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Abstract

Lagrangian Relaxation (LR) algorithms are among the most successful
approaches for solving large-scale hydro-thermal Unit Commitment (UC)
problems; this is largely due to the fact that the Single-Unit Commitment
(1UC) problems resulting from the decomposition can be efficiently solved
by Dynamic Programming (DP) techniques. Ramp constraints have his-
torically eluded efficient exact DP approaches; however, this has recently
changed [11]. We show that the newly proposed DP algorithm for ramp-
constrained (1UC) problems, together with a new heuristic phase that
explicitly takes into account ramp limits on the maximum and minimum
available power at each hour, can reliably find good-quality solutions to
even large-scale (UC) instances in short time.

Keywords: Hydro-Thermal Unit Commitment, Ramp Limits, Lagrangian
Relazation.

1 Introduction

The short-term Unit Commitment (UC) problem in hydro-thermal power gen-
eration systems requires to optimally operate a set of hydro—possibly cascade
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connected—and thermal generating units over a given time horizon (typically
one day or one week), in order to satisfy a forecasted energy demand at mini-
mum total cost. The generating units are subject to some technical restrictions,
depending on their type and characteristics; for hydro units typical constraints
concern the discharge rate, spillage limits, reservoir storage and effect on down-
stream units. As for the thermal units, they must usually satisfy minimum
up- and down-time constraints and upper and lower bounds over the produced
power when the unit is operational, besides having complex power production
and start-up costs. Closely representing the actual operating behavior of gen-
erating units within mathematical optimization models is crucial for being able
to effectively coordinate the production of the generating system taking into
account each unit’s characteristics [15], which is of increasing importance in the
ongoing liberalization of the electricity market in many countries [12]. Indeed,
while the (UC) problem in the form treated in this paper originated from the era
of monopolistic producers, it has numerous applications even in the liberalized
regime [12, 6].

Despite having attracted the interest of researchers for over 30 years, (UC)
cannot be considered yet a well-solved problem for all practical sizes and operat-
ing environments; this should not be surprising, since it is a large-scale, mixed-
integer nonlinear optimization problem. Among the most efficient algorithmic
approaches for (UC), Lagrangian Relaxation (LR) methods [1, 4, 5, 8, 14, 16]
surely play a major role. These approaches exploit the spatial structure of
the problem, that is, the fact that removing the constraints that tie the dif-
ferent units together, one obtains a set of disjoint Single-Unit Commitment
(1UC) problems, requiring to optimally operate one single (hydro or thermal)
unit over the time horizon. These problems are typically easily solvable by ei-
ther network-flow techniques—for hydro units—or Dynamic Programming (DP)
techniques—for thermal units.

However, Lagrangian approaches critically depend on the ability of opti-
mally solving the (1UC) problems efficiently, which in turn depends on the
specific details of the operational constraints of the generating units that are
represented in the mathematical model. For thermal units, it is usually assumed
that the dynamic of the generating plant does not pose restrictions (other than
on maximum and minimum power levels) on the amount of power generated at
each timestamp of the time horizon; unfortunately, this is not realistic for large
units or if the timestamps are to be taken small (e.g., 15 minutes), since then
ramp constraints need to be considered. These limit the maximum increase
or decrease of generated power from one timestamp to the next, reflecting the
thermal and mechanical inertia that has to be overtaken in order for the unit
to increase or decrease its output. This assumption has been motivated by
the fact that ramp constraints make the classical DP approaches for thermal
(1UC) problems unusable, since they link together variables representing the
power output at different timestamps, which are then no longer independent
once that commitment (on/off) decision has been taken. Previous attempts to
address this problem have used discretization of the power variables space [3, 2],
piecewise-linear approximation of the cost function [7] or two-stage Lagrangian



techniques [13] where ramp constraints are dualized; however, all these ap-
proaches increase the computational burden as the level of approximation is
decreased, and do not obtain, in general, optimal solutions to the subproblem.
Recently, a DP algorithm for thermal (1UC) with ramping constraints has been
proposed [11] that can solve to optimality problems on a time horizon of n
timestamps in O(n?®) for “simple” convex cost functions, such as the quadratic
ones typically used in operational settings. In this paper, we report on the use
of that algorithm within LR approaches to (UC). We show that the sole use of
ramp-constrained subproblems within existing Lagrangian approaches already
allows to find good-quality solutions for most instances; coupled with a new
heuristic phase that explicitly takes into account ramp limits on the maximum
and minimum available power at each hour, the approach can reliably solve even
“difficult” ramp-constrained (UC) instances in short time.

2 Lagrangian approaches to UC

Consider a set P of thermal units and a set H of hydro cascades, each comprising
one or more basin units, over a discretized time horizon 7 = {1,...,n}. Intro-
ducing status and power production variables of the thermal units, u¢ and p¢,
respectively, with ¢ € P, t € T, the objective function of (UC), representing the
total power production cost to be minimized, has the form ., ¢'(p*,u’) =
Yiep (') + X ,c7ci(p) ); that is, while the power production cost at each
hour is typically approximated via a (convex) quadratic separable form (ne-
glecting for instance the so called valve points, e.g., see [15]) in the pi variables,
the cost function is nonseparable per hour due to time-dependent start-up costs,
whose exact form has no impact on the proposed approach and is not reported
here for the sake of notational simplicity. The constraints of (UC) can be par-
titioned into three sets: local constraints for thermal units, local constraints for
hydro units, and global (system wide) constraints. For the sake of compactness
of the presentation we do not explicitly report all them; the interested reader
is referred to [5, 11] for further details. For system wide constraints, we only
consider demand constraints (see [12, 6] for applications)

pr;—i—z Z ¢ >d for each t € T,

icP heH jeH(h)

where d; is the forecasted load to be satisfied, g/ are the power production
variables for the hydro plant j, and H(h) is the set of hydro plants belonging
to cascade h.

We will denote the feasible set of a given thermal unit i € P as U?, and
the feasible set for a given hydro cascade h € H by H". Then the Lagrangian
Relazation of (UC) is obtained by dualizing each of the global (“coupling”)
constraint via a Lagrangian multiplier \;, obtaining

L) =Dt N+ DN+ D Mdy (1)
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For each A € R*, L(\) gives a lower bound on the optimal value of (UC);
therefore, one is interested in finding the A* which gives the best (greatest)
lower bound, i.e., in the optimal solution of the Lagrangian Dual:

max{ L(A) : AeR"* } . (2)

Since £(-) is a non differentiable function, proper algorithms must be chosen for
solving (2); bundle methods [9], particularly in their disaggregated variant [1],
have been repeatedly reported to be quite efficient in solving (2), much more
so [5] than alternative algorithms such as subgradient methods [2, 16].

However, solving (2) is not, in general, enough to solve (UC); even for
A = X%, the optimal solution to (1) is not guaranteed to—and will not in
general—satisfy the relaxed constraints. Therefore, a number of Lagrangian
heuristics [10] have been devised [1, 2, 5, 8, 16] that attempt to convert the
(sequence of) unfeasible solution(s) provided by (2) in a (sequence of) feasible,
hopefully “good”, one(s). This kind of approach has proven to be capable of
solving non ramp-constrained large-scale (UC) problems within a provable high
degree of accuracy in relatively short time. However, extending the approach
to ramp constraints requires, in principle, two steps:

i) solving (possibly approximately) ramp-constrained (1UC) subproblems;

ii) modifying the heuristics in order to take into account the ramping con-
straints while fixing the commitment u; variables.

Of those, (i) has only been made possible—without approximations or an exces-
sive growth of the computational burden—by the development in [11]. In this
paper we report about point (ii), showing that even the heuristics originally de-
veloped for (UC) without ramp constraints are efficient in the ramp-constrained
case also, only provided that ramp-constrained (1UC)s are solved. Furthermore,
a relatively simple modification of the heuristic allows to tackle even “difficult”
ramp-constrained instances which are not solvable by the standard approach.

3 The combinatorial heuristic

Here we briefly recall the combinatorial heuristic, proposed in [5], which is run at
each step of the iterative method used to solve (2). The heuristic uses as starting
points the current value of the Lagrangian multipliers X, the corresponding
(integer) optimal solution § = [p, @,q] of (1) which violates the system-wide
constraints, and the “convexified” solution § = [p, @, ] produced by the bundle
approach [10], where 1 is not integral but system-wide constraints are (typically,
almost) satisfied. Then, the following three steps are performed:



i) the “convexified” hydro power production q is considered as fixed, and
the total power demand is decreased accordingly;

ii) a greedy heuristic is used to set a commitment status @ of the thermal
units in order to try to guarantee that the remaining power demand can
be satisfied;

iii) the actual power production [P, q] of thermal and hydro units is deter-
mined by solving an Economic Dispatch problem, that is, the quadratic
programming problem resulting from (UC) after having fixed values 1 for
the commitment variables.

This heuristic is motivated by the fact that adjusting the commitment status
of thermal units is relatively simple because the commitment decision at time ¢
directly impacts only commitment decisions in a small set (depending on the
minimum up- and down-time constraints) of time instants centered on ¢, while
changing the power output of some hydro units at a certain time instant po-
tentially impacts the hydro power output of the units in all the time horizon.
However, once the combinatorial decisions have been taken, the remaining con-
tinuous problem (which, however, is not guaranteed to have a feasible solution)
is “easy”. In particular, the greedy heuristic at step (ii) initially sets p = P,
and then checks for each timestamp ¢ whether the residual demand

d=d-3 > @
heH jeH(h)

can be satisfied by the active thermal units in the integral solution @1 by simply
checking that it belongs to the range [, , 4 ], where

—f_§ :—i ~1 —+_§ :—i ~1
Uy = PrinUt Uy = PrazUt
icP iEP

and g}, Py, .Are respectively the minimum and maximum power production

of unit i (if committed). If d, > @}, then the timestamp ¢ is said undercom-
mitted, while if d; < U, it is said overcommitted; in either case, the solution @
has to be modified by turning some units on or off at ¢t. For this purpose, a
priority list of units is formed to decide which ones are more “promising” at any
given time instant; the list is based on a combination of the Lagrangian cost of
turning on the unit and on the “convexified” commitment status 4} of the unit,
interpreted as a “probability” that the unit ¢ should be on at timestamp ¢ in
the optimal solution.

Clearly, the heuristic has been developed for the non-ramp-constrained case:
the definition of @; and @/ does not take into account the ramping constraints,
and therefore may trick the heuristic into concluding that a timestamp is “feasi-
ble” while actually it is not because, due to ramping, the maximum (minimum)
amount of power that can in fact be produced in ¢, given the chosen commit-
ment, is smaller (larger) than @; (4; ). Our computational results show that



this does not happen too often; this is due to the fact that both starting solu-
tions 5 and § are actually ramp-feasible, thus they “embed” enough information
about ramp rates to provide the heuristic enough guidance to produce (good
quality) feasible solutions.

However, the heuristic may be made more “conservative”, hence more ca-
pable of finding solutions in instances where ramp constraints are very tight,
by ezplicitly exploiting information about ramp constraints to determine u;
and @;. This is actually very easy at the first timestamp (¢ = 1), since the
thermal power level of each unit prior the beginning of the time horizon ()
is among the input data of the (UC) instance. Thus, for ¢ = 1 an obvious
improvement on the above formula is given by

ut = Zmin( Das » Doy + AL )] (3)
ieP

where Ai is the maximum ramp-up rate for unit ¢; clearly, an analogous formula
holds for u; , using the maximum ramp-down rate A* . However, this does not
immediately extend to case t > 1 because pi_;—which should be used as pi_,
in (3) to obtain a better @ —is not known, but rather a final result of the
heuristic, only available after that commitment variables have been fixed (using
ay; and a}).

A possible approach here is to arbitrarily fiz some tentative values of the pi
variables, and use them as pi in (3) to compute “more feasible” estimates of the
maximum and minimum available power at each timestamp corresponding to
currently committed units. Because the greedy heuristic (step (ii)) is “forward”,
i.e., fixes the u! variables in order t = 1,2,...,n, we choose to fix the pi values
iteratively in the same order. Among several other possibilities, one can, e.g.,
chose p¢ as the optimal solution of the following (convex) Quadratic Continuous
Knapsack problem

min Z ci(ph) (4)
1€EZ:
max(ﬁ:ninaﬁ;—l - Az—) S pfﬁ S min(ﬁ%ax:ﬁz—l + A:—) 7’ € Z (5)

Z pi =d (6)

1E€EZ:

where Z; is the set of the units currently committed at timestamp ¢ (i.e., such
that 4f = 1). Actually, the formula should be slightly modified to account for
units that have just been switched on at timestamp ¢ (i.e., such that pi_; = 0);
the modification is trivial and we omit it.

Problem (4)—(6) can be easily solved in O(klogk) (k = |2, < n) by
a simple dual-based procedure, which is also capable to detect whether it is
empty—and therefore t is (possibly) either overcommitted or undercommitted;
this information is in fact used instead of @; and @] to decide whether the
current commitment 4} need to be changed. Contrarily to the original proce-
dure, this one may be “too conservative” by declaring a timestamp over- or



undercommitted even if it could actually be possible to satisfy the demand; this
is due to the arbitrary choice of the p among an actually much larger set of
possibilities. Note that, actually, even the original heuristic may turn out to be
too conservative for an analogous reason: the residual demand d; is computed
using the (arbitrarily) fixed power production q, so even if the procedure finds
a “terminally over- or undercommitted” timestamp (one for which no units can
be turned on or off to satisfy the demand), it is not necessarily true that the
commitment 1 is unfeasible. All this calls for a nontrivial combination of the
heuristics, in order to exploit their respective strengths and weaknesses.

4 Computational Experiences

In this section we present some preliminary numerical results aimed at showing
the efficiency and the effectiveness of the proposed approach. Our algorithm
has been coded within a C++ commercial code, PowerSchedQ . We compared
three versions of the code for solving ramp-constrained UC problems:

e a version using the “classical” DP disregarding ramps and using the “stan-
dard” combinatorial heuristic (basically, the code of [6]), only including
ramp constraints in the ED (V1);

e a version using the ramp-constrained DP of [11] but still using the “stan-
dard” combinatorial heuristic (V2);

e a version using the ramp-constrained DP of [11] and using the new com-
binatorial heuristic (V3)

For our tests, we have randomly generated several sets of realistic pure ther-
mal instances with a number of units ranging from 20 to 200. All the instances
have time-invariant start-up costs; this is a “worst case” situation for the ramp-
constrained DP, in that it requires O(n?) regardless to the fact that start-up
costs are time-dependent or time-invariant, while the “classical” DP is O(n?) in
the former case, but only O(n) in the latter.

Results are summarized in Table 1. Each row of the table reports averaged
results of instances of the same size (number of generating units) “p = |P|”, on
a daily problem (n = 24). For each of the three variants, column “time” reports
the required running time (in seconds), column “iter” reports the total number
of iterations of the bundle method used to solve (2), and column “gap” reports
the obtained gap (in percentage); the number in parenthesis next to the gap, if
any, is the percentage of instances in that group for which no feasible solution
at all has been found, so that the reported gap is the average among those for
which at least a solution was found.

It is clear from the table that using the ramp-constrained DP is of paramount
importance for obtaining a successful overall Lagrangian approach; for small
sizes V1 cannot even find one solution for many small instances, and even if it
regularly does as the size increases, the obtained gaps are very large. From this
preliminary results, the new heuristic (V3) appears to improve, albeit sometimes



Vi1 V2 V3

p | time iter gap time iter gap | time iter gap
10 | 3.55 193 11.94(50) 5.23 190 1.77| 6.32 190 1.50
20 | 5.85 212 15.40(33) 6.16 176 1.20 | 899 176 1.08
50 | 13.95 257  6.58(66) 13.73 206 0.48 | 21.69 206 0.42

75| 18.52 291 13.26 24.66 217 0.80 | 37.64 217 0.58
100 | 21.64 256 12.60 55.67 193 0.48 | 29.94 193 0.37
150 | 48.30 378  8.94 52.90 280 4.13 | 77.17 280 4.13
200 | 63.68 372 10.41 134.04 304 0.12 | 96.83 304 0.09

Table 1: Results for pure thermal systems

only slightly, over the “standard” heuristic (V2); the only exception are instances
with p = 150, which appear surprisingly “easy” for V1 and “difficult” for V2 and
V3, which are equivalent. The exact reason of this behavior is as yet unknown,
and further experiments are required to validate these results. Also, note that
running times are somewhat different between V2 and V3 (but with no clear
dominance), mainly because of the different number of EDs solved.

5 Conclusions and directions for future work

In this paper, we have proposed a Lagrangian Relaxation (LR) approach for
solving large-scale hydro-thermal Unit Commitment (UC) problems with ramp
constraints on the thermal generating units. The keys of the effectiveness of the
approach are the efficient algorithm for Single-Unit Commitment (1UC) prob-
lems with ramp constraints recently proposed in [11], that allows to exactly
solve the Lagrangian subproblems without resorting to any form of approxima-
tion, and the sophisticated heuristics for producing an integer ramp-feasible and
demand-feasible solution out of the two unfeasible ones (the integer demand-
unfeasible and the continuous demand-almost-feasible) computed by the LR ap-
proach. Our preliminary computational results show that the proposed heuristic
is capable of efficiently solving with high provable accuracy very large, realis-
tic, ramp-constrained instances in reasonable computational time on low-end
hardware.

References

[1] Bacaud, L., Lemaréchal, C., Renaud, A., and Sagastizabal, C. Bundle
Methods in Stochastic Optimal Power Management: A Disaggregated Ap-
proach Using Preconditioners. Computational Optimization and Applica-
tions, 20:227-244, 2001.

[2] Bard, J.F. Short-term scheduling of thermal-electric generators using la-
grangian relaxation. Operations Research, 36(5):765-766, 1988.



[3]

[4]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Bechert, T.E. and Kwatny, H.G. On the optimal dynamic dispatch of
real power. IEEE Transactions on Power Apparatus and Systems, PAS-
91(1):889-898, 1972.

Belloni, A., Diniz, A., Maceira, M.E., and Sagastizdbal, C. Bundle re-
laxation and primal recovery in unit commitment problems. The brazilian
case. Annals of Operations Research, 120:21-44, 2003.

Borghetti, A., Frangioni, A., Lacalandra, F., and Nucci, C.A. Lagrangian
Heuristics Based on Disaggregated Bundle Methods for Hydrothermal Unit
Commitment. IEEE Transactions on Power Systems, 18:313-323, 2003.

Borghetti, A., Frangioni, A., Lacalandra, F., Nucci, C.A., and Pelacchi,
P. Using of a cost-based Unit Commitment algorithm to assist bidding
strategy decisions. In Borghetti, A., Nucci, C.A., and Paolone, M., edi-
tors, Proceedings IEEE 2003 Power Tech Bologna Conference, 2003. Paper
n. 547.

Fan, W., Guan, X., and Zhai, Q. A new method for unit commitment with
ramping constraints. FElectric Power Systems Research, 62:215-224, 2002.

Feltenmark, S. and Kiwiel, K.C. Dual Applications of Proximal Bundle
Methods, Including Lagrangian Relaxation of NonConvex Problems. SIAM
Journal on Optimization, 10(3):697-721, 2000.

Frangioni, A. Generalized Bundle Methods. SIAM Journal on Optimiza-
tion, 13(1):117-156, 2002.

Frangioni, A. About Lagrangian Methods in Integer Optimization. Annals
of Operations Research, 139:163-193, 2005.

Frangioni, A. and Gentile, C. Solving Nonlinear Single-Unit Commitment
Problems with Ramping Constraints. Operations Research, to appear, 2006.

Hobbs, B.F., Rothkopf, M., ONeill, R.P., and Chao, H.P. The next gener-
ation of unit commitment models. Kluwer Academic Press, Boston, 2001.

Lai, S.-Y. and Baldick, R. Unit Commitment with Ramp Multipliers. IEEE
Transactions on Power Systems, 14(1):58-64, 1999.

Madrigal, M. and Quintana, V.H. An Interior-Point /Cutting-Plane Method
to Solve Unit Commitment Problems. In Proceedings IEEE-PES Power
Industry Computer Applications Conference, pages 179-185, 1999.

Wood, A.J. and Wollemberg, B.F. Power generation operation and control.
John Wiley & Sons, 1996.

Zhuang, F. and Galiana, F.D. Towards a more rigorous and practical
unit commitment by Lagrangian relaxation. IEEE Transactions on Power
Systems, 3:763—-773, 1988.



