v1 vy with two nodesh; andh, and renaming; asd;, ¢ = 1,2. ClearlyG’ is a subgraph of
G and, by a result of Wolsey [24] on edge subdivisions, the¥alhg inequality

Z T + A Z xr; <M+ A

1€Va\{v1,v2} 1€{d1,h1,h2,d2}



is facet defining forST AB(G’). This inequality can be lifted to yield a facet defining inefiy of
ST AB(G) by observing that, andbs can be lifted with coefficien, and thernz andc can be lifted
with coefficient zero. This completes the proof of calse- {a, c}. The facet defining defining inequality
corresponding tod = {b1, c} is obtained by first lifting the nodes andb, with coefficientA and then
the nodes; andc with coefficient zero. The remaining cases can be provedgoatly by changing
the order of the lifted nodell.

Example 2.1. Consider thes-hole C5 and the geared graph obtained as the gear composition @
and B along the simplicial edge = v1v; (see Fig. 3). Thus, we write' = (C5, B, e).

A

T A

Figure 3: A5-hole C5 and a geared-hole G

As the5-hole inequalityz (V) < 2 is valid for STAB(C5) and it is g-extendable with respectdp
the following inequality

l’(VG \ {hl, hg}) + 273h1 + 21’h2 <4
is a proper geared inequality associated witiv,) < 2. Sincex(Vg,) < 2 is facet defining for

ST AB(Cs), the proper geared inequality associated with,) < 2 is facet defining folST AB(G),
by Theorem 2.5. Furthermore, the following five inequaditie

(Vg \ A) < 3, whereA € {{dy,a},{d1,a}, {ba,c}, {b1,c},{a,c}},

are geared inequality associated witV, ) < 2 and are facet defining f&#7T'AB(G), by Theorem 2.6.
0

The inequalities (1) and (2) (see Example 2.1) are not thg m@qualities generated by the gear
composition. In the remaining of this section we presentteeraclass of valid inequalities f&fT AB(G)
calledg-lifted inequalities

Definition 2.7. Let H = (Vy, Ex) be a graph containing the simplicial edge= v v9, let B =
(Vs, Ep) be a gear and letr, ) be a valid inequality foilST AB(H*¢) that is g-liftable with respect to
e. Then the inequalities

o Y o mmi A m<m+ A (3)
i€Vp\{v1,v2} i€Vp

o Yo ommi+A ) wm<m (4)
i€Vp\{v1,v2} i€Vp\A

whereA € {{bl, c, bg, hl, hg}, {dl, a, dg, hl, hg}}

are calledg-lifted inequalitiesassociated witlir, o). The unique g-lifted inequality that has full support
on Vg is (3) and it will be calledproper g-lifted inequality



Inequalities 4 are clearly valid, as their supporting gréph A is isomorphic toH¢. We then prove
that the proper g-lifted inequality is valid f&iT AB(G).

Lemma 2.8. LetG = (H, B, e) be a geared graph generated ) and B along e and let(x, my) be
an inequality that is g-liftable with respect to Then the proper g-lifted inequality (3) associated with
(m,mp) is valid for STAB(QG).

Proof. Let (7, 7) denote the proper g-lifted inequality (3) and Igtbe a maximal stable set of
G. To prove the lemma we distinguish three cases dependingeomtersection of5' with the subset
{bl,bQ,dl,dQ} of Vg. If |S N {bl,bg,dl,d2}| =2, thenKi1 NS = K, NS = @ and the sef \ Vg is
a stable set off°. It follows that7(S \ Vi) = (S \ V) < mp — 2, since otherwise the stable set
S\ Ve U{v1,v9} of H® would violate(r, mp). Moreover,7(SNVg) < 3X and thusi (S \ Vg) +7(SN
VB) §7T0—2)\+3)\:7T0+)\.

If [SN{b1,be,dy,d2}| = 1, we first suppose that € S;then,bs, hy,c,dyi,dy ¢ S andSNVp contains
exactly one node ifhgy,a}. Thus,m(S N Vp) =2\ SinceS N K; =0, (S\ Vi) U{v1} is a stable set
of H¢,and sor(S\Vg) = 7(S\VB) < mp—A. Hencem (S\Vp)+7(SNVE) < mg—A+2\ = 7w+ A
and the result follows. The cases withe S, d; € S, ordy € S are analogous.

In the last casd,S N {b1, b2, d1,d2}| = 0andS \ Vg is a stable set id/¢. We have thatr (S \ Vi) =
7(S\ Vi) < mo — A since otherwise the stable gt \ V) U {¢} of H¢ would violate(r, my). By the
maximality of S, exactly one among the sef8, }, {h2}, and{a, c}, is contained inS, thus implying
that7(S N Vp) < 2X. Hencem (S \ Vi) + (SN VE) < 1y — A+ 2\ and the thesis followd

In the following we provide sufficient conditions for the staof g-lifted inequalities to be facet defin-
ing. Next theorem is the analogous of theorems 2.5 and 2 @-lifted inequalities.

Theorem 2.9. LetG = (H, B, e) be a geared graph generated Byand B alonge and let(r, mp) be an
inequality that is g-liftable with respect to If (7, mp) is facet defining foST AB(H¢), then the proper
g-lifted inequality (3) and the g-lifted inequalities (OrfA € {{b1, ¢, ba, h1,ha}, {d1,a,d2, h1, ha}}
associated withiw, mg), are facet defining foST AB(G).

Proof. We first prove the theorem for the proper g-lifted ineqyal@uppose that”z < 3, is a facet
defining inequality forST AB((G) that contains all the roots of (3): we prove below that sueugirality
is equivalent to (3).

We first show that the coefficients;, associated with nodes € Vz are equal. Let:%:, i = 1,2,
be roots of(w, ) such thatS; N (K; U {v;}) = (. These roots always exist because,) has
Ty = T = Ty, = A > 0 and so, it is not the clique inequality defined By U {v;}, i = 1,2. Now¢
must belong taS; since otherwises; U {v;} would violate ¢, o). Consider the following stable sets
whose incidence vectors are roots of (3):

St =81\ {t} U{a,c}

S7 =S\ {t} U{a, b1}
St =81\ {t} U {ho,b1}
St =S\ {t} U{he,d1}
St =S\ {t} U{c, di}.

From 3(S1) = B(St) = B(S?) = B(S1) = B(SY), it follows that . = By, = Bu = Ba, = Bne-
Analogously, usingd; it can be proved that. = 5y, = 8, = Ba, = Bh,-

Let M be a matrix whose rows ai&-| incidence vectors of stable sets BF which are linearly
independent roots dfr, 7p), i.e.,

Mn = myl. (5)



Any stable seb of H¢ can be transformed into a stable Seif G as follows: seS = S\ {v;, vo,t}USB,
where Sp is a stable set of3 such thatd; € Sg if and only if v; € S for i = 1,2 and moreover,
a € Sgpifandonly ift € S. It is not difficult to verify that ifz° defines a root ofr, m) thenSp
can be chosen so thaf' defines a root of (3) such tha(S N {hy, he,c}) = Bu,, since{hy, ho,c} is
a clique and3,, = (3, = (.. By replacingVye with V' = Ve \ {v1,v2,t} U {d1,d2,a}, we have
M By = (Bo — Br, )1 and by (5),

/80 - /8h1
- T.

o

Byr = (Bo— B )M 11 =
In particular, since3;, = 3,, we have

By = Bo — Ba, - Po = Bar
0 )

Theng,, > 0 and, without loss of generality, we can fif§, = \; as a consequence, we have that

fo = mo + A,
By = T for eachu € Vie \ {v1,v2,t},
Bu =\ for eachu € Vg,

and the first part of the theorem follows.

Consider now the inequalities (4). They are isomorphic ¢odtiginal g-liftable inequalityr, 7¢) and
hence they are trivially valid. 1A = {b1, ¢, bs, h1, ho}, itis easy to check that the lifting coefficients
of the nodes, e.g., in the ordés, ho, b1, bo, ¢, are all equal to zero. This argument proves that these
inequalities are facet defining f&T"AB(G). 1

Example 2.2. Consider thel-hole C; and the geared graph obtained as the gear composition@f
and B along the simplicial edge = v1v5 (see Fig. 3). Thus, we write' = (Cy, B, e).

v
als

Figure 4: A4-holeC, and a geared-hole G

The subdivision of the simplicial edge = v;v2 with a new nodel generates &-hole C§. Since
z(Voe) < 2is valid for STAB(CY) and it is g-liftable with respect te, the inequalityx (V) <
3 is a proper g-lifted inequality associated witiVce) < 2. Sincez(Vee) < 2 is facet defining
for STAB(CY), this proper g-lifted inequality is also facet defining 87" AB(G), by Theorem 2.9.
Moreover, the following two inequalities

SL’(VG \ A) < 3whereA ¢ {{bl, c, bg, hl, hg}, {dl,a,dg, hl, hg}}

are non proper g-lifted inequalities associated wiffrce) < 2 and they are also facet defining for
STAB(G), by Theorem 2.9. O
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The above results show that facet defining inequalitiesSfOtAB(H) and ST AB(H®) generate
geared and g-lifted inequalities, respectively, that acef defining folST AB(G) whenG = (H, B, e)
is the geared graph generatedByand B alonge. This implies that geared and g-lifted inequalities are
necessary for the linear description $1"'AB(G). Next section will be devoted to prove that they are
also sufficient.

3. Gear composition of polyhedra

In this section we show that, apart from clique &dheel inequalities, geared inequalities and g-lifted
inequalities are the only new linear inequalities involyiB that are necessary to descris& AB(G)
whend is a geared graph generated Byand B alonge.

Throughout this section, we indicate by, 5y) a generic facet defining inequality f6fT AB(G); we
split the vector of coefficients into two subvector$fsy g, 3) wheregy g is the vector of coefficients
associated with noddg; \ Vp and (g is the vector of coefficients associated with notfgs Moreover,
the components gfz will be indexed as followsBs = (B4, , Bby s Bhys Bha» Bes Bas By s Bby)-

We first observe that if is a simplicial edge an&l; = K then the geared graghgenerated byf and
B alonge has a clique-cutsek’; = K>. When this happens the results of Chvatal on the compaositio
of polyhedra [4] explain how to find a defining linear system $§"AB(G) from the defining linear
systems ofSTAB(H) and STAB(K; U {v1,v2}, B,e). So, in the rest of the paper we will focus on
the composition of polyhedra resulting from applying tharggomposition along a simplicial edge that
hasKk; 75 K.

We state now the main theorem of this paper.

Theorem 3.1. LetG = (H, B, e) be a geared graph generated Byyand B along the simplicial edge.
Then the stable set polytop&’ AB(G) is described by the following linear inequalities:

e nonnegativity inequalities,

clique inequalities,

(lifted) 5-wheel inequalities,

geared inequalities associated with facet defining inetjealof ST AB(H ) having nonzero coef-
ficients on the endnodes af

g-lifted inequalities associated with facet defining inglities of ST AB(H¢) having nonzero co-
efficients on the endnodesf

o facet defining inequalities T AB(H) having zero coefficients on the endnodes. of

Proof. Since the proof of this result is quite technical and up tme@xtent repetitive, we arrange it
into three main steps that are illustrated below (each stppied in a separate subsection). We consider
a facet defining inequalitys, 5y) for ST AB(G) that is neither a clique inequality nor a liftéewheel
inequality. We denote a8’ = V; \ Vp and by a positive scalar number. We also assume that the
components ofiz are not all zero. Then we show that:

1) If (B, Bp) does not have full support driz and we denote byA C Vg the set{u € Vi : 5, = 0},
then (s, 5y) has the form:

By + Az a < Bo

whereA € {{bla C}v {b2> 6}7 {dha}v {d27 a}> {(1, C}v {b1767 b27 hla h2}> {dla a, d?a hla h2}} (by The-
orem 3.4 in Subsection 3.1).
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2) If (B, o) has full support orV’s then it has one of the following forms:

a) ﬂ‘j;/xvl + )\wB\{hth} + 2)\(xh1 + zp,) < o,
b) BL.zyv: + Az < Bo.

(by Theorem 3.9 in Subsection 3.2)

3) If (8, 6o) has the form described in 1) with € {{b1,c}, {b2,c},{d1,a},{d2,a},{a,c}} or the
form described in 2a) then it is a geared inequality assediatith a facet defining inequality of
STAB(H) (by Theorem 3.10 and Theorem 3.11 in Subsection 3.3);

If (8,00) has the form described in 1) with € {{b1, ¢, bo, h1,ha},{d1,a,da,h1, ha}} Or the
form described in 2b) then it is a g-lifted inequality assted with a facet defining inequality of
STAB(H¢) (by Theorem 3.12 in Subsection 3.3,).

As a consequence of the above results, we have that eachdifoging inequality forST AB(G)
which is different from clique inequalities afidwheel inequalities and ha#s; # 0 is:

either an inequality of type (1) or (2) whe(e, ) is a g-extendable facet defining inequality of
STAB(H),

or an inequality of type (3) or (4) whefe, 7)) is a g-liftable facet defining inequality 6fT’ AB(H®).

Finally, Proposition 2.1 establishes that every facet dejinequality forST AB(H), that is not a
clique inequality, cannot have a zero coefficient on one eddrofe and a nonzero coefficient on the
other endnode. Hence, facet defining inequalitiesStorA B(H ) with zero coefficient on the endnodes
of e have a supporting graph that is a subgraplizaind may be lifted with zero coefficients. Thus the
thesis followsl

3.1. Inequalities not having full supportonVp

In this section we deal with inequalities that do not havedupport onl’. Throughout this section we
shall denote by the set{u € Vp : 8, = 0}. If an inequality(j3, 5y) does not have full support driz
then A # (). We start by recalling the arguments that will often be usetthé proofs of this subsection.
The first one is a well-known result of Chvatal:

Theorem 3.2. [4] The supporting graph of a facet defining inequality 67" AB(G) does not have a
clique-cutset.

The next observation concerns the lifting coefficients afeminA. More precisely,
Observation 1. LetG = (H, B, e) be a geared graph and l&¥ \ A be the subgraph aff supporting
the facet defining inequality3, 5y) of STAB(G), namelyA = {u € Vp : 5, = 0}. Then every node of
u € A has lifting coefficiens, = 0.

As a consequence of Observation 1 we have thét,if)) is facet defining forST AB(G) that does
not have full support oz then each node € A has lifting coefficients,, = 0 (for short, hag)-lifting

coefficient). By the definition of lifting this implies that:

Observation 2. For each node: € A, there exists a tight stable s&t, in G \ (AU N(u)).
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Notice also that if there exist two adjacent nodes A andv € Vi \ A with N(v) \ {u} C N(u),
then every stable sétin G \ (AU N(u)) can be augmented by adding the nedé his implies that a
tight stable set irG \ (A U N(u)) satisfying Observation 2 does not exist, a contradictioand¢,

Observation 3. No nodeu € A is adjacent to a node € Vi \ A with N(v) \ {u} C N(u).

Moreover, we will also use the following arguments:

Observation 4. Let G be a graph and le{r, m) and (5, ) be two facet defining inequalities for
STAB(G). If (8, 8) is not a positive scalar multiple dfr, o) then there exists a stable sgtthat is
tight for (3, 5o), i.e., Bz = Sy, but not for(r, 7)), i.e.,mz¥ < 7.

In the next proofs clique inequalities Biwheel inequalities will play the role dfr, 7y). In these cases,
we will say that there exists a tight stable sefor (3, 5y) thatmissesa certain clique i/ U K; U K»
or one of the twd-wheels contained 3.

Observation 5. LetG be a graph and lets, 5y) be a facet defining inequality f&fT"AB(G). Then for
anyu € Vg there exists at least a root 08, 3)) containingu.

We are now ready to prove that(ifis a geared graph, then for any facet defining inequatity z, 55, 50)
for ST AB(G) that has not full support oli, the vectorig can assume only 7 different values (listed
in Theorem 3.4). This will be proved in two steps: first we shehich are the zero components @
(Lemma 3.3); then we prove that all the nonzero components; @&re equal (Theorem 3.4).

Lemma 3.3. LetG = (H, B, e) be a geared graph and 1€t g, 35, 5) be a facet defining inequality
for STAB(G) with both 8y p and g different from the zero vector. [f3, 5)) does not have full
support onVp and it is neither a clique inequality nor a 5-wheel inequglithen one of the following
cases occurs:

1) A € {{b1,c},{ba,c},{d1,a},{do,a},{a,c}},
2) Ae {{bl,c, bg,hl,hg},{dl,a,dg,hl,hg}}.

Proof. Without loss of generality, let \ A denote the supporting graph of the inequality 5y), i.e.,
the subgraph induced by the nodestbaissociated with nonzero componentsiofClearly, G \ A has
to be connected and, by Theorem 1, it has no clique-cutset.\ |A satisfies these two properties we
say thatG \ A is admissible. The proof consists in showing that, aparhftieose listed in the thesis, all
admissible configurations of yield a contradiction.

Observe that if there does not exist a path betwBerand K, contained inB, thenK; and K, are
clique-cutsets oz \ A. It is not difficult to check that ifz \ A is admissible thefA| < 5. If [A| =5
andG \ A is admissible then case 2) occurs|Afl = 4 andG \ A is admissible ther! is isomorphic to
one of the following configurations (that are derived by eetettion as described in Appendix A):

I) A= {bl,a,c, bg},
II) A= {bl,a,c, dg},
iy A={b1,c,h1,d2}.

In the first two cases Observation 3 is contradicted by nadmsd/; in the third case the nodek
andd, contradict Observation 3. Hende}| = 4 cannot occur.

If |A] = 3 andG \ A contains no clique-cutset thehis isomorphic to one of the following configu-
rations:

) A={by,a,c},
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II) A= {bl,a,dg},
iy A={bi,c,hi},
iV) A= {bl,c, bg}.

In cases (i) and (ii), thé; andd; contradict Observation 3, and so, they cannot occur. Censike
(iii): let Sy, be atight stable set i& \ (A U N(h1)) (it exists by Observation 2). Clearly,,, contains
ds (since otherwisé),, U {a} would violate(3, 5y)) and a node irk; (since otherwis& U {d; } would
violate (3, 5p)). It follows that 34, > Gy, + [B.. Now letT be a tight stable set missing the clique
{a,he,d2}. Thenby, € T (otherwiseT U {hy} is feasible and violate§s, 5y)) and, consequently,
By, > Ba,; @SB, > 0, this is a contradiction. Finally consider case (iv): gt a tight stable set in
G\ (AUN (b)) (it exists by Observation 2). Clearly,, containsa (otherwiseS;, U{d; } would violate
(8, o)) and s08, > fBn, + B4, - LetT be a tight stable set missing the cligi&, a, hi}. Thenhy € T
andfjy, > 3,, a contradiction.

If |A| = 2 andG \ A contains no clique-cutset thehis isomorphic to one of the following configu-
rations:

) A={a,c},
iy A={by,c},
i) A={by,a},
iV) A= {bl,hg},
V) A= {hl,hQ},
vi) A={b1,d>}.

The cases (i) and (ii) are listed in 1) of the thesis. Noticg #il the remaining cases of the thesis are
isomorphic to case (ii) and so they can be proved by symmetry.

In case (iii), the nodes; andd; contradict Observation 3; in case (iv), Observation 3 igramiicted
by he andec. In case (v), as the nodg has a)-lifting coefficient, i.e., there exists a tight stable sgt
in G\ (AU N (hy)); itis not difficult to see thab},, contains eitherly or be. But then eitherSy, U {c}
or Sy, U {a} violates(g, y), a contradiction. So, all cases (ii}v) yield a contradiction.

It remains to consider the case (vi). By Observation 2, asntiied, € A, there exists a tight stable
setSy, in G\ (AU N(dy)). Itis not difficult to see thab,, D {c,d;} and soFy,, < .. Now letS be a
tight stable set missingh,,d;,a}. Thenhy € S and so,5,, = (.. ButthenS \ {h2} U {a, c} violates
(8, Bo), a contradiction.

If |A| = 1 then there are three nonisomorphic cases to be consideted: {b;}, A = {c}, and
A={h}.

Case 1.A = {b}.

Let 7' be a tight stable set missing the cliqlie, hs,c}. Clearlyh; € T (since otherwisd” U {c}
would violate(3, 5y). By Observation 2, the nodg has a0-lifting coefficient, i.e., there exists a tight
stable setSy, in G\ (AU N(by)). Itis not difficult to see that;,, contains{a,b2}. Theng, > Gy,
5{1 > 56[1 andﬂbg > Bc-

SinceSy, D {a,ba} andSy, \ {a,b2} U {d;,c,d2} is a stable set, it follows that, + 35, > B4, +
Be + Ba,- If Ba = Ba, thenBy, > 5. + Ba,. Since all coefficients ofz apart fromg,, are positive, we
have that3,, > (4,. This implies thatly ¢ T' (since otherwisd \ {d2} U {b2} would violate(3, 5y))
and soT'\ {h;} U {a,c} violates(3, ), a contradiction.

Hence,3, > (4,. Thus every tight stable sét containingb, contains either or ~; and every tight
stable setS containingc contains either or do. In fact, in all other casesi; € S andS \ {d;} U {a}
violates(3, 3y), a contradiction. Moreover every tight stable Setontaininga contains eitheb, or ¢
and every tight stable set containidg contains eithek; or c. Finally every tight stable set containing
hy contains eitheb; or ds (since otherwise \ {1} U {a, c} would violate(3, 5y)).
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As a consequence, every tight solution(of 3y) is also a tight solution of thé-wheel inequality
(m,mo) supported byVy = (hs : a,ds, be, ¢, hy), contradicting Observation 4. (End of Case 1)

Case 2.A = {c}.

By Observation 3, the nodehas a0-lifting coefficient, i.e., there exists a tight stable setin G \
(AU N(c)). Itis not difficult to see thab, contains{d;,ds} or {a}.

Suppose first thafd;,d2} C S.. From this, it follows thats;, > G, and By, > Gy, i = 1,2. If
By, = Ba;, i = 1,2, thenS. \ {di,d2} U {b1,b2,a} violates(8, (), a contradiction. Without loss of
generality, suppose thal, < G4, .

Let S be a tight stable set missing the cliglig, d; } U K. Clearly,S containsh;. If 54, > 0, , then
S\ {h1} U {d:i} would violate (3, 5y), a contradiction. Hencej;, = (,. We distinguish now three
different cases:

- /8h1 < /811-

Let us consider a tight stable s¢missing the cliqguga, ho, d2}. Thend; or hy belongs taS and,
the stable set obtained by replaciigor i, in S with a violates(/3, 5y), a contradiction.

- /8h1 > /811-

Since,, < [4,, every tight stable sef containingb; containsa (since otherwises \ {b;} U
{d;} would violate (53, 3p)) and every tight stable set containingcontainsb; (since otherwise
S\ {a} U {h1} would violate (53, 3)), thus implying that the tight solutions ¢fs, 3,) are not
linearly independent, a contradiction.

- ﬁhl = ﬁa-

SinceS. \ {di,d2} U {a,b,bs} is a stable set, we have thaf + 5, + By, < B4, + B4,. Since
Ba = Bn, = Ba,,» we have thats,, < f[4,. Consider a tight stable sé& missing{hi,dy,a}.
Sincefy, < f4,, we have thab, ¢ S’ (otherwiseS’ \ {b1} U {d; } violates(3, 5y)) andhs € S’.
S0, Br, > B.. Let S” be a tight stable set missinghz, d2, b2}. It containsh; or a and so,
Br, = Ba > Pn,.- Moreover, every tight stable set missifith, d2} U K5 clearly containshs
and yieldsfs,, > B4,. Hence,8,, = (8, > B4,- But then every tight stable sétcontainingb;
containsby. In fact, S containsa (since otherwiseS \ {b;} U {d;} would violate (53, 5y)) and
by (since otherwiseS \ {b1,a} U {d1, h2} would violate (53, 5p)). A symmetric argument shows
that every tight stable set containifg also contain®,, thus implying that the tight solutions of
(68, Bo) are not linearly independent, a contradiction.

Suppose now thaftd,,d>} Z S. and soa € S.. LetS; be a tight stable set containiny, i = 1, 2.
SincesS; \ {d;} U{b;} is a stable set, we have that > 3,,,i = 1, 2. Let S’ be a tight stable set missing
{a,h1,he}. Since, by hypothesis, there does not exist a tight stalblecseaining bothd; andds,, we
have thatS’ contains neithefd;,bs} nor {dq, b1 }. It follows thatS” > {b1,b2}. ButthenS’ U {a}
violates((3, (), a contradiction. (End of Case 2)
Case 3.A = {h1}.

By Observation 3, the node; has a0-lifting coefficient, i.e., there exists a tight stable $gt in
G\ (AU N (hy)). Itis not difficult to see thab},, contains eithets or by. But then eithelS;,, U {c} or
Sh, U {a} violates(g, fp), a contradiction. (End of Case 3)

Thus the lemma followdl
The next theorem shows that all the nonzero components; afre equal.

Theorem 3.4. LetG = (H, B, e) be a geared graph generated B and B along the simplicial edge
e = vivy and letV’ = Vi \ {v1,v2}. Then each facet defining inequalitgy-, 85, 5o) of STAB(G)
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that does not have full support drs, that is neither a clique inequality nor &wheel inequality, and
hasgg # 0, is of the following form:

By + Az a < Bo
whereA € {{bl, C}, {bg, C}, {dl, a}, {dg, CL}, {CL, C}, {bl,c, ba, h1, hg}, {dl, a,ds, hy, hg}} and\ > 0.

Proof. By Lemma 3.3, we know thatg has either five zero components or two zero components like
in the thesis. In the first case we have that the supportinghgs( 3, 5y ) is a subgraph off ¢ containing
the subdivision of the simplicial edgeand, by Proposition 2.1, we are done.

It remains to show that iz has two zero components then all the remaining componeatscaral.
By Lemma 3.3, the vectofp satisfies one of the following conditionsd = {a,c}, A = {b1,¢},
A= {bg, C}, A= {dl, a}, A= {dg,a}.

Suppose first thatlt = {a, c}. We have thati;, = 3,, ¢ = 1, 2 otherwise there would not exist stable
sets containing each of the nodés ds, b1, b2 which are tight for(3, 5p) (such stable sets must exist
for Observation 5). Now, if3;, > 3, then the tight stable set missidd@;, ho} would violate (3, 5y)
after replacingd, or b; with hy. Moreover, if3;,, < (34, then the tight stable set missidg, U {d;, b}
would violate (3, 5y) after replacingh; with d;. Hence,3,, = (4, and similar arguments prove that
B, = Ba,. As the edgéh; hy is simplicial inG \ A, we have, by Proposition 2.1, thdt, = (,. Thus
all nonzero coefficients gfp are equal and we are done.

The last four cases are symmetric, so we prove in detail thedite and symmetric arguments will
prove the remaining cases. Suppose that {b;,c} and all components ¢f different from,, and
B. are nonzero. Sinck, has a0-lifting coefficient with respect tds3, ), we have that there exists a
stable sefS;, in G\ (AU N(b1)) which is tight for (3, 3y). Clearly,a € Sy,; it follows that 5, < 3,
andBy, < B,. If by & Sy, thens, > Br, + Ba, (since otherwisesy, \ {a} U {hg, d; } would violate
(8, Bo)). Thus,B, > Br,. Now, consider a stable s&t which is tight for (3, 5y) and misses the clique
{a,di,h1}. It has to contaims, but thenS’ \ {h2} U {a} violates (83, 5y), a contradiction. Hence,
by € Sbl-

Since the node has a0-lifting coefficient with respect tds, 5y), there exists a stable sét in
G\ (AU N(c)) which is tight for (53, 3y). Two possibilities may occur: eithéel;,ds} C S. ora € S..

Suppose first thafd;,d2} C S.. Clearly, 5, < 34, for i = 1,2. Moreover, sinces,, \ {a, b2} U
{d1,d2} andS. \ {d1,d2} U {a, by} are both feasible fofs, 3y), we have thats, + 5y, = Ba, + B, -
Now, if B4, < B, thenB,, < B4,. Consider a stable sé&t’ which is tight for (3, 5y) and misses the
cliqgue{a,ds, ha}. Then,bs ¢ S’ (since otherwises” \ {b2} U {d2} would violate(3, 5y)) andhy € S’
(since otherwise&s” U{hs} would violate(3, 5y)). It follows thatS’\ {h, } U{a} violates(s3, 5) because
Bry < Ba, < Ba, acontradiction.

Hence,8y, = B, andfy, = Ba,. If Br, < B, then consider a stable s&t which is tight for (3, 5y)
and containgi;. We have thats” containsd; (since otherwises” \ {h;} U {a} would violate (3, 5))
and s0,5" \ {h1,d2} U {a,by} violates (S, 5y), a contradiction. Thusj,, = B.. If By, < B4, then
consider a stable sét which is tight for (3, 8y) and misses the cliquE, U {d, b2 }. Clearly S’ has to
containhg but thenS’ \ {h2} U {d2} would violate(s, 5y). Thus,5,, = Ba,. Finally, if 8,, > B, then
consider a stable sét which is tight for (3, 5y) and misses the cliqufu, d;, hy }. S’ containsh, and
S"\ {h2} U {h;} violates(5, 8y), a contradiction. If3;, < (5, then consider a stable s&t which is
tight for (3, Bp) and misses the cliqughs, ba, d2}. S’ contains eithet or k. So, eitherS’” \ {a} U {h2}
or S\ {h1} U {h2o} violates(3, 3y), a contradiction. Hencg, = (. This implies that all non zero
components ofiz are equal.

Suppose now that there does not efistsuch that{d;,d2} C S.. ThenS, containsa. SincesSy, \
{a,ba} U {d1,ds} is a stable set which is not tight, they, + 34, < (. + [p,. Let S’ be a stable set
which is tight for (3, 5y) and containsly. Theng,, > [, (since otherwises” \ {d2} U {b2} would
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violate (3, 5y)), and s084, < (,. Now, consider a stable s&t’ which is tight for (3, 5y) and misses
{a, h1,ha}. Clearly,d; € S” anddy ¢ S”, s0S” \ {d1} U {a} violates(5, 3), a contradictionli

3.2. Inequalities having full support onVp

Now, we turn our attention to facet defining inequalitiesSGf A B(G) having full support ori/s. Let
(8, Bo) be any facet defining inequality f&fT’ AB(G) whenG = (H, B, e) is a geared graph, such that
(Bp has no zero component, i.&, > 0 for eachv € V. In particular,(3, 5p) is not a clique inequality
or a5-wheel inequality.

Let.(G) denote the set of stable set3@f Since(3, 5y) has full support oV it follows thatSN Vi
is maximal inB for any stable se$ € .7 (G) that is tight for(53, 5y).

Let R denote the set of the incidence vectors of stable setg(i&) that are roots of3, 5p) and let
Mg 5,y be the matrix whose rows are indexed by the nodegpfind whose columns are the vectors
in R. Since(s, 5) is facet defining, the matrix/g 5, has full rank. Consider now the matrM(’ﬁﬁo)
obtained by summing up all rows indexed by the nodes K; into a single row indexed by;, i = 1, 2.
This matrix may be interpreted in terms of graphs as folloles:B* be the graph obtained fro8 by
adding two new nodes tbz, sayk; andks, such thatV (k;) = {b;,d;}, i = 1,2. ThenS € .7 (B*)
if and only if there exists a stable sgte .7 (G) such that:S \ {k1,ks} = SN Vg andK; NS # § if
and only ifk; € S. Itis not difficult to verify that ifmnk(M(’ﬁﬂo)) < Vel = 2221 0(|Ki| — 1) then
rank(Mg 5,)) < Vol

We say that a stable sét € .(B*) is atight configurationof (3, 5y) if and only if there exists a
vectorz® € R suchthatsNVp = S \ {k1,ko} andK; NS # () if and only if k; € S. Accordingly, we
denote byR’ the set of the incidence vectors of the tight configuratidn&30. ).

So, IetM(”ﬁ,ﬁO) be the submatrix oM(’ﬁﬁO) whose rows are indexed by the nodesiif and whose
columns are vectors iR’. These columns have many repetitionsl\jﬁ/ﬁﬂo) since all stable setS <
Z(G) that differ only on nodes out ofz- produce the sam@), 1)-column ofM(”ﬁﬂo). We denote

by ]\Z/(ﬁﬁo) the matrix of dimensionVz-| x |R’| obtained by deleting multiple columns froM(”ﬁ 50"

Clearly, we have that i/ 5 4,y has full rank then/ 5 5, has full rank. In particular, we can state the
following:

Proposition 3.5. LetG' = (H, B, e) be a geared graph. If3, () is facet defining foST'AB(G), then
the matrixM g 3,y has rank10.

We now study in deeper detail the structure of the element®’af order to deduce some relations
among the components 6f; = (B4, B, Bh,  Bhas Be: Bas B> Boa )-

First of all we observe that there exist exacly maximal stable sets ir’(B*); they are depicted
in Fig. 7 of Appendix B and denoted bi;, ¢ = 1,...,24 (coloured nodes represent nodesiyf
i = 1,...,24). The tight configurations ofs3, ;) are thoseR; € .(B*) whose incidence vectors
belong toR’.

Each tight configuratio®; of (3, 5y) gives raise to a linear system of inequaliti&son 5z by simply
considering maximality of?; in V3. For example, let us suppose that is a tight configuration for
(8, Bo), i.e., there exists a tight stabfefor the inequality(3, 5y) such that:hy € S, SN K; = (), and
SN Ky # 0.
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We derive the following systerd; for the components ofz:

Be+ Ba < Bny (6)
Boy + Bhy < By (7)
Bay + By < Buy (8)

Boy + Ba < By 9)
Bay + Be < By - (10)

Inequality (6) follows by observing that if. + 8, > f,, then the stable s&t’ = S\ {h1} U {a,c}
has the property that(S’) > 3(S). Thereforez® is not a tight solution for3, 5y), a contradiction.
Using similar arguments it is possible to derive inequedit{7):-(10).

The systems of inequalities; (i = 2,...,24) associated with the other 23 configurations are shown
in Appendix C. Each systeri; describes a cone iiV5! and its solutions represent the coefficiefits
of an inequality(3, 3 ) that admitsR; as a tight configuration. Without loss of generality, we aaldach
system the normalization conditiopg < 1 for eachu € V. Then we define a vectgre {0, 1}2* such
that

y; = lifand only if R; is a tight configuration of3, ).

Thus, foreach = 1, ..., 24, if y; = 1 then the vectofiz must satisfy the linear systefi}. If A;65 <0
represents the systef), we introduce a big-M representation of the above conditibsz < M;(1—y;),
where); is a vector and)M;); is equal to the number of variables in the- th inequality of systent;
having positive coefficients i(4;);.

Moreover, the vectors iR’ must satisfy the following set of conditions:

i) for eachu € Vp there exists a stable s&;, for somei € {1,...,24}, such thatu € R; and
zft € R’ (Observation 5);

i) for each maximal cliques of B*, there exists a stable sBt, for somei € {1, ..., 24}, such that
R, N K = () andzf € R’ (Observation 4);

iiiy for eachW; = (h; : C;) of B, j = 1,2, there exists a stable s&, for somei € {1,...,24},
such thalR; N Cj| < 2, h; ¢ R;, andz' € R’ (Observation 4);

iv) the rank of the sefz% € R’ : R; satisfies (i) (iii) } is 10 (Proposition 3.5).

Conditions (i)-= (iii) follow from the hypotheses thdt3, 5y) has full support ori’, it is not a clique
inequality and it is not a 5-wheel inequality, respectivaBondition (iv) follows from Proposition 3.5.
These properties can be translated into a set of constiairttse vectoy as follows:

w1, Yu € Vg, (11)

©:Ridu
> owix1, VK clique of B*, (12)

i R;NK=0
Z y; > 1, for Wj = (h] : Cj) of B,j=1,2, (13)

szaéhJandRmCJ |<2

24
>y > 10. (14)
i=1
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Notice that the last inequality is a relaxation of propeid. (

We define the polyhedroR(B) as the convex hull of all the vecto($z, y) satisfying the following
system:

AiBp < M;(1 —y;) i=1,...,24

B <1

y satisfieg11), (12), (13), (14) (15)
y € {0,1}*

The set of the extreme points &f(B) was obtained by running the software package PORTA (for
details on the procedure see Appendix C). From the list ofettieeme points output by PORTA we
selected only those satisfying condition (iv), namely facle extreme point5z, y) of P(B) we checked
whether the set of vectors:™ : y; = 1} has rank 10. We called these extreme poihfeasible The
results of these computations are summarized in the fatipwwo theorems.

Theorem 3.6. Let (6p,y) be aC-feasible extreme point dP(B). If all the components ofiz are
nonzero therdz equals

)

either(1,1,1,1,1,1,1,1) or (3, 3, 1,1,

N~
N[ —
N|—
N—

N~

Theorem 3.7. Let (8%, v') and (8%, y") be twoC-feasible extreme points &f(B). If y = y” then one
of the following possibilities occurs:

a) f=(1,1,1,1,1,1,1,1), g% € {(1,0,0,0,0,1,1,0), (0,1,0,0,1,0,0,1) }

" =1(0,1,0,0,1,0,0,1)
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% =(1,1,1,1,0,1,1,0) " —=(1,1,1,1,0,0,1,1)

With each point 3z, v) of P(B) such thaty € {0, 1}** we associate inequalities of the form

Byrxy: + Bprp < Po, (16)

that we denote aS3y, 85, (), whereV’' = Vi \ V.

In the following we show that facet defining inequalitiesSf AB(G) having full support onB are
associated only with extreme points®fB). To prove this, we first show that any inequality associated
with a point of P(B) that is convex combination of two extreme poift;, y’) and (5%, y”) of P(B)
is dominated by inequalities of type (16) associated \With, v') and(5%,y").

Lemma 3.8. Let (85,y') and (3%, y") be two extreme points 61(B) with ¢/, 3" € {0,1}?*. Then no
inequality (yy+, vB,70) such that

B =ubp+(1—p)bp, 0<p<l,
with (yg, py’ + (1 — p)y”) € P(B) is facet defining foST AB(G).

Proof. First observe that, sinag,y” € {0,1}?4, then, in order to havey’ + (1 — p)y” € {0,1}%4,
y' must be equal tg”. Hence, Theorem 3.7 lists all possible pairsdef and3%;. Suppose now that
(v, 7B, Y0) is a valid inequality forST AB(G) and consider the following two inequalities:

ywray + frp <o+ (1 —p), (17)
ywrxy + Brre < o — p.

We now prove the lemma only for the case a) of Theorem 3.7 irclwhie choose?Y, being equal
to (1,0,0,0,0,1,1,0): for the other choice of}, as for the case b), the proof will follow the same
arguments.

Using Fig. 5 and Fig. 7 it is not difficult to check that any tighiable setS for (yy,v5,70) must
satisfyS NVg € {{a, C}, {dg, hl}, {dl, hg}, {CL, bl}, {dl, C}, {dg, C}, {a, bg}, {dl, da, C}} Indeed, all
other cases lead to stable sets that can be augmented vpiitrésy s (e.g., if S N Ve = {hi, b2}, then
V(S \{h1} U{a}) > ~(9)).

We now show that every tight solution foty/, v5, o) is also tight for both inequalities (17) with the
help of Fig. 5.
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If SNV = {di,da,c}, theny(SNVp) =2+ pu, while 35(SNVE) =3=~+(SNVg)+ (1 —p)
and 8% (SN V) = 2 = (SN Vg) — u (see Fig. 5(b) and Fig. 5(c)), and thdsis tight for both
inequalities (17). IS N Vp € {{d1, ha},{d1,c},{d2, h1},{d2, c}, {a,b1},{a, b2}, {a,c}}, theny(S N
Ve) =1+ p,while 5(SNVe) =2=~(SNVe)+ (1 —p)andpi(SNVe) =1=~(SNVg) — u,
and thusS is tight for both inequalities (17). In a similar way it is @ilsle to asses that {fyy, v5,7)
is valid for STAB(G), then both(yy+, 85,70 + (1 — ) and(yy-, 5%, v — i) are valid forSTAB(G).

Since the inequalities (17) contain all the roots9f,v5, o) and their convex combination yields
(v, vB,70), it follows that(yy+, v, 7o) is not facet defining foST AB(G). 11

Yy + 7T < Yo ywizy + B <o+ (1 — p) wray + Bpre < o — W
() (b) (c)

Figure 5: In (a), (b), and (c) are represented the three &l&®s (vy, v5,7%), (7v7, 8,70 + (1 — p)),
and (v, B%, 0 — 1), respectively.

Finally, we prove that facet defining inequalities 6 A B(G) having full rank onV are associated
only with the extreme points ¢P(B) identified in Theorem 3.6.

Theorem 3.9. Let G = (H, B,v1v2) be a geared graph and 1&t’ = Vy \ {v1,v2} and B’ = B\
{h1,h2}. Then each facet defining inequality, 5y) of ST AB(G) having full support o/ has one
of the following forms:

a) BLxy: + Axp + 2X\(@h, + zhy) < Bo,

b) BLxy: + Azp < Bo.

Proof. With every point(3,y) of P(B) such thaty € {0,1}* it is associated an inequality of the
form (16). If (8, 60) = (Bv+, BB, Bo) is associated with the extreme poirtés 3,1,1, 3, 3,3, 3,y) Or
(1,1,1,1,1,1,1,1,y) of P(B) then itis an inequality of type a) or b).

Lemma 3.8 shows that no facet defining inequalitySGfAB(G) is associated with a point 6?(B)
which is not an extreme point @ (B).

Finally, by Theorem 3.6 the onlg-feasible extreme points ¢ (B) having all components ofp
different from zero have eithesp = (1,1,1,1,1,1,1,1) or B = (3,3,1,1,3.3, 3. 3): thus the
theorem followsll

3.3. The stable set polytope of a geared graph

In this section we are given a geared graptthat is generated by and B alonge and we consider
a facet defining inequalitys, 3y) of ST AB(G) that has nonzero coefficients &f and that is neither
a clique inequality nor a lifted-wheel inequality. We prove thdts, 5y) is either a geared inequality
associated with a facet defining inequality 85 AB(H ) or a g-lifted inequality associated with a facet
defining inequality folST AB(H®).
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From the results in Subsection 3.1, we know that each fadietigg inequality ofST AB(G) that does
not have full support of is of the form described in Theorem 3.4. From the results ips8ation 3.2,
we know that each facet defining inequality$if’ A B(G) with full support onV3 is either of type a) or
of type b) described in Theorem 3.9.

The next theorem shows that the inequalities of type a) apgprgeared inequalities associated with
facet defining inequalities T AB(H).

Theorem 3.10.Let G = (H, B,viv2) be a geared graph and I8t = Vi \ {vi,v2} and B’ = B\
{h1, ho}. If (B, (o) is a facet defining inequality fo$7T'AB(G) of type

BL iy + Nep + 2\, + Thy) < o,
with A > 0. Then(Bw, Bo — 2XA) with 3,, = 5, = A is a facet defining inequality fos7T AB(H ).

Proof. Suppose conversely thetz, 5o — 2)) is not facet defining foST AB(H). Then there exists
an inequality(r, ) that is facet defining foST AB(H) and such that all the roots 0By, 5y — 2A)
are roots of(w, mp). By Proposition 2.15r,, = m,. If m,, = 0 then(w,m) can be lifted to a facet
defining inequality forST AB(G) that contains all the roots @¢f3, 3,) and hasr, = 0 for eachw € Vj,
a contradiction. Ifr,, > 0 then we assume without loss of generality that = A and consider the
following proper geared inequality:

Z mxi + A Z i + 2XN(xp, + xpy) < o+ 2. (18)
i€Vr \{v1,v2} i€Vp\{h1,h2}

Since(r, my) is g-extendable and facet defining 87" AB(H), it follows, by Theorem 2.5, that (18) is
facet defining forST AB(G).

Let2® be aroot of 3, ). Notice that3(SNV3) equals eithe2\ or 3); hence, every tight solution®
of (3, 3y) can be reduced to a tight solutiaff* of (8z, 3y — 2)\) by removing fromS an appropriate
stable sefl” of weight 2\ contained inB: if 3(S N {a,c, h1,ho}) = 2)\ we remove this subset, i.e.,
we defineS” = S\ {a,c, h1, ho}; otherwiseS N Vi € {{di,da,c}, {b1,bs,a}} and we defines’ =
S\ {a,c, by, dy}; finally Sy is built from S” andv; € Sy if and only if " N {b;,d;} # 0, fori = 1,2,
while SH \ {2)1,2}2} =5 \ VB.

By assumption:># is also a tight solution fofr, my). Thusz® is also a root of (18) once we reintro-
duce the previously removed stable $etTherefore,(3, 5y) and (18) are equivalent. AST AB(G) is
full dimensional, the two inequalities only differ by a pig scalar factor. Hencér, 7o) is equivalent
to (B, Bo — 2\), contradicting the assumptiol.

A similar result holds for facet defining inequalitiés, 5,) not having full support oiv. In fact, by
Theorem 3.4, all the nonzero componentsigfhave the same value, sayand so, the above proof can
be repeated almost literally (using Theorem 2.6 and repde®h and2X with 2\ and A, respectively) to
show that

Theorem 3.11. LetG = (H, B,v1v2) be a geared graph and 18t" = Vi \ {v1,v2} and A € {{b1, ¢},
{ba,c}, {di1,a}, {da,a}, {a,c}}. If (B, 5) is a facet defining inequality fo$7T AB(G) of type

By + Arpa < Bo,
with A > 0. Then(Bx, 5o — A) with 3,, = 5, = A is a facet defining inequality fo$7T AB(H ).

The next theorem shows that inequalities of type b) in ThwoBe are proper g-lifted inequalities
associated with facet defining inequalitiesfF AB(H€).
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Theorem 3.12.Let G = (H, B,e) be a geared graph and le/¢ be the graph obtained froril by
subdividing the edge = vy v, with the new node. LetV’ = Vy \ {v1,v2} and B’ = B\ {hq, ho}. If
(8, Bo) is a facet defining inequality 7' AB(G) of type

BL v+ Arp < Po,
with A > 0. Then(Sge, By — A) with 3,, = 5, = B = A is a facet defining inequality fa8T' AB(H*).

Proof. Suppose conversely thédg-, 5o — A) is not facet defining foST AB(H*¢). Then there exists
an inequality(m, 7o) that is facet defining foST AB(H¢) and such that all the roots @B, 5y — )
are roots of(r, my). By Proposition 2.1, = m,, = m. If m,, = 0then(m,mp) can be lifted to a facet
defining inequality forST AB(G) that contains all the roots @f3, 5y) and hasr, = 0 for eachw € Vj,
a contradiction. Ifr,, > 0 then we assume without loss of generality that = A and consider the
following g-lifted inequality:

Z T + A Z x; <mg+ A (29)

i€V \{v1,v2} i€Vp

By Theorem 2.9, the inequality (19) is facet defining f AB(G).

Let z° be a root of(3, 3y). Notice that3(S N B) = 3\ if SN B equals{dy,c,da} or {b1,a,b}. In
the remaining case$(S N B) = 2. It follows that every root:® of (3, 5) can be reduced to a root
5 of (Bre, Bo — A) by removing fromS an appropriate stable sétof weight A contained inB. By
assumptionz®’ is also a tight solution ofr, my). Hencex® is also a root of (19) once we reintroduce
the stable sef” previously removed. Thereforé, 5p) and (19) are equivalent. AST AB(G) is full
dimensional, the two inequalities only differ by a positsealar factor. Hencé;r, 7)) is equivalent to
(Bme, Bo — A), contradicting the assumptiolh.

Finally, observe that the g-lifted inequalities (4) arenswphic to the original facet defining inequality
(m,mo) of STAB(H®).

Summing up, theorems 3.4, 3.9, 3.10,3.11, and 3.12 proveréhe3.1 as explained in the outline of
the proof given at the beginning of Section 3.

4. G-perfect graphs

Up to this point we have considered only graphs that are ddaby performing a single gear composi-
tion on a given graplt. In this section we focus on graphs obtained by repeatedcatiphs of the gear
composition and we generalize to these graphs the resuligheld so far.

We start by extending the definition of geared graphs.

Definition 4.1. Given a graphH which is not a clique, lef'y be the set of the simplicial edges Hf
and let ag-operatiorone € I'; be either a gear composition or an edge subdivision applledge.
A graphG € Gy if and only if

eitherG = H,

orG = (L, B,e), whereL € Gy, B is an extended gear, andc I'; N Ey, (i.e., e is a simplicial
edge of bothl, and H),

orG = L¢,whereL € Ggande e I'yg N E}.

We callGy; the class ofmultiple geared graphgenerated byH.
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Notice that in Definition 4.1 the g-operations, namely geampositions and edge subdivisions, are
performed only along simplicial edges bfthat are also simplicial in the given gragh. This implies
that in order to generate graphsdi we are not allowed to use any of the edges created by an egtlier
operation: in particular, the edgest andtwv,, created by an edge subdivisioneof viv2 € T'g, cannot
be used to perform any g-operation. In fact, these two edge®tbelong td"; even though they have
the property of being super simplicial. It follows that amah inGy is obtained by performing at most
T 77| g-operations, thus implying that, for any fixed grafihthe family Gy contains a finite number of
graphs.

Accordingly with Definition 4.1 we need to define a larger fimif inequalities that contains the
geared and the g-lifted inequalities obtained by repegpetications of the gear compaosition.

Definition 4.2. A facet defining inequalityy,vo) € G if and only if it is (the sequential lifting of)
either a rank inequality,
or a 5-wheel inequality,

or a geared or a g-lifted inequality associated with an inalify in G.

Consider now the polyhedron
GSTAB(G) = {x € RY| z satisfiesG}. (20)

Since geared and g-lifted inequalities are valid§@rAB(G), it follows thatST AB(G) C GST AB(G)
if G is a geared graph. A gragh is said to be&j-perfect if and only ifSTAB(G) = GSTAB(G). The
results of the previous section state that a defining lingstesn forST AB(G) can be easily provided
once defining linear systems 8" AB(H ) andST AB(H¢) are known. So, an immediate consequence
of Theorem 3.1 is the following:

Corollary 4.3. LetG = (H, B, e) be a geared graph generated byand B alonge. If H and H¢ are
G-perfect ther(G is G-perfect.

In the following we denote b7’ the graph obtained frorfl by subdividing all the edges i C I'y.

Theorem 4.4. Let H be a graph,F* = {ey,ea,...,e;} C I'y. If H and HF are G-perfect for any
F C F*,andG € Gg is obtained fromH by a sequence df g-operations along the edges i,
thend is G-perfect.

Proof. Let G; denote the graph obtained frof by performing the firsé g-operations on the edges
ejforj =1,...,i. ThenG = G}, by hypothesis. We prove the theorem by induction on the numbe
k of g-operations. Ik = 1 the theorem is true by Corollary 4.3. ¥ > 1, then, by induction, the
theorem holds for every graph € G obtained by performing at most— 1 g-operations. Suppose by
contradiction thaty}, is not G-perfect. IfGy, is obtained as the gear composition of a gréph ; and
a gearB along a simplicial edge;, namelyG, = (Gx_1, B, ex), then, by Corollary 4.3, at least one
betweenG,_ andGZ‘“_1 is notG-perfect. Since, by inductiorG,_, is G-perfect, it follows thaGZ‘“_1
is not. If Gy, is obtained from a grap;,_; by subdividing the edge;,, we again have tha®;" , is not
G-perfect. Now, by applying the same reasoning={p ,, we obtain thatG}* , is notG-perfect only if
G,{f_’“z’e’“*l} is notG-perfect. Thus, iteratively, if7}, is notG-perfect, therG({)el’GQ"“’e’“} = Hievezex}
is notG-perfect, a contradictiol
An immediate consequence of Theorem 4.4 is the following:
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Corollary 4.5. Let H be a graph and™y be the set of its simplicial edges. Af and H*" are G-perfect
forany F' C I'y, then every graplt: € Gy is G-perfect.

In the following we exhibit a significant class of graphs tisaf-perfect. This class properly contains
the class of line graphs and it is contained in the class af-flae graphs. To prove this result we
need to restrict the application of the g-operations to o edges having the further property that:
N(K1 N Ks) € N(v1) UN(va). We call these edgesiper simplicialedges.

Theorem 4.6. Let H be a line graph that is not a cliqgue. Then the graphs belonginipe subfamily of
Gy obtained by performing g-operations only along super sicigdledges are;-perfect.

Proof. By the results of Chvatal on composition of polyhedra j#¢ may assume without loss of
generality thatd does not contain a clique-cutset. This implies that\ K> and K, \ K; are both
nonempty.

It is well known thatST' AB(H) is described only by nonnegativity and rank inequalitigs tfus, H
is G-perfect. In order to apply Corollary 4.5 to the line grafht suffices to guarantee tha&t!" is a line
graph for any subset’ C I'; of super simplicial edges dff. Lete = v1v9 be a super simplicial edge
of H. The root graphR(H ) of H contains two edgeg,, = {w., s1} and f,, = {we, s2} sharing the
common nodev.. Each node iri; \ K> corresponds to an edge B H) adjacent tof,, and not tof,, .
Symmetrically each node iK; \ K; corresponds to an edge &f H) adjacent tof,, and not tof,, .
Finally, sincee is super simplicial, it follows that every node M(K; N K5) is completely adjacent to
(K2 \ K1)U (K7 \ K2) U{v1,v2}; therefore, each node #i; N K, (if any) is associated with an edge of
R(H) joining the nodes; andss,. Consider now the graph obtained fradH ) by splitting the nodev,
into two nodesw, wo joined by the edgev; w, and such thatv; corresponds to the endnode of the edge
fv, fori = 1,2. This graph is the root graph @ and soH* is a line graph. By iteratively applying
the above argument, we prove ttft" is a line graph for any subsét C I'y of super simplicial edges
of H. Thus,H" is G-perfect [5] and Corollary 4.5 holds for the subfamily®f; obtained from a line
graphH by performing g-operations only along super simplicial egigT herefore the graphs belonging
to this subfamily ar&j-perfect.

In the remaining of this section we explain in a less formay Wwaw GST AB(G) looks like whenG
Gy (obtained by performing the g-operations only along supapkicial edges) and{ is a line graph.
SinceH is a line graph, a single application of the gear compositioA produces geared inequalities
and g-lifted inequalities associated only with rank indities. By definitions 2.4 and 2.7, the proper
geared inequalities (when associated with rank inegesjittontain at least a pair of coefficients equal
to 2 corresponding to the hubs of a gear while the g-lifted anchtireproper geared inequalities (when
associated with rank inequalities) have all coefficientsaédo 1. By applying the gear composition
several times, it is possible to produce g-lifted ineqieditassociated with geared inequalities; so, it
is not true that every g-lifted inequality ié is a rank inequality. Nevertheless, we can say that the
inequalities inG, which are not-wheel inequalities, are only of two types: either they eimpairs of
hubs of a gear with coefficien&sand have all the remaining coefficients equal tor they have all the
coefficients equal ta. We call the former inequalitiesultiple geared rank inequalitiesnd we refer to
the others simply as rank inequalities.

The iterative application of the gear composition yieldsie@omplications; in fact, the same inequal-
ity can be seen both as a geared inequality and as a g-lifeegiaity depending on the order the gear
compositions have been performed. To see an example comtisglgraphGG depicted in Fig. 6 (a) ob-
tained by applying twice the gear composition to the 4-tidje= (v1, ve, wo, w1 ). INdeed, there are two
ways to generatér:

1. Apply the gear composition 0y and a geat3; alongw;ws to generate the grapH; in Fig. 6
(b). Then apply ta; another gear composition with a gefds along the edge; v, to obtain the
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(@ Zueo xy+2 Zue. <5 (b) Z'UEO Ty, <3 (©) Zueo Ty + 2 ng. <4

Figure 6: (a) is both the proper geared inequality assatiaith (b) and the proper g-lifted inequality
associated wuith (c).

graphG. Since the inequality (b) is g-extendable with respeet te, the inequality (a) is a proper
geared inequality associated with the inequality (b) (seBrition 2.4). The inequality (a) is also
facet defining forST AB(G) by Theorem 2.5.

2. Apply the gear composition 1@, and a geaB; alongu; v» to obtain the graplil, = (Cy, Be, v1v3).
Then apply taH, another gear composition with a gday along the edge; w-, to obtain the graph
G. Since the inequality (c) is g-liftable with respectitew-, the inequality (a) is a proper g-lifted
inequality associated with the inequality (c) (see DefimitR.7). The inequality (a) is also facet
defining forST AB(G) by Theorem 2.9.

As a consequence, the inequalitiesdrare (the sequential liftings of) either multiple gearedkran
inequalities or rank inequalities 6rwheel inequalities.

If H is aline graph then the graphsdiy; (obtained by performing the g-operations only along super
simplicial edges) are not quasi-line since they contaimheels, but they are claw-free. To see this,
suppose by contradiction that a graphe Gy contains a clavwe’'. Since the geaB is claw-free and the
only edges that were removed from the original line grapWere super simplicial edges, we have that
must contain at least two nodes, sgyandu,, corresponding to the endnodes of a super simplicial edge
eof H. So,C' = (y : v1,v2, w) Wherey is the center of the claw. Clearly eithgre Vi ory € K1 N K.

In both cases we have that(y) € N(v1) U N(v2), and sow is adjacent ta); or vg, contradicting the
hypothesis thaf’ was a claw.

The problem of finding a linear description fSf’ AB(G) whenG is claw-free is an open problem
which has been studied for decades [8, 15, 19, 13, 22] andtimtwnany conjectures have been stated
and disproved [10, 7]. The case wh@rhas stability numbet has been solved by Cook (see [21]) while
for the casex(G) = 3 there exists a characterization of the roots of the facenhiefiinequalities of
STAB(G) [17]. The recent decomposition theorem for claw-free gsaphChudnovsky and Seymour
[3] offers new perspectives to face the problem of findinghadr description of the stable set polytope
of a claw-free graph. Indeed they identify subclasses af-ftae graphs which might be easier to treat
from the polyhedral point of view. For instance, their depasition theorem restricted to quasi-line [3]
graphs led to the settlement of the Ben Rebea’s conjectiire [6

Chudnovsky and Seymour also pointed out in [2] that, whetirtpavith claw-free graphs with sta-
bility number at least 4, it is convenient to assume that theyot admit al-join (a graphG admits a
1-join if V7 can be partitioned into four sets;, By, As, By such thatd; U A, is a clique,B; and B, are
nonempty, and the only edges betwebnJ B; and A, U Bs are those betweeA; andAs). Indeed, this
assumption is very convenient also from the polyhedraltpafimiew. In fact, if G admits al-join thenG
has a clique-cutset and so, by Theorem 3.2, it does not sugfecet defining inequality 37 AB(G).
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So, when looking for facet defining inequalities for the &adet polytope, it is quite natural to assume
that the graph that supports the inequality does not athjaiins.

Hence, a subclass of claw-free graphs that is likely to imyate is that of. claw-free graphs which are
not quasi-line, havex(G) > 4 and admit nol-join. Following [2], these graphs are built from certain
guasi-line graphs using only two composition operationgtvive believe have a polyhedral counterpart.
This led us to conjecture that:

Conjecture 4.1. The stable set polytope of a claw-free graphvhich is not quasi-line, admits nisjoin
and hasa(G) > 4 is described by (sequential liftings of):

e nonnegativity inequalities
e rank inequalities
e 5-wheel inequalities

e multiple geared rank inequalities.

An earlier version of this conjecture already appeared Jrb{it it was not precisely stated since it
did not contain explicitly the hypothesis that does not admitl-joins. This was pointed out to us
by Pietropaoli and Wagler [18] who observed that it is pdsstb compose with d-join two claw-
free graphs with stability number less than or equal to obtain a claw-free, not quasi-line graph
with stability number4 such that the inequalities listed in the conjecture are nfficeent to describe
STAB(G).

As a final remark notice that the results in this paper suppbe validity of Conjecture 4.1 since the
graphs considered in Theorem 4.6 form a large subclasswffotee, not quasi-line graphs with stability
number at least 4.

We end the paper by observing that Theorem 4.4 also appligphs that are not claw-free. As an
example, consider &wheelW. SinceSTAB(W) andSTAB(WT') (for any subdivision of a subsét
of simplicial edges of the rim) are described by nonneggtisonstraints and inequalities {h we have
that any grapltz € Gy is G-perfect, but it is easy to see that a single application @far composition
to W creates a claw.
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A. Details in the proof of Lemma 3.3

In Lemma 3.3 we prove that there are only 7 possible supgp#girbgraphs oB for a facet defining
inequality (5v\ g, 85, B0) of STAB(G).

The proof is by enumeration of all the possilafe supports and shows that all the supports that are
different from the ones listed in the thesis cannot be aasetiwith a facet defining inequality.

Here we examine in detail the calsgl = 4, whereA is the subset of nodes I that are not included
in the support.

First observe that any supporting graph of a facet definieguality that is neither a clique inequality
nor a 5-wheel inequality must contain a path betwé&gnand K> whose internal nodes are contained
in B, otherwise these cliques are clique-cutset and by TheoréM A is not the supporting graph of a
facet defining inequality. This means th&icannot separat&; from K.

In particular A contains neithefb,,d;} nor {be,d2}, therefore A N {by,d;,bs,ds} is one of the
following sets:

a) {bl,bg},
b) {b1,d2},
C) {dl,dg},
d) {dy,bs},
e) {1},

f) {di},
9) {b2},

h) {d2},

D 0.

It is easy to see that the geBris a highly symmetric graph: if we revergg upside-down we again
obtain a gear with a different order of the nodes, and the same reverseB from left to right. This
means that if the supporting graph of a facet defining ingétyuhbs a nonempty intersection with,
there exists a symmetric facet defining inequality with asgatric supporting graph. Therefore we list
the cases up to symmetry.

Clearly, case c) is symmetric to case a) and case d) is symnetcase b); cases f), g), and h) are
symmetric to case e) (with a upside-down and/or left-ttvrigeversal); finally, case j) implied =
{h1, ha, a, c} which separate&; and K. Thus we are left with only three cases a), b), and e).

Case a) 4 N {b1,dy1,ba,da} = {b1,b2}) produces the following subcases by considering all the pos
sibile subsets at nodes in{hq, ha, a, c}:

8.1) A= {bl,bg,a, C},
8.2) A= {bl,bg,hl,hg},
a3) A= {bl,bg,a, hl},
8.4) A= {bl,bg,a, ]’LQ},
a5) A= {bl,bg,c, hl},
8.6) A= {bl,bg,c, hg}.

Case al) matches case i) in the proof of Lemma 3.3 (céise- 4). In case a2) nodeis isolated, i.e.,
G\ Ais not admissible. In all other casés\ A contains a clique-cutset, i.e., it is not admissilig: in
a3) and a4){ds, a} in a5),{d;,a} in ab).

Case b) A N {b1,d1,be,d2} = {b1,d2}) produces the following subcases by considering all the
possibile subsets @fnodes in{h1, ha, a, c}:

bl) A= {bl,dg, a, C},
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b2) A= {bl,dg,c, hl},
b3) A= {bl,dg,a, hg},
b4) A = {by,ds, h1,ho},
b5) A= {bl,dg,a, hl},
b6) A= {bl,dg,c, hg}.

Cases b1l) and b2) match cases ii) and iii) of the proof of LerBrBdcasg A| = 4), respectively. Case
b3) is symmetric to case b2) (take the subgraph associataccase b2, first reverse it upside-down and
then reverse the resulting graph from left to right and yolliatitain a graph isomorphic to case b3). In
all other cased(, always defines a clique-cutset@f\ A.

Case e) A N {b1,d1,ba,d2} = {b1}) produces the following subcases by considering all theipie
subsets o8 nodes in{ k1, ha, a, c}:

el) A= {bl,a,c, ]’Ll},
e2) A= {bl,a,c, hg},
63) A= {bl,a, hl,hg},
e4) A= {bl,c, hl,hQ}.

Is it easy to check thak’; defines a clique-cutsets set for the cases el), e2), andnelx.aJ {d-} is a
clique-cutset for case e4).
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B. List of possible tight solutions
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Figure 7: The maximal stable sets.gf(B*)
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C. Generation of extreme points ofP(B)

In Subsection 3.2 we stated that each configuraftprproduces a linear system of inequalitiés on
Gr by simply considering maximality conditions. In particylave presented the systefiy together
with the rules used to generate it. Similar arguments alleviouderive the systems of inequaliti€s
(1 =2,...,24) associated with the other 23 tight configurations, whi@hlisted in Fig 7. The complete
list of systems is presented below:

/36 + ﬁa S,@hl ﬁc + ﬁa Sﬁhg
Bby + Bry <Bn Bby + Bry <Bh
214 Bay + Bry <Bn, £, {gi N ﬁégﬁi £33 Bay + Bhy <Bns
Bo, + Ba <Ph, Bby + Ba <Bh,
Ba, +Be <PBn, Bay + Be <PBhy

Ba, + By <Pa
Bby + Bry <Be

Buy + By <Ba + Be g;iz gga
o SPc
L4 {gc + ﬁazghg Ls gdz Ig}u Ega Igc Lo ﬁhl + ,6172 <Ba + Be
" = - ha e T Bhy + Bay <Pa + Bec
6b1+5h2§5a+5c ﬁl 225 +8
Boy + Bdy <Pa + Be h2 —=Fa T Pe
Bay + By <Pa + Be
Bdg Sﬁbg
6111 <Ba gdl+ 5y 2221
/6171 S/@C <a+c Z+ c1 Z 1+
L7 Bry + Bay <Ba + Be Ls {gzlzga o codlatle St
ﬁh2+6blgﬁa+ﬁc 2= ﬁl+ﬁ2 251_"_52
ﬁhl <Ba + Bc ﬁbl H 6h2 Z6h1 H 61)2
b1 da >Phy bo
Be + Bay + Bay <Bh, + Bb,
/Bbg S/Bdg
<
B <Br, gl;1+ b, ggzi B, <Ba,
5(1 Sﬁhl ,Ba 4 ,BC S/@hl +/6d2 BC S/Bhl
£10 § Ba+ Be <O, + B L1145, 4 5 <6 18 L12{ Ba + Be <Bh, + Ba,
Be 4 Bay <Bny + B, ,Bl:ll + 5}112 E,BZI + IBZZ Ba + Bby <Bhy + By
5h2 Sﬁhl + 6172 ﬁdi + 5!)22 gﬁhi + ﬁdz /th Sﬁhl + ﬁdz
Ba + By + Boy <Bn, + Bay
Bb, <Ba, Ba, <Bs,
Be <Bn Ba <Bn
Bt By <bny o g Bt Bry <P
=Fha

Be

ﬁa + ﬁc S/Bhg + Bdl
L3 Bby + Bhy <Bhy + Ba, £14
Bay + Bhy <Bhy + Ba,
Bdy + B, <Bh, + Bay
Ba + Bby + Boy <Bhy + Ba,

. <
Ba + Be <Buy + By Lo il e e
Ba + By, Eﬁhz + Ba, Bby + Bn,y <Bhy + By,
Bha SPhy + Pay Boy + Bay <Bh, + B,
Be + Bay + Bdy <Phy + Bo,

ﬁa Sﬁhg ,Bc S/Bbl ﬁa Sﬁdl

516 ﬁa + /36 Sﬁhg + ﬁbl 517 ﬁdl + ﬁc S/@bl + ﬁa 518 ﬁbl + ﬁa Sﬁdl + ﬁc
Be + Bay <Phy + B, Ba, + Bry<Bp, + Ba Bby + Bry<Bdq;, + Bc
Bh,y <Bhy + By, Bn, <Bp, + Ba Bh, <Ba, + Be

Ba, + Be <Bs,

Ba, <Bv, {/Bhg <Ba Bhy <Bc

Oy <Be By <ha O
Ba <Bud, c <P, 6b2+6a 25d2

L19 § Bby, + Ba <Bay + Be L20 4 By + Be <Ppy + Ba L21 3 2 + By <8 2 43
Boy + Bhy <Bay + Be Bas + By <Py, + Ba B B <A 1 B
6}12 Sﬁdz + ,Bc ,Bh,2 S,@b2 + Ba 1 2= 2 1

Bry + By <Bay + Po,
Ba +Bc  <Ba, + Bb,
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Bdy + Be <Py Ba <B4, + B, Be <Bv, + Bb,
Bhey <Bp, Bbsy <Bec + Ba, Bay <Ba + B,
Bh, <B4, Bhy <Bc + Bq, Bhy <Ba + Bu,
Lo Boy, + Ba <Py L3 Bb, <Be + Ba, Loa Ba, <Ba + By,
Bay + Bvy <Ba; + Bb, Bh, <Bc + Bq, Bh, <Ba + By,
Bay + Bhy <Bday + Loy Ba + By, + Buy<Bc + Ba, + Ba, Be + Bay, + Bay <Ba + Bb, + Bby
Bhy + By <Bay + Pby Bby + Bhy <Bec + Ba, + Bay Ba, + Bhy <Ba + B, + Loy
Ba + B <Ba, + Bb, Bhy + Bos <Bc + Ba, + Ba, Bhy + Ba, <Ba + B, + B,

As explained in Subsection 3.2, we considered the polyme@@3) that is the convex hull of the
feasible solutions of system (15). Theorems 3.6 and 3.@violly exhibiting the set of all the extreme
points of P(B). This was done with the help of the software package PORTAT[lis software receives
as an input a system of linear inequalities and returns ghefithe extreme points of the polyhedron
described by the given system.

In our case the system is:

B <1
y satisfieg11), (12), (13), (14) (1)
0<y <1 P12,

Unfortunately, PORTA could not run on the whole system (813 reasonable amount of time. So, we
subdivided the problem ia'6 subproblems by fixing; to zero or to one foi = 9, ..., 24 as follows.
Lety = {7°,7',...,7"} with £ = 26 — 1 denote the set consisting of the vectgisc {0,1}'6 that
are binary encoding offor j =0, ... k.

We split the vectoy into two partsy = (y1, ..., ys|y) wherey;, i = 1,...,8, are variables angl is
some vector ir)). Then we ran PORTA on th&#¢ polyhedraP’ (B) obtained from system (21) by fixing
7 to each vectog’ for j = 0,...,k. Namely we applied PORTA to the followir@{¢ linear systems
(each system is associated with a different vegidr

AiBp < M;(1—y;) i=1...,8

A;85 <0 Vie{9,...,24} such tha’ryf_8 =1

B <1 =
y satisfieg11), (12), (13), (14)

Let £ be the union of the extreme pointsBf (B) for j = 0,.. ., k output by PORTA. As a final step,
we definect’ as the set of points & such that: i)y; € {0,1} fori = 1,...,8;ii) rank(z® :y; = 1) =
10 (this check was carried out using the free software Octa@p.[Einally, £’ corresponds to the set of
C-feasible of extreme points @(B) as defined in Subsection 3.2. The codes to replicate the wbole
putation can be found at the web page: http://www.iasitérigentile/ClaudioGentileFiles/papers/G-
perfect.html.
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