A Tight MIP Formulation of the Unit Commitment Problem
with Start-up and Shut-down Constraints

C. Gentile®!, G. Morales-Espaifia®?, A. Ramos®

@ Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, C.N.R., Via dei Taurini 19, 00185 Roma,
Ttaly
bDepartment of Electrical Sustainable Energy, Delft University of Technology, 2628 CD Delft, The
Netherlands
¢ Institute for Research in Technology (IIT) of the School of Engineering (ICAI), Universidad
Pontificia Comillas, Madrid, Spain

Abstract

This paper provides the convex hull description of the single thermal Unit Commit-
ment problem with the following basic operating constraints: 1) generation limits, 2)
start-up and shut-down capabilities, and 3) minimum up and down times. The pro-
posed constraints can be used as the core of any Unit Commitment (UC) formulation to
strengthen the lower bound in enumerative approaches. We provide evidence that dra-
matic improvements in computational time are obtained by solving the self-UC problem
and the network-constrained UC problem for different case studies.

Keywords: Unit Commitment (UC), Mixed-Integer Programming (MIP),
Facet/Convex hull description.

1. Introduction

The Unit Commitment (UC) problem requires to optimally operate a set of power
generation units over a time horizon ranging from a day to a week. Despite the break-
through in Mixed-Integer Programming (MIP) solvers, Unit Commitment (UC) problems
remain restricted in size and scope due to the time requested to solve these problems.
UC problems can be solved significantly faster by improving their MIP formulation by
providing the convex hull description of some set of constraints. Even though other
constraints in the problem might add some fractional vertices, this solution should be
nearer to the optimal solution than the solution of the original model would be [23, 22].
Some efforts in tightening specific set of constraints have been done, such as: the con-
vex hull of the minimum up and down times [9, 10, 19|, cuts to tighten ramping limits
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[18, 2], tighter approximation for quadratic generation costs [6], new formulations for the
time-depending start-up costs [20], and simultaneously tight and compact description of
thermal units operation [15, 14, 13, 12].

The main contribution of this paper is a slight modification of the constraints pre-
sented in Morales-Espana et al. [14] plus the proof that the new model provides the
convex hull description of the solutions satisfying the following set of constraints: 1)
generation limits, 2) start-up and shut-down capabilities, and 3) minimum up and down
times. This result is a basic step towards the definition of a formulation describing the
convex hull of the set of solutions satisfying also general ramp constraints with a linear
number of variables. Recently a formulation with O(T?) variables (where T is the length
of the time horizon) describing the convex hull of the feasible solutions have been obtained
independently in Frangioni and Gentile [4], Knueven et al. [8], but using formulations
based on the Dynamic Programming algorithm in Frangioni and Gentile [3]. Moreover,
the techniques used in this paper could be possibly used also to achieve this more gen-
eral result. These results are in some sense orthogonal to those in Damci et al. [2]. In
this paper, we consider both start-up and shut-down capabilities together but we do not
consider ramp constraints, in Damci et al. [2] two separate polytopes are defined: the
ramp-up polytope considering solutions satisfying ramp-up and start-up limits and the
ramp-down polytope considering solutions satisfying ramp-down and shut-down limits.
In Damci et al. [2] the convex hull descriptions for ramp-up and ramp-down polytopes
are provided for the case of only two periods and some facet defining inequalities are
presented for the same polytopes with arbitrary time horizon.

On the application side tighter formulations are usually solved in less time by MIP
solvers; however, this must be tested by computational experiments. We compare the
new formulation with two other MIP formulations obtaining results significantly faster
for three different case studies. The first one consists in solving a self-UC problem only
taking into account the constraints proposed in this paper. Self-UC optimizes the net
profit of a price-taker generation company, that is a relatively small company that is not
able to influence the market price. If we restrict to the above mentioned constraints, we
have a convex hull description also for the self-UC problem. The second and third case
studies solve the network-constrained UC problem for two IEEE power systems, where
other common constraints are taken into account, such as demand balance, reserves,
ramping and transmission limits.

The remainder of this paper is organized as follows. Section 2 introduces the main
notation used to describe the proposed formulation. Section 3 details the basic operating
constraints of a single generating unit. Section 4 contains the facet inducing and convex
hull proofs for the proposed linear description of the self-UC subproblem. Section 5
provides and discusses results from several case studies, where a comparison with other
three UC formulations is made. Finally, some relevant conclusions are drawn in Section 6.

2. Notation

Here, we introduce the main notation used in this paper. The length of the time
horizon is denoted by T and the time is indexed by t. The set of generating units is
denoted by G and indexed with ¢ running from 1 to G.
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Figure 1: Unit’s operation including its start-up and shut-down capabilities

2.1. Unit’s Technical Parameters

P,/ r, Maximum /minimum power output [MW] for unit g.
SD,/SU, Shut-down/start-up capability [MW] for unit g.

TD,/TU, Minimum down/up time [h] for unit g.

2.2. Decision Variables

Ugt Binary variable for the commitment status of unit g for period ¢, which is
equal to 1 if the unit is online and 0 otherwise.

Vgt Binary variable for the start-up status of unit g, which is equal to 1 if the
unit starts up in period ¢ and 0 otherwise.

Wt Binary variable for the shut-down status of unit g, which is equal to 1 if the
unit shuts down in period ¢ and 0 otherwise.

Dgt Power production above the unit’s minimum output P [MW] for unit g in
period t. The total generation output is equal to ugt P, + pgt.

3. Modeling the Unit’s Operation

This section describes the mathematical formulations of the basic operation of a single
generating unit in Unit Commitment (UC) problems. To simplify the notation, here we
do not report the unit index. In Section 5 we consider two multi-units UC problems
where the single generating unit formulations must be replicated for each unit.

Two main formulations can be found in the literature: 1bin formulation, so called
because it uses only one vector of binary variables u; denoting the status ON/OFF of
the unit for each time period t; 3bin formulation, so called because it uses three vectors
of binary variables by adding to the state variables also the start-up v; and shut-down
wy variables. The basic constraints of the 7bin and 8bin formulations are presented in
AppendixA.

In this paper, the following set of constraints are modeled: generation limits, mini-
mum up and down times, and start-up and shut-down capabilities. As shown in Figure 1,
the start-up capability SU is the maximum power that a generating unit could produce
when it starts up. Similarly, the unit should be producing below its shut-down capability
SD when it shuts down.
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First, we use the following constraints, which were proposed in [19] to describe the
convex hull formulation of the minimum-up and -down time constraints:

Ut — Ut—1 — V¢ — Wy t:2,,T (1)

t

> v <w t=2,...,T (2)
j=t—TU+1

t

S owi<lou t=2,...,T (3)
j=t—TD+1

where inequalities in (2) state that in an interval of TU consecutive time periods a unit

can be started-up at most once; inequalities (3) works similarly for the shut-down case.
Here, we present the formulation that we now denote as TC obtained by adding to

constraints (1)-(3) the following constraints with start-up and shut-down capabilities:

p1 <(P—P)uy — (P—SD)ws (4)
pe <(P—P)uy— (P—SU) v — (P—SD) w41 t=2,...,T-1 (5
pr <(P—P)ur — (P - SU)vr (6)

Constraint (5) states that the maximum power above the minimum output in period
t when the unit is started-up (e.g., u = v = 1 and w1 = 0) is equal to SU — P, when
the unit is shut-down at time ¢t + 1 (e.g., uy = w1 = 1 and v; = 0) is equal to SD — P,
and when the unit is continuously online (e.g, v = 1 and v; = wy41 = 0) is equal to
P — P. Constraints (4) and (6) describe the first and the last period cases.

Be aware that (5) may be infeasible in the event that the unit is online for just one
period. Indeed, when vy = wy11 = 1 the right side of (5) can be negative. Consequently,
(5) is only valid for units with uptime TU > 2. The correct formulation for units with
TU =1 is given by substituting (5) with the following pair of constraints:

pt <(P—P)us — (P—SD) w11 — max (SD—SU,0)v; t=2,....T—1 (7
ptS(F*B)ut—(?—SU)vt—maX(SU—SD,O)le t=2,...,T—1. (8)

Finally, the variable bounds are given by

0<u, <1 t=1,...,T (9)
v, >0, w>0 t=2,...,T (10)
pe>0 t=1,...,T. (11)

In summary, inequalities (4)-(6) together with inequalities (1)-(3) and (9)-(11) de-
scribe the operations for units with T7U > 2, and inequalities (4), (6), (7), (8) together
with inequalities (1)-(3) and (9)-(11) for units with TU = 1. The main contribution of
this paper is that the polytopes thus described always have integral vertices with respect
to the binary variables.

In Morales-Espana et al. [14] it was presented a slightly different formulation, where
instead of constraints (7)-(8) the following ones were used:

p<(P-P)us— (P-SD)wy1 t=2,....,T—1 (12)
pe<(P—-P)u— (P-SU)v, t=2,...,T—1. (13)
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Note that if SU=SD then (7)-(8) and (12)-(13) would be equivalent. We denote the old
formulation [14] with the latter constraints as TCO.

4. Strength of the proposed inequalities

In this section, we prove that inequalities (1)-(11) describe the convex hull of the
feasible solutions. Note that constraints (1) uniquely define the value of the variables w
as a function of v and v. Unless differently specified, in the following, we will consider only
the space defined by the variables u, v, and p. Moreover, we suppose that all constraints
(3)-(5), (7)-(8), and (10) are rewritten by substituting the w variables accordingly.

Definition 1. Let Cr (TU, TD, P, P, SU,S5D) be the convex hull of the feasible integer
solution for the problem. That is, for TU > 2, we write

Cr (TU >2,TD,P,P,SU,SD) =
conv{(u,v,p) € {0,1}*T=1 x RL| (u,v, p) satisfy (1)-(6) and (9)-(11)};

for TU = 1, we write

Cr (TU =1,TD,P,P,SU,SD) =
conv { (u,v,p) € {0,171 x RY| (u,v,p) satisfy (1)-(4), (6)-(8), and (9)-(11)}.

For short we write Cp for Crp (TU, TD,P,P,SU, SD), Cr(TU > 2) for Cp(TU >
2, 7D, P, P,SU,SD), and Cr(TU = 1) for Cp(TU = 1,TD, P, P, SU, SD).

Proposition 2. dim(Cr) = 3T — 1 and thus Cr is full-dimensional.

Proposition 3. The inequalities (4), (6) and (11) describe facets of the polytope Cr.
Moreover, inequalities (5) describe facets of the polytope Cr (TU > 2), and inequalities
(7) and (8) describe facets of the polytope Cr (TU = 1).

The proofs of propositions 2 and 3 can be performed by exhibiting the right number
of affinely independent points (details of the proofs can be requested to the authors).

For the convex hull proof, we need a preliminary lemma that is very easy to prove
from well-known results (we report a proof suggested by a referee for completeness):

Lemma 4. Suppose that P = {x € R"|Ax < b} is an integer polyhedron. Suppose that
y € RX are new variables and that Q = {(z,y) : d*z <y, < Fx bk =1,..., K}, with at
most one lower bound d*z and one upper bound c*x for each variable yi,. If d*z < cFz
for each © € P, then PN Q has extreme points with x integer.

Proof. Consider the linear program LP(P,Q): min{gx + Zszl hryr = (z,y) € PNQ}.
We prove that for each objective function this LP has an integer solution with respect
to z. Set yr = dFx if hy, > 0 and y, = c*x otherwise. Solve the resulting LP in the

a-space. Then z is integer and the corresponding (z, y) is optimal for the linear program
LP(P,Q). O

Theorem 5. Let Dy (TU, TD,P,P,SU, SD) be a polyhedron defined as follows:



e forTU > 2

TU >2,TD,P,P,SU,SD) =
€ [0,11*7~1 x RT| (u,v,p) satisfy (1)-(6) and (9)-(11) };

=R
=
o

o forTU =1

Dr §TU1 TD,P,P,SU,SD) =
(u,0.9) € (0.7 X R (u,v,p) satisfy (1)-(4), (6)-(8). and (9)-(11) }.

Then Cr(TU,TD,P,P,SU,SD) = Dr(TU,TD, P, P,SU,SD).

Proof. As for Cr, we use short notations D7, Dy (TU > 2), and D (TU = 1). The
proof for TU > 2 easily follows from Lemma 4. Indeed, D (TU > 2) is described by
the inequalities (1)-(3) and (9)-(10), that describe an integral polyhedron in u and v as
proved in [19], together with inequalities (4)-(6) and (11) satisfying the hypothesis of
Lemma 4.

For TU = 1 let us suppose that SU > SD. We follow Approach 8 in [23] (see
Section 9.2.3, Problem 2, Approach 8). We first introduce an extended formulation
of the problem, then we prove that the extended formulation is integral, and finally
we prove that the projection of the new polyhedron correspond to Dr(TU = 1). We
divide the proof into a series of claims. We define the following new binary variables for
t=2,....,T—1: zy = 1if and only if v, = 1 and w¢; = 1, if and only if v; = 1 and
wgr1 = 0, if and only if v; = 0 and w41 = 1, if and only if u; = 1, v, = 0, and w41 = 0.
Moreover, o = 1 if and only if up =1 and vy = 0.

Claim 1. The polyhedron P defined by the points (u,v,w, 4,7, w, z) satisfying the
following inequalities is integral:

vw<u t=2,...,T (14)

> wi<l-wu te[TD+1,T] (15)
i=t—TD+1

Up — Up_1 = Vg — Wy €[2,T] (16)

W1 = W1 + 22 € [2,T —1] (17)

v = +a te[2,T—1] (18)

wp =Ty + Bpr +xe+ a0 t€ 2T — 1] (19)

ur = v + Ur (20)

0<u <1 tellT] (21)

Ve we, iy >0t € [2,T] (22)

Gea >0 te[2,T—1] (23)

W >0 tel[3,T] (24)

Proof of Claim 1. The proof is carried on by showing that the coefficient matrix
associated with the above linear system is totally unimodular.
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We exploit this well-known property (proved by Ghouila-Houri, see [17], Chapter
IT1.1, Theorem 2.7): let A be a {0,1, —1}-matrix, if each subset J of columns of A can
be partitioned into J; and Js such that

Z aij — Z aij S 1 (25)

Jjeh1 J€J2

for each row 7, then A is totally unimodular. This part of the proof has been inspired by
the proof of Malkin [10] for the polyhedron defined by (1)-(3).

First we assign the variables w; € J alternatively to J; and to Jo in lexicographic
order. Then the variables u; € J are assigned either to Jy if wy € Js, where k =
max{i|l <i < t,w; € J}, or to Jo if wy € J1, or to the same set with respect to u;—; if
{i]l <i<t,w; € J} is empty. Thus condition (25) is satisfied for constraints (15).

Variables vy € J are assigned either to Jy if uy € Jy, or to Jo if uy € Ja, or to the
opposite set with respect to uz—1 if us ¢ J, or to the same set as wy if both w1, us ¢ J.
This ensures that condition (25) is satisfied for constraints (14) and (16).

If vy, w1 € J, then assign ¢, € J to the same subset as vy, x¢ € J to the opposite set
with respect to v;, and w; € J to the same subset as w;. These assignments guarantee
that condition (25) is satisfied for constraints (17) and (18) both in the case that v; and
w41 are in the same set or in different sets. Moreover, the assignment for @; can be
chosen to satisfy condition (25) for constraints (19). If one between v; and w11 does
not belong to J then proceed as follows: suppose w.l.o.g. that v; ¢ J , then assign wyy1,
W¢t1, and Ty to the same set and z; to the other set, then @; can be chosen to satisfy
condition (25) for constraints (19). Similar choices can be done if some of the variables
Ut, Wet1, Tt, Ur do not belong to J and the claim follows. End of Claim 1.

Then we define the polyhedron Q by adding to (14)-(24)

pl < (SU —-P)oy te2,T—1] (26)

pf < (SD —P)xy te[2,T—1] (27)

p¥ < (SD — P)iyy te2,T—1] (28)

pt < (P—-P)u; te2,T) (29)

pr < (SU = Por (30)

p1 < (P — P)uy — (P — SD)ws (31)

where p?, p®, p", p* and p; are new non-negative variables.

Claim 2. The polyhedron Q is integral with respect to variables u, v, w, =, 4, U, W.
End of Claim 2.

Claim 2 follows by applying Lemma 4 to the polyhedron P of Claim 1. Then we
define the polyhedron @ by adding to (14)-(24),(26)-(31)

pe=pi +p; +p +pf te2,...,T—1] (32)
pr = pr + 07 (33)

where p; for t € [2...T] are non-negative variables.
Claim 3. The polyhedron @ is integral with respect to variables u, v, w, x, @, U, 0.
End of Claim 3.
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Claim 3 follows from Claim 2 and by the straightforward extension of Lemma 4, where
the role of P is played by the integral polyhedron Q. Finally we prove that

Claim 4. The projection of @ onto the space of variables u, v, p is equivalent to D.

Proof of Claim 4. We start by eliminating the variables py, p¥, py’, and py* by simply
substituting constraints (32)-(33) with the following:

pi <(SU — P)oy + (SD — P)zy 4+ (SD — P)igyr + (P —P)ay  t€ 2,7 —1] (34)
pr <(SU — P)vr + (P — P)ar, (35)

which are obtained by using constraints (26)-(30).

Now, we replace @ from (20) in (35) to obtain pr < (ffﬂ) ur — (F — SU) v
that coincides with (6). Then we eliminate variables in (34) according to the following
order: @; by using the equation (19); w;y; by using the equation (17); ¥; by using the
equation (18). It is not difficult to see that for ¢ € [2,T — 1] we obtain the following
constraints:

pi <(P — P)uy — (P — SU)vy — (P — SD)ws11 + (P — SU)xy (36)
x¢ >0 (37)
Ty >4+ W1 — Uy (38)
z: <vg (39)
Tt <wiy.. (40)

Now we can apply Fourier-Motzkin elimination to variables x; by considering the
following pairs of constraints: (i) from constraints (39) and (36) we obtain we obtain
vy > 0; and (38) we obtain (iv) from constraints (40) and (36) we obtain we obtain
wiy1 > 0; and (38) we obtain u; > v;. Finally, the claim follows by observing that (31)
coincides with (4). End of Claim 4.

From Claim 4 it follows that Dy is integral with respect to the variables u and v.
The proof for SD > SU can be performed in a symmetric way. O

5. Numerical Results

To illustrate the computational performances of the formulation presented in this
paper, three sets of case studies are carried out: one for a self-UC problem and two
others for a network-constrained UC problem. This section compares the computational
performance of the proposed TC formulation with two other formulations, [1] and [18],
which have been recognized as computationally efficient in the literature [16, 14, 21].

The following three formulations are then implemented:

e TC: This is the complete formulation presented in this paper. For the network-
constrained UC, we include other common constraints such as demand-balance,
reserves, ramping and transmission limits. The complete network-constrained UC
is presented in AppendixB.

e 1bin: This formulation is presented in [1] and requires a single set of binary variables
(per unit and per period), i.e., the start-up and shut-down decisions are expressed
as a function of the commitment decision variables.
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Table 1: Generator Data

Technical Information Cost Coefficients’

Gen P P TU/TD SU SD po*  Steox |CNE OV cAY
MW] MW] Bl [MW] [MW] [MW/h] [b] |[$/b] [$/MWh] 5]

1 455 150 8 252 303 150 8 1000 16.19 9000
2 455 150 8 252 303 150 8 970 17.26 10000
3 130 20 5 57 75 20 5 700 16.60 1100
4 130 20 5 57 75 20 5 680 16.50 1120
5 162 25 6 71 94 25 6 450 19.70 1800
6 80 20 3 40 50 20 3 370 22.26 340
7 85 25 3 45 55 25 3 480 27.74 520
8 55 10 1 25 33 10 1 660 25.92 60
9 55 10 1 25 33 10 1 665 27.74 60
10 55 10 1 25 33 10 1 670 27.79 60

* po is the unit’s initial production prior to the first period of the time span.
*Steg is the number of hours that the unit has been online prior to the first period of the time span.

feNE ¢tV and C°Y stand for non-load, linear-variable and startup costs, respectively.

Table 2: Energy Price ($/MWh)
t=1...12— |13.0 7.2 46 33 39 59 9.8 15.0 22.1 31.3 33.2 24.8
t=13...24 —|19.5 16.3 14.3 13.7 15.0 17.6 20.2 29.3 49.5 53.4 30.0 20.2

e 3bin: The convex hull of the minimum up/down time constraints proposed in [19]
(see (1)-(3) and (9)-(10)) are implemented with the three-binary formulation. This
formulation is presented in [18]

Notice that different set of constraints are used for the self-UC and for the network-
constrained UC problems. For the self-UC problems, 1bin and 3bin are modeled only
considering 1) generation limits, 2) minimum up and down times, and 4) start-up and
shut-down capabilities. For the network-constrained UC problems, 1bin and 3bin are
modeled taking into account the full set of constraints presented in [1] and its $bin
equivalent [18], respectively; in addition, these formulations are further extended by
introducing downwards reserve (which is modeled in the same fashion as the upwards
reserve, see AppendixB), transmission limits (see (B.5) in AppendixB), and wind gener-
ation (which is taken into account in the demand-balance (B.2) and transmission-limit
constraints (B.5)).

All tests were carried out using CPLEX 12.5 on an Intel-i7 3.4-GHz personal computer
with 8 GB of RAM memory. The problems are solved until they hit the time limit of 10000
seconds or until they reach optimality (more precisely to 107%% of relative optimality

gap).

5.1. Self-UC

We illustrate the computational performance of the formulation proposed in this paper
by solving the self-UC problem for a price-taker producer for different time spans. The
goal of a price-taker producer is to maximize his profit (which is the difference between
the revenue and the total operating cost [15]) during the planning horizon:
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Table 3: Self-UC: Computational Performance Comparison
Case | Optimum IntGap (%) LP time (s) MIP time (s)* B&C Nodes
(days)| (M$) TC TCO 3bin 1bin | TC TCO 38bin 1bin | TC TCO  3bin 1bin | TC TCO 3bin  1bin
64 | 7.259361 | 0 0.09 0.88 2.57 [0.57 0.47 0.80 0.95 |0.57 1.92 12.01 13.79 0 0 496 487
128 | 14.517096 | 0 0.09 0.87 2.57|1.17 1.20 2.06 2.60 |1.17 4.81 4554 (0.033)| O 0 528 603915
256 | 29.032567 | 0 0.09 0.87 2.57|3.16 3.29 5.38 6.88 [3.16 7.75 199.18 (0.052) | 0 0 533 229035
512 | 58.063509 | 0 0.09 0.87 2.57 |8.08 8.39 14.29 18.83 [8.08 17.29 734.03 (0.054) | 0 0 488 136128

* If the time limit is reached then the final % of optimality tolerance is shown between parentheses

T G
maxz Z [ﬂ't [ugtﬂg +pgt} - (CgLugt + C;V [ugtﬂg +pgt] + CgSngt + CgSDwgt)]
t=1 g=1

(41)
where subscript g stands for generating units and G is the number of units; m; refers to
the energy prices; CY, CIV, CYand C§P are the non-load, linear-variable, start-up and
shut-down costs of unit g, respectively (for this case study C5P = 0 for all units). The
objective function (41) is optimized over the solution set described by generation limits,
start-up and shut-down capabilities, and minimum up and down times constraints. The
self-UC also arises when solving UC with decomposition methods such as Lagrangian
Relaxation [5, 3] (where the prices are the Lagrangian multipliers).

The 10-unit system data is presented in Table 1 and the energy prices are shown in
Table 2. The power system data are based on information presented in [1, 14].

Here, apart from T'C, 1bin and 3bin, the tight and compact formulation presented in
[14], labeled as T'C0, is also implemented. It is important to note that the formulation
TC0 uses constraints (12) and (13) instead of (7) and (8) for units with TU = 1. Apart
from those constraints, TC and T'CO are identical. Note however that (7) and (8) are
needed to describe the convex hull, as proved in Section 4.

Table 3 shows the computational performances for four cases with different time spans.
All formulations achieve the same MIP optimum since all of them model the same MIP
problem. However, they present different LP optimums, the relative distance between
their MIP and LP optimums is measured with the Integrality Gap [22, 14]. Note that the
MIP optimums of T'C' were achieved by just solving the LP over (1)-(11), IntGap=0,
hence solving the problems in LP time. On the other hand, as usual, the branch-and-cut
method was needed to solve the MIP for TC0, 3bin and 1bin. Table 3 also shows the MIP
time and B&C nodes explored that were required by the different formulations to reach
optimality. It is interesting to note that although T'C0 reached optimality exploring zero
B&C nodes, TCO needed to make use of the solver’s cutting planes strategy because the
relaxed LP solution did not achieve the integer one, IntGap#0 (the solver used 227 and
1224 cuts for the smallest and largest case, respectively). This tightening process took
more time than the time required to solve the initial LP relaxation, that is why the MIP
time for TC0 is more than twice its LP relaxation time.

Table 4 shows the dimensions of all the formulations for four selected instances. Note
that TC and TCO are more compact, in terms of quantity of constraints and nonzero
elements, than 3bin and 1bin. The formulation 7bin presents a third of binary variables
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Table 4: Self-UC: Problem Size Comparison

Case # constraints # nonzero elements # real var # binary var

(days)| TC*  3bin 1bin TC TCO 3bin 1bin TCt  1bin TCt 1bin

64 | 65997 107459 138225 | 338994 334389 417313 469719 | 15360 46080 | 46080 15360
128 | 132045 214979 276465 | 678450 669237 835105 939735 | 30720 92160 | 92160 30720
256 | 264141 430019 552945 | 1357362 1338933 1670689 1879767 | 61440 184320 | 184320 61440
512 | 528333 860099 1105905 | 2715186 2678325 3341857 3759831 | 12288 368640 | 368640 122880

* TC is equal to TCO for these cases
tTC, TCO and 3bin are equal for these cases

in comparison with the other formulations, but 3 times more continuous variables. This
is because the work in [1] reformulated the units’ operation model to avoid the start-up
and shut-down binary variables, claiming that this would reduce the node enumeration
in the branch-and-bound process. Note however that this reformulation considerably
damaged the strength of 1bin, hence it presented the worst computational performance,
similar results are obtained in [18, 14]. The formulation Ibin presents more continu-
ous variables than the other formulations because it requires the introduction of new
continuous variables to model the start-up and shut-down costs of the generating units.

In conclusion, T'C presents a dramatic improvement in computation in comparison
with 8bin and 1bin due to its tightness (speedups above 90x and 8500x, respectively);
and it also presents a lower LP burden due to its compactness, see Table 4. Compared
with T'C0, the formulation TC is tighter; consequently, TC' requires less time to solve
the MIP problem (speedup above 4.1x).

5.2. Network-Constrained UC

Here, two IEEE systems are used for different time spans, from 24 to 96 hours, the
TEEE 118-bus system and the IEEE 73-bus reliability test system. All data for these two
systems can be found in [11] and [24, 7], respectively. The IEEE-118 bus system has 118
buses; 186 transmission lines; 54 thermal units; 91 loads, with average and maximum
levels of 3991 MW and 5592 MW, respectively; and three wind generation units, with
aggregated average and maximum production of 867 MW and 1333 MW, respectively.
For this system, the upwards and downwards reserve requirement are set as the 5% of
the total expected wind production for each hour.

The IEEE 73-bus reliability test system has 73 buses; 120 transmission lines; 99
thermal units; 51 loads, with average and maximum levels of 7094 MW and 8547 MW,
respectively; and no wind generation. For this system, the upwards and downwards
reserve requirement are set as the 1% of the total expected demand for each hour.

Bear in mind that the network-constrained UC problem is considerably more complex
than the self-UC problem, described in Subsection 5.1, due to the new complicating
constraints that are now included (into all the formulations), such as demand-balance,
reserves, ramping and transmission limits (see AppendixB).

Table 5 shows the problem size for all formulations for the two IEEE systems. This
table shows the problem size for a time span of 24 hours, larger problem sizes are pro-
portional (approximately) to the quantity of hours. On the other hand, there is no direct
size relation between the two systems because they have different proportions in thermal
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Table 5: IEEE 118-bus & 73-bus Systems: Problem Size Comparison of the UC Formulations for a Time
Span of 24 hours

## constraints # nonzero elements # real var # binary var

System TC 3bin  1bin TC 3bin 1bin TC 3bin  1bin | TC*  1bin
IEEE 118-bus | 15903 37803 38141 | 536815 473791 472969 | 8424 9720 11016 | 3888 1296
IEEE 73-bus | 23425 82846 83524 | 581704 786268 786310 | 11862 12384 14760 | 7110 2358

* TC is equal to 3bin for these cases

Table 6: TEEE 118-bus System Results: Computational Performance of The UC Formulations for Dif-
ferent Time Spans

Optimum IntGap (%) LP time (s) MIP time (s)* B&C Nodes
hours MS$ TC 3bin 1bin | TC  3bin 1bin TC 3bin 1bin TC 3bin 1bin
24 0.826814 |0.53 1.13 1.75 |0.33 2.48 2.9 4.13 585.22  (0.094) 77 93285 889610
48 1.649732 [0.49 0.70 1.37 |[1.17 17.88 19.19 26.15  (0.095) (0.269) | 546 260545 40115
72 2472651 |0.46 0.56 1.24 |2.57 40.59 57.21 474.85 (0.136) (0.336) | 2411 50593 20657
96 3.295570 | 0.44 0.48 1.18 [4.29 93.85 102.79 |1193.92 (0.180) (0.317) | 4295 40601 14605

* If the time limit (10000 s) is reached then the final % of optimality tolerance is shown between parentheses

and wind units as well as transmission lines. For example, the IEEE 73-bus system has
45 (83%) more units than the IEEE 118-bus system, but 66 (35%) less transmission
lines. Similarly to the self-UC case study (Subsection 5.1), TC is more compact than
the others, in terms of quantity of constraints. For the IEEE 118-bus system, having a
larger number of transmission lines, T'C’ presents more nonzeros than the others because
TC uses P ugt + pgt, which appear in each of the line constraints, to represent the total
unit’s production, unlike other formulations that use one variable to represent the total
production. Beware, however, that a new variable could be introduced representing the
total unit’s production, thus decreasing the number of nonzeros but this will increase the
number of variables and constraints. Despite this increase in nonzeros, the LP complex-
ity of TC for the IEEE 118-bus system is significantly lower than that of both %bin and
1bin, which took in average 15.1 and 17.9 times longer than T'C' to solve the LP problem,
respectively (see Table 6). Similarly, for the IEEE 73-bus system, TC could solve the LP
problem in average 15.6 and 14.2 times faster than 3bin and 1bin, respectively (see Ta-
ble 7). In short, TC presents a lower LP burden than the others due to its compactness,
as also concluded in the self-UC case in Subsection 5.1.

Table 6 and Table 7 show the computational performance of the network-constrained
UC problem for both IEEE test systems and for all formulations and different time spans
(up to 96 hours). For these experiments, T'C is the tightest formulation since its IntGap
is always lower than that of 7bin and 3bin. On the other hand, although 1bin has a
third of binary variables in comparison with the others, it has the largest quantity of
constraints and it is the least tight (see IntGap Table 6); consequently, presenting the
worst computational performance, as also discussed in Subsection 5.1.

Interestingly, for the IEEE 118-bus system, all three formulations achieved the same
optimum integer solution (all of them model the same integer problem), although T'C' was
the only formulation that could prove optimality within the time limit. $bin could prove
optimality for only one case, the smallest case; and Ibin could not prove optimality for
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Table 7: IEEE 73-bus System Results: Computational Performance of The UC Formulations for Different
Time Spans

Optimum IntGap (%) LP time (s) MIP time (s)* B&C Nodes
hours M$ TC 3bin 1bin | TC 3bin 1bin TC 3bin 1bin TC 3bin 1bin
24 1.695434 | 0,02 0.23 1.18 [ 0.36 1.42 1.31 22.60 (0.107) (0.134) | 24510 1009500 897063
48 3.327422 | 0,02 0.24 1.13 |0.80 15.3 9.66 | 123.17 (0.151) (0.180) | 22378 245587 264653
72 4.959410 | 0,02 0.24 1.11 | 1.33 22.14 21.87|(0.010) (0.187) (0.239) | 1245643 100358 27756
96 6.591398 | 0,02 0.24 1.10 | 1.97 45.07 48.66 | (0.012) (0.175) (0.374) | 655694 12768 2363

* If the time limit (10000 s) is reached then the final % of optimality gap is shown between parentheses

Table 8: IEEE 118-bus and 73-bus System Results: Computational Performance of TC for 0.05% of
Optimality Gap and Different Time Spans

MIP time (s) Optimality Gap (%) B&C Nodes
hours 118-bus RTS-96 | 118-bus RTS-96 | 118-bus RTS-96
24 3.45 3.54 0.030 0.045 0 5
48 9.25 7.94 0.036 0.032 0 0
72 68.2 13.09 0.034 0.049 625 0
96 167.44 45.76 0.041 0.049 560 490

any of the cases. Notice that due to the tightness, TC' could prove optimality exploring
considerably fewer B&C nodes less than (an order of magnitude) 3bin and 1bin, which
could not even converge to optimality.

For the IEEE 118-bus system, T'C always found better integer solutions (reported in
Table 6) than the other formulations. 3bin and 1bin could not prove optimality for any
of the cases. T'C' could prove optimality for the two smallest cases, where TC' explored
fewer nodes than the others, which could not even reach optimality. For the two largest
cases, none of the formulations could reach optimality, but TC' was an order of magnitude
nearer to optimality. Also notice that for these two large cases, T'C' could explore more
nodes within the time limit due to its compactness, which lower the LP complexity solved
during the iterations.

Table 6 and Table 7 show the computational performance of the UC formulations
trying to reach optimality (more precisely to 107%% of relative optimality gap) within a
10000 seconds time limit. Notice that 1bin could only reach optimality gaps above 0.13%
for 7 out of 8 cases, and in the best case the optimality gap was above 0.09%. Similarly,
3bin presented optimality gaps above 0.09% for 7 of the cases. In short, only 3bin could
reach an optimality gap below 0.09% in just one case. To observe the performance of TC
around these orders of magnitude of optimality gaps, Table 8 shows the performance of
TC for a requiered optimality gap of 0.05% for the two IEEE test systems. Notice that
4 cases could even be solved before branching (0 B&C nodes), 5 cases were solved in less
than 15 seconds, and all the cases could be solved in less than 170 seconds, unlike 3bin
and 1bin which could not reach that low optimality gaps within 10000 seconds. Due to
the simultaneous tightness and compactness, TC could reach 0.05% optimality tolerance
for four cases (one for the IEEE 118-bus system and three for the IEEE 73-bus system)
in less time than that required by 1bin and 3bin to solve their LP problem.

Furthermore, for the IEEE 73-bus system, TC presented better (higher) lower bounds
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Table 9: TEEE 73-bus System: Initial vs. Final Lower Bounds of UC formulations for Different Time
Spans

LP Relaxations (MS$) Final best lower bound (M$)

hours TC 3bin 1bin TC 3bin 1bin
24 1.695161 1.691586 1.675454 | 1.695434 1.693621 1.693167
48 3.326716 3.319535 3.289971 | 3.327422 3.322417 3.32144
72 4.958264 4.947482 4.904489 | 4.958887 4.951332 4.947532
96 6.589812 6.575429 6.519006 | 6.590607 6.57985 6.569458

in the initial LP relaxation than the final lower bounds found by 8bin and 1bin within
the time limit, as shown in Table 9 (this was not the case for the IEEE 118-bus system).
Thanks to the convex hull provided in this paper, for the IEEE 73-test system, T'C' could
provide initial lower bounds, in less than 2 seconds (see LP time in Table 7), which were
better than the final lower bounds obtained by 8bin and 1bin within 10000 seconds.

6. Conclusion

This paper presented the convex hull description of the single thermal Unit Com-
mitment problem with the following basic constraints: generation limits, start-up and
shut-down capabilities, and minimum up and down times. The model does not include
some crucial constraints, such as ramping, but the proposed constraints can be used as
the core of any UC formulation and they can help to tighten the final UC model.

Computational experiments have been carried out among the new proposed formu-
lation and two previous formulations called 7bin and 3bin considering two Unit Com-
mitment variants: the self-UC and the network-constrained UC problems. For both
problems, the new proposed formulation presents a dramatic improvement in computa-
tion in comparison with #bin and 1bin due to its tightness; and it also presents a lower
LP burden due to its compactness (see Table 4 and Table 5).
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AppendixA. 1bin and 3bin UC formulations

This section presents the basic constraints for the 7bin and 3bin UC formulations. The
nomenclature used here is the same one presented in Section 2, the new nomenclature is
defined once it is introduced. It is important to highlight that 7bin and #bin formulations
consider the total energy production variable p; from 0 to P, unlike the formulation
presented in this paper where p; represents the energy production above P.
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AppendizA.1. 1bin formulation

The 1bin formulation is the following (see Carrion and Arroyo [1]):

Puy < py < Puy t=1,...,T
Dr < Pr-1 +RUut_1+SU(ut—ut_1) ﬁ(l—ut) t=2,...,T
Di—1 <pt+ RDuy + SD(us—1 —ut) + P(1 —up—y) t=2,...,T
Y (1 —uy) =0

+
P

Z;?”HMZTUwvwmﬂ t=G+1,.... T—TU+1
>t g — (ug —ug—1)] > 0 t=T-TU+2,....,T
EL: w; =0

%+hﬁ41 >TD —L+1 T-TD+1
Z%:t (1 —uj) > (up—1 — ue) t=L+1,....T — +
>t L=y — (ug—1 —ug)] >0 t=T—-TD+2,...,T
sucy > OV (uy — ug_1) t=2,...,T
sdey > COP (uy—q — uy) t=2,...,T
0<u <1 t=1,...,T

(A.1)

where G = min{T, (TU — 19)up} and L = min{T, (T'D + 79)(1 — up)} are the minimum
number of time instants the unit must be initially on or off, respectively (7 indicates
the number of time instants the unit has been on prior to time 0 if 79 > 0, while —7y
indicates the number of time instants the unit has been off prior to time 0 if 79 < 0).

Note that 1bin models the unit’s start-up and shut-down capabilities inside the
ramping constraints. For the set of experiments presented in 5.1, where no ramp-
ing constraints are considered, the ramping constraints of 1bin were adapted to only
model the start-up and shut-down capabilities. Therefore, the constraints for the unit’s
start-up and shut-down capability become py < SU (us — u¢—1) + P(1 4+ us—y — u¢) and
Pro1 < SD(us—1 — ug) + P(1 + ug — ug_1), respectively.

AppendizA.2. 3bin formulation
The 3bin formulation is the following Ostrowski et al. [18]:

Pu; < py < Puy t=1,...,T
Dt <pi—1+ RUu—1 +SUv t=2,...,T (A.2)
ﬁt,lgﬁtJrRDuthSDwt t:2,,T

where the minimum up and down constraints are guaranteed using (1)-(3), and the initial
conditions of those constraints are ensured in the same way as 1bin (see AppendixA.1).

Similarly to 1bin, 8bin also models the unit’s start-up and shut-down capabilities
inside the ramping constraints. Then, for the set of experiments presented in 5.1, the
ramping constraints of 8bin were adapted to only model the start-up and shut-down
capabilities. Therefore, the constraints for the unit’s start-up and shut-down capability
become p; < Pus_1 + SUv and py_y < Puy + SDuv, , respectively.

Note that, unlike 1bin, 8bin and TC do not need extra variables suc; and std; for the
start-up and shut-down costs since these costs can be directly expressed with variables
vy and w; and included in the objective function, see (41).
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AppendixB. Network-Constrained UC Formulation

Here, we present the network-constrained UC formulation, of which core is based on
the tight and compact model presented in Section 3. Although some nomenclature and
constraints were introduced before, for the sake of clarity and completeness, this section
provides the complete nomenclature and set of constraints. In the following, we present
the additional needed notations beyond the ones presented in Section 2.

AppendizB.1. Nomenclature
Indexes and Sets

beB Buses, running from 1 to B.

BW Set of buses in B with wind power injection.
lel Transmission lines, running from 1 to L.
teT Hourly periods, running from 1 to 7" hours.

System Parameters
Dyt Energy demand on bus b at the end of hour ¢t [MW].

D; /D;”  System requirements for downward /upward reserve for hour ¢ [MW].
F Power flow limit on transmission line [ [MW].
Flb/FlC; Shift factor for line | associated with bus b / unit g [p.u.].

Py Nominal forecasted wind energy for hour ¢t [MW].

Unit’s Parameters
oY Linear variable production cost [$§/MWh].

(G Non-load cost [$/h].
SD /S
CSP/CY Shut-down / Sart-up cost [$].
RD,/RU, Ramp-down/ramp-up capability [MW /h].

Decision Variables

Yy Wind energy output for hour ¢ [MW].
Tor /Tt Downwards/upwards power reserve [MW].

AppendizB.2. Objective Function
The UC seeks to minimize all production costs:

min Z Z [CSI;V (Bgugt + pgt) + C’gLugt + C’gSUvgt + C’gSDwgt] (B.1)
geGtET

The proposed formulation also takes into account variable start-up costs, which de-
pend on how long the unit has been offline. The reader is referred to [15, 14] for further
details.
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AppendizB.3. System-wide Constraints

Energy demand balance and upward/downward reserves requirements are guaranteed
as follows:

> (Pyugt+pgt) = Du— > pyy (B.2)

Y beB beBW
> rd>Df vt (B.3)
geg
> rp =Dy Wt (B.4)
9€g

Transmission limits are ensured with:

—F; < ng (P,ugt + pgt) + Z Tupy — Z TipDy < Fi Vit (B.5)
9€6 beBW vbeB

AppendizB.4. Individual Unit Constraints

The commitment, start-up/shut-down logic and the minimum up/down times are
guaranteed by constraints (1)-(3) replicated for each generation unit g and where the
initial conditions for the minimum up/down constraints are detailed in [14]. Basically,
uge is fixed (become constant) to 0 or 1 for the initial periods where the unit must remain
offline or online, respectively.

The energy production and reserves must be within the power capacity limits:

Dgt + T;rt < (ﬁg — Bg) Ugt — (ﬁg — SDg) Wg, t+1

—max (SD,—SU,,0)v,; VYgeG' t (B.6)
Pot +7g1 < (Pg — Py) ugr — (Pg — SUy) vt

—max (SU,;—~SDy,0)wy 41 YgeG',t (B.7)
Pot + 141 < (Pg = Py) ugr — (Pg — SUy) vyt

— (Py— SDg) wges1 Vg G'it (B.8)
Pgt — Ty >0 Vg, t (B.9)

where G! is defined as the units in G with TU,=1.
Ramping capability limits are ensured with:

(pgt + T;rt) — Pgit-1 =< RUg Vg,t (B].O)
— (pgt —74¢) + Pgt-1 < RD, Vg,t (B.11)

notice that by modeling the generation output p, above P, the proposed formulation
avoids introducing binary variables into the ramping constraints (B.10) and (B.11), unlike
1bin and 3bin, see AppendixA.1 and AppendixA.2, respectively. In other words, when
the generation output variable is defined between 0 and P,, then the ramping constraints
should consider the case when a generator’s output level should not be limited by the
ramp rate, when it is starting up or shutting down; such complicating situations are
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usually tackled by introducing big-M parameters together with binary variables into the
ramping constraints.

Wind production limits are represented by:
Y <pPYW vheBWYt (B.12)

Finally, non-negative constraints for all decision variables:

PgtsTgenTge 20 Vgt (B.13)
py >0 WbeBYt (B.14)
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