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2[18, 2℄, tighter approximation for quadrati
 generation 
osts [6℄, new formulations for thetime-depending start-up 
osts [20℄, and simultaneously tight and 
ompa
t des
ription ofthermal units operation [15, 14, 13, 12℄.The main 
ontribution of this paper is a slight modi�
ation of the 
onstraints pre-sented in Morales-Espana et al. [14℄ plus the proof that the new model provides the
onvex hull des
ription of the solutions satisfying the following set of 
onstraints: 1)generation limits, 2) start-up and shut-down 
apabilities, and 3) minimum up and downtimes. This result is a basi
 step towards the de�nition of a formulation des
ribing the
onvex hull of the set of solutions satisfying also general ramp 
onstraints with a linearnumber of variables. Re
ently a formulation with O(T 3) variables (where T is the lengthof the time horizon) des
ribing the 
onvex hull of the feasible solutions have been obtainedindependently in Frangioni and Gentile [4℄, Knueven et al. [8℄, but using formulationsbased on the Dynami
 Programming algorithm in Frangioni and Gentile [3℄. Moreover,the te
hniques used in this paper 
ould be possibly used also to a
hieve this more gen-eral result. These results are in some sense orthogonal to those in Dam
i et al. [2℄. Inthis paper, we 
onsider both start-up and shut-down 
apabilities together but we do not
onsider ramp 
onstraints, in Dam
i et al. [2℄ two separate polytopes are de�ned: theramp-up polytope 
onsidering solutions satisfying ramp-up and start-up limits and theramp-down polytope 
onsidering solutions satisfying ramp-down and shut-down limits.In Dam
i et al. [2℄ the 
onvex hull des
riptions for ramp-up and ramp-down polytopesare provided for the 
ase of only two periods and some fa
et de�ning inequalities arepresented for the same polytopes with arbitrary time horizon.On the appli
ation side tighter formulations are usually solved in less time by MIPsolvers; however, this must be tested by 
omputational experiments. We 
ompare thenew formulation with two other MIP formulations obtaining results signi�
antly fasterfor three di�erent 
ase studies. The �rst one 
onsists in solving a self-UC problem onlytaking into a

ount the 
onstraints proposed in this paper. Self-UC optimizes the netpro�t of a pri
e-taker generation 
ompany, that is a relatively small 
ompany that is notable to in�uen
e the market pri
e. If we restri
t to the above mentioned 
onstraints, wehave a 
onvex hull des
ription also for the self-UC problem. The se
ond and third 
asestudies solve the network-
onstrained UC problem for two IEEE power systems, whereother 
ommon 
onstraints are taken into a

ount, su
h as demand balan
e, reserves,ramping and transmission limits.The remainder of this paper is organized as follows. Se
tion 2 introdu
es the mainnotation used to des
ribe the proposed formulation. Se
tion 3 details the basi
 operating
onstraints of a single generating unit. Se
tion 4 
ontains the fa
et indu
ing and 
onvexhull proofs for the proposed linear des
ription of the self-UC subproblem. Se
tion 5provides and dis
usses results from several 
ase studies, where a 
omparison with otherthree UC formulations is made. Finally, some relevant 
on
lusions are drawn in Se
tion 6.2. NotationHere, we introdu
e the main notation used in this paper. The length of the timehorizon is denoted by T and the time is indexed by t. The set of generating units isdenoted by G and indexed with g running from 1 to G.



2.1 Unit's Te
hni
al Parameters 3
Figure 1: Unit's operation in
luding its start-up and shut-down 
apabilities2.1. Unit's Te
hni
al Parameters

P g/P g Maximum/minimum power output [MW℄ for unit g.
SDg/SUg Shut-down/start-up 
apability [MW℄ for unit g.
TDg/TUg Minimum down/up time [h℄ for unit g.2.2. De
ision Variables
ugt Binary variable for the 
ommitment status of unit g for period t, whi
h isequal to 1 if the unit is online and 0 otherwise.
vgt Binary variable for the start-up status of unit g, whi
h is equal to 1 if theunit starts up in period t and 0 otherwise.
wgt Binary variable for the shut-down status of unit g, whi
h is equal to 1 if theunit shuts down in period t and 0 otherwise.
pgt Power produ
tion above the unit's minimum output P [MW℄ for unit g inperiod t. The total generation output is equal to ugtP g + pgt.3. Modeling the Unit's OperationThis se
tion des
ribes the mathemati
al formulations of the basi
 operation of a singlegenerating unit in Unit Commitment (UC) problems. To simplify the notation, here wedo not report the unit index. In Se
tion 5 we 
onsider two multi-units UC problemswhere the single generating unit formulations must be repli
ated for ea
h unit.Two main formulations 
an be found in the literature: 1bin formulation, so 
alledbe
ause it uses only one ve
tor of binary variables ut denoting the status ON/OFF ofthe unit for ea
h time period t; 3bin formulation, so 
alled be
ause it uses three ve
torsof binary variables by adding to the state variables also the start-up vt and shut-down
wt variables. The basi
 
onstraints of the 1bin and 3bin formulations are presented inAppendixA.In this paper, the following set of 
onstraints are modeled: generation limits, mini-mum up and down times, and start-up and shut-down 
apabilities. As shown in Figure 1,the start-up 
apability SU is the maximum power that a generating unit 
ould produ
ewhen it starts up. Similarly, the unit should be produ
ing below its shut-down 
apability
SD when it shuts down.



4First, we use the following 
onstraints, whi
h were proposed in [19℄ to des
ribe the
onvex hull formulation of the minimum-up and -down time 
onstraints:
ut − ut−1 = vt − wt t = 2, . . . , T (1)

t∑

j=t−TU+1

vj ≤ ut t = 2, . . . , T (2)
t∑

j=t−TD+1

wj ≤ 1− ut t = 2, . . . , T (3)where inequalities in (2) state that in an interval of TU 
onse
utive time periods a unit
an be started-up at most on
e; inequalities (3) works similarly for the shut-down 
ase.Here, we present the formulation that we now denote as TC obtained by adding to
onstraints (1)-(3) the following 
onstraints with start-up and shut-down 
apabilities:
p1 ≤

(
P − P

)
u1 −

(
P − SD

)
w2 (4)

pt ≤
(
P − P

)
ut −

(
P − SU

)
vt −

(
P − SD

)
wt+1 t = 2, . . . , T − 1 (5)

pT ≤
(
P − P

)
uT −

(
P − SU

)
vT (6)Constraint (5) states that the maximum power above the minimum output in period

t when the unit is started-up (e.g., ut = vt = 1 and wt+1 = 0) is equal to SU − P , whenthe unit is shut-down at time t+ 1 (e.g., ut = wt+1 = 1 and vt = 0) is equal to SD− P ,and when the unit is 
ontinuously online (e.g, ut = 1 and vt = wt+1 = 0) is equal to
P − P . Constraints (4) and (6) des
ribe the �rst and the last period 
ases.Be aware that (5) may be infeasible in the event that the unit is online for just oneperiod. Indeed, when vt = wt+1 = 1 the right side of (5) 
an be negative. Consequently,(5) is only valid for units with uptime TU ≥ 2. The 
orre
t formulation for units with
TU = 1 is given by substituting (5) with the following pair of 
onstraints:

pt ≤
(
P − P

)
ut −

(
P − SD

)
wt+1 −max (SD−SU, 0)vt t = 2, . . . , T − 1 (7)

pt ≤
(
P − P

)
ut −

(
P − SU

)
vt −max (SU−SD, 0)wt+1 t = 2, . . . , T − 1. (8)Finally, the variable bounds are given by

0 ≤ ut ≤ 1 t = 1, . . . , T (9)
vt ≥ 0, wt ≥ 0 t = 2, . . . , T (10)

pt ≥ 0 t = 1, . . . , T. (11)In summary, inequalities (4)-(6) together with inequalities (1)-(3) and (9)-(11) de-s
ribe the operations for units with TU ≥ 2, and inequalities (4), (6), (7), (8) togetherwith inequalities (1)-(3) and (9)-(11) for units with TU = 1. The main 
ontribution ofthis paper is that the polytopes thus des
ribed always have integral verti
es with respe
tto the binary variables.In Morales-Espana et al. [14℄ it was presented a slightly di�erent formulation, whereinstead of 
onstraints (7)-(8) the following ones were used:
pt ≤

(
P − P

)
ut −

(
P − SD

)
wt+1 t = 2, . . . , T − 1 (12)

pt ≤
(
P − P

)
ut −

(
P − SU

)
vt t = 2, . . . , T − 1. (13)



5Note that if SU =SD then (7)-(8) and (12)-(13) would be equivalent. We denote the oldformulation [14℄ with the latter 
onstraints as TC0.4. Strength of the proposed inequalitiesIn this se
tion, we prove that inequalities (1)-(11) des
ribe the 
onvex hull of thefeasible solutions. Note that 
onstraints (1) uniquely de�ne the value of the variables was a fun
tion of u and v. Unless di�erently spe
i�ed, in the following, we will 
onsider onlythe spa
e de�ned by the variables u, v, and p. Moreover, we suppose that all 
onstraints(3)-(5), (7)-(8), and (10) are rewritten by substituting the w variables a

ordingly.De�nition 1. Let CT

(
TU, TD, P, P , SU, SD

) be the 
onvex hull of the feasible integersolution for the problem. That is, for TU ≥ 2, we write
CT (TU ≥ 2, TD, P, P , SU, SD) =

conv{(u, v, p) ∈ {0, 1}2T−1 × R
T
+| (u, v, p) satisfy (1)-(6) and (9)-(11)};for TU = 1, we write

CT

(
TU = 1, TD, P, P , SU, SD

)
=

conv
{
(u, v, p) ∈ {0, 1}2T−1 × R

T
+| (u, v, p) satisfy (1)-(4), (6)-(8), and (9)-(11)}.For short we write CT for CT

(
TU, TD, P, P , SU, SD

), CT (TU ≥ 2) for CT (TU ≥

2, TD, P , P , SU, SD), and CT (TU = 1) for CT (TU = 1, TD, P, P , SU, SD).Proposition 2. dim(CT ) = 3T − 1 and thus CT is full-dimensional.Proposition 3. The inequalities (4), (6) and (11) des
ribe fa
ets of the polytope CT .Moreover, inequalities (5) des
ribe fa
ets of the polytope CT

(
TU ≥ 2

), and inequalities(7) and (8) des
ribe fa
ets of the polytope CT

(
TU = 1

).The proofs of propositions 2 and 3 
an be performed by exhibiting the right numberof a�nely independent points (details of the proofs 
an be requested to the authors).For the 
onvex hull proof, we need a preliminary lemma that is very easy to provefrom well-known results (we report a proof suggested by a referee for 
ompleteness):Lemma 4. Suppose that P = {x ∈ R
n|Ax ≤ b} is an integer polyhedron. Suppose that

y ∈ R
K are new variables and that Q = {(x, y) : dkx ≤ yk ≤ ckx, k = 1, . . . ,K}, with atmost one lower bound dkx and one upper bound ckx for ea
h variable yk. If dkx ≤ ckxfor ea
h x ∈ P , then P ∩Q has extreme points with x integer.Proof. Consider the linear program LP(P,Q): min{qx +

∑K

k=1
hkyk : (x, y) ∈ P ∩ Q}.We prove that for ea
h obje
tive fun
tion this LP has an integer solution with respe
tto x. Set yk = dkx if hk ≥ 0 and yk = ckx otherwise. Solve the resulting LP in the

x-spa
e. Then x is integer and the 
orresponding (x, y) is optimal for the linear programLP(P,Q).Theorem 5. Let DT

(
TU, TD, P, P , SU, SD

) be a polyhedron de�ned as follows:



6
• for TU ≥ 2

DT

(
TU ≥ 2, TD, P, P , SU, SD

)
={

(u, v, p) ∈ [0, 1]2T−1 × R
T
+| (u, v, p) satisfy (1)-(6) and (9)-(11) } ;

• for TU = 1

DT

(
TU = 1, TD, P, P , SU, SD

)
={

(u, v, p) ∈ [0, 1]2T−1 × R
T
+| (u, v, p) satisfy (1)-(4), (6)-(8), and (9)-(11) } .Then CT

(
TU, TD, P, P , SU, SD

)
= DT

(
TU, TD, P, P , SU, SD

).Proof. As for CT , we use short notations DT , DT

(
TU ≥ 2

), and DT

(
TU = 1

). Theproof for TU ≥ 2 easily follows from Lemma 4. Indeed, DT

(
TU ≥ 2

) is des
ribed bythe inequalities (1)-(3) and (9)-(10), that des
ribe an integral polyhedron in u and v asproved in [19℄, together with inequalities (4)-(6) and (11) satisfying the hypothesis ofLemma 4.For TU = 1 let us suppose that SU ≥ SD. We follow Approa
h 8 in [23℄ (seeSe
tion 9.2.3, Problem 2, Approa
h 8). We �rst introdu
e an extended formulationof the problem, then we prove that the extended formulation is integral, and �nallywe prove that the proje
tion of the new polyhedron 
orrespond to DT

(
TU = 1

). Wedivide the proof into a series of 
laims. We de�ne the following new binary variables for
t = 2, . . . , T − 1: xt = 1 if and only if vt = 1 and wt+1 = 1, if and only if vt = 1 and
wt+1 = 0, if and only if vt = 0 and wt+1 = 1, if and only if ut = 1, vt = 0, and wt+1 = 0.Moreover, ũT = 1 if and only if uT = 1 and vT = 0.Claim 1. The polyhedron P de�ned by the points (u, v, w, ũ, ṽ, w̃, x) satisfying thefollowing inequalities is integral:

vt ≤ ut t = 2, . . . , T (14)
t∑

i=t−TD+1

wi ≤ 1− ut t ∈ [TD+ 1, T ] (15)
ut − ut−1 = vt − wt t ∈ [2, T ] (16)
wt+1 = w̃t+1 + xt t ∈ [2, T − 1] (17)

vt = ṽt + xt t ∈ [2, T − 1] (18)
ut = ṽt + w̃t+1 + xt + ũt t ∈ [2, T − 1] (19)

uT = vT + ũT (20)
0 ≤ ut ≤ 1 t ∈ [1, T ] (21)

vt, wt, ũt ≥ 0 t ∈ [2, T ] (22)
ṽt, xt ≥ 0 t ∈ [2, T − 1] (23)

w̃t ≥ 0 t ∈ [3, T ] (24)Proof of Claim 1. The proof is 
arried on by showing that the 
oe�
ient matrixasso
iated with the above linear system is totally unimodular.



7We exploit this well-known property (proved by Ghouila-Houri, see [17℄, ChapterIII.1, Theorem 2.7): let A be a {0, 1,−1}-matrix, if ea
h subset J of 
olumns of A 
anbe partitioned into J1 and J2 su
h that
∣∣∣∣∣∣

∑

j∈J1

aij −
∑

j∈J2

aij

∣∣∣∣∣∣
≤ 1 (25)for ea
h row i, then A is totally unimodular. This part of the proof has been inspired bythe proof of Malkin [10℄ for the polyhedron de�ned by (1)-(3).First we assign the variables wi ∈ J alternatively to J1 and to J2 in lexi
ographi
order. Then the variables ut ∈ J are assigned either to J1 if wk ∈ J2, where k =

max{i|1 ≤ i ≤ t, wi ∈ J}, or to J2 if wk ∈ J1, or to the same set with respe
t to ut−1 if
{i|1 ≤ i ≤ t, wi ∈ J} is empty. Thus 
ondition (25) is satis�ed for 
onstraints (15).Variables vt ∈ J are assigned either to J1 if ut ∈ J1, or to J2 if ut ∈ J2, or to theopposite set with respe
t to ut−1 if ut /∈ J , or to the same set as wt if both ut−1, ut /∈ J .This ensures that 
ondition (25) is satis�ed for 
onstraints (14) and (16).If vt, wt+1 ∈ J , then assign ṽt ∈ J to the same subset as vt, xt ∈ J to the opposite setwith respe
t to ṽt, and w̃t ∈ J to the same subset as wt. These assignments guaranteethat 
ondition (25) is satis�ed for 
onstraints (17) and (18) both in the 
ase that vt and
wt+1 are in the same set or in di�erent sets. Moreover, the assignment for ũt 
an be
hosen to satisfy 
ondition (25) for 
onstraints (19). If one between vt and wt+1 doesnot belong to J then pro
eed as follows: suppose w.l.o.g. that vt /∈ J , then assign wt+1,
w̃t+1, and ṽt to the same set and xt to the other set, then ũt 
an be 
hosen to satisfy
ondition (25) for 
onstraints (19). Similar 
hoi
es 
an be done if some of the variables
ṽt, w̃t+1, xt, ũt do not belong to J and the 
laim follows. End of Claim 1.Then we de�ne the polyhedron Q̃ by adding to (14)-(24)

pvt ≤ (SU − P )ṽt t ∈ [2, T − 1] (26)
pxt ≤ (SD − P )xt t ∈ [2, T − 1] (27)

pwt ≤ (SD − P )w̃t+1 t ∈ [2, T − 1] (28)
put ≤ (P − P )ũt t ∈ [2, T ] (29)

pvT ≤ (SU − P )vT (30)
p1 ≤ (P − P )u1 − (P − SD)w2 (31)where pv, px, pw, pu and p1 are new non-negative variables.Claim 2. The polyhedron Q̃ is integral with respe
t to variables u, v, w, x, ũ, ṽ, w̃.End of Claim 2.Claim 2 follows by applying Lemma 4 to the polyhedron P of Claim 1. Then wede�ne the polyhedron Q by adding to (14)-(24),(26)-(31)
pt = pvt + pxt + pwt + put t ∈ [2, . . . , T − 1] (32)

pT = pvT + puT (33)where pt for t ∈ [2 . . . T ] are non-negative variables.Claim 3. The polyhedron Q is integral with respe
t to variables u, v, w, x, ũ, ṽ, w̃.End of Claim 3.



8Claim 3 follows from Claim 2 and by the straightforward extension of Lemma 4, wherethe role of P is played by the integral polyhedron Q̃. Finally we prove thatClaim 4. The proje
tion of Q onto the spa
e of variables u, v, p is equivalent to DT .Proof of Claim 4. We start by eliminating the variables pvt , pxt , pwt , and put by simplysubstituting 
onstraints (32)-(33) with the following:
pt ≤(SU − P )ṽt + (SD − P )xt + (SD − P )w̃t+1 + (P − P )ũt t ∈ [2, T − 1] (34)
pT ≤(SU − P )vT + (P − P )ũT , (35)whi
h are obtained by using 
onstraints (26)-(30).Now, we repla
e ũT from (20) in (35) to obtain pT ≤

(
P − P

)
uT −

(
P − SU

)
vTthat 
oin
ides with (6). Then we eliminate variables in (34) a

ording to the followingorder: ũt by using the equation (19); w̃t+1 by using the equation (17); ṽt by using theequation (18). It is not di�
ult to see that for t ∈ [2, T − 1] we obtain the following
onstraints:

pt ≤(P − P )ut − (P − SU)vt − (P − SD)wt+1 + (P − SU)xt (36)
xt ≥0 (37)
xt ≥vt + wt+1 − ut (38)
xt ≤vt (39)
xt ≤wt+1.. (40)Now we 
an apply Fourier-Motzkin elimination to variables xt by 
onsidering thefollowing pairs of 
onstraints: (i) from 
onstraints (39) and (36) we obtain we obtain

vt ≥ 0; and (38) we obtain (iv) from 
onstraints (40) and (36) we obtain we obtain
wt+1 ≥ 0; and (38) we obtain ut ≥ vt. Finally, the 
laim follows by observing that (31)
oin
ides with (4). End of Claim 4.From Claim 4 it follows that DT is integral with respe
t to the variables u and v.The proof for SD ≥ SU 
an be performed in a symmetri
 way.5. Numeri
al ResultsTo illustrate the 
omputational performan
es of the formulation presented in thispaper, three sets of 
ase studies are 
arried out: one for a self-UC problem and twoothers for a network-
onstrained UC problem. This se
tion 
ompares the 
omputationalperforman
e of the proposed TC formulation with two other formulations, [1℄ and [18℄,whi
h have been re
ognized as 
omputationally e�
ient in the literature [16, 14, 21℄.The following three formulations are then implemented:

• TC : This is the 
omplete formulation presented in this paper. For the network-
onstrained UC, we in
lude other 
ommon 
onstraints su
h as demand-balan
e,reserves, ramping and transmission limits. The 
omplete network-
onstrained UCis presented in AppendixB.
• 1bin: This formulation is presented in [1℄ and requires a single set of binary variables(per unit and per period), i.e., the start-up and shut-down de
isions are expressedas a fun
tion of the 
ommitment de
ision variables.



5.1 Self-UC 9Table 1: Generator DataTe
hni
al Information Cost Coe�
ients†Gen P P TU/TD SU SD p0* Ste0⋆ CNL CLV CSU[MW℄ [MW℄ [h℄ [MW℄ [MW℄ [MW/h℄ [h℄ [$/h℄ [$/MWh℄ [$℄1 455 150 8 252 303 150 8 1000 16.19 90002 455 150 8 252 303 150 8 970 17.26 100003 130 20 5 57 75 20 5 700 16.60 11004 130 20 5 57 75 20 5 680 16.50 11205 162 25 6 71 94 25 6 450 19.70 18006 80 20 3 40 50 20 3 370 22.26 3407 85 25 3 45 55 25 3 480 27.74 5208 55 10 1 25 33 10 1 660 25.92 609 55 10 1 25 33 10 1 665 27.74 6010 55 10 1 25 33 10 1 670 27.79 60* p0 is the unit's initial produ
tion prior to the �rst period of the time span.
⋆Ste0 is the number of hours that the unit has been online prior to the �rst period of the time span.
†CNL, CLV and CSU stand for non-load, linear-variable and startup 
osts, respe
tively.Table 2: Energy Pri
e ($/MWh)
t = 1 . . . 12 → 13.0 7.2 4.6 3.3 3.9 5.9 9.8 15.0 22.1 31.3 33.2 24.8
t = 13 . . . 24 → 19.5 16.3 14.3 13.7 15.0 17.6 20.2 29.3 49.5 53.4 30.0 20.2
• 3bin: The 
onvex hull of the minimum up/down time 
onstraints proposed in [19℄(see (1)-(3) and (9)-(10)) are implemented with the three-binary formulation. Thisformulation is presented in [18℄Noti
e that di�erent set of 
onstraints are used for the self-UC and for the network-
onstrained UC problems. For the self-UC problems, 1bin and 3bin are modeled only
onsidering 1) generation limits, 2) minimum up and down times, and 4) start-up andshut-down 
apabilities. For the network-
onstrained UC problems, 1bin and 3bin aremodeled taking into a

ount the full set of 
onstraints presented in [1℄ and its 3binequivalent [18℄, respe
tively; in addition, these formulations are further extended byintrodu
ing downwards reserve (whi
h is modeled in the same fashion as the upwardsreserve, see AppendixB), transmission limits (see (B.5) in AppendixB), and wind gener-ation (whi
h is taken into a

ount in the demand-balan
e (B.2) and transmission-limit
onstraints (B.5)).All tests were 
arried out using CPLEX 12.5 on an Intel-i7 3.4-GHz personal 
omputerwith 8 GB of RAMmemory. The problems are solved until they hit the time limit of 10000se
onds or until they rea
h optimality (more pre
isely to 10−4% of relative optimalitygap).5.1. Self-UCWe illustrate the 
omputational performan
e of the formulation proposed in this paperby solving the self-UC problem for a pri
e-taker produ
er for di�erent time spans. Thegoal of a pri
e-taker produ
er is to maximize his pro�t (whi
h is the di�eren
e betweenthe revenue and the total operating 
ost [15℄) during the planning horizon:



5.1 Self-UC 10Table 3: Self-UC: Computational Performan
e ComparisonCase Optimum IntGap (%) LP time (s) MIP time (s)* B&C Nodes(days) (M$) TC TC0 3bin 1bin TC TC0 3bin 1bin TC TC0 3bin 1bin TC TC0 3bin 1bin64 7.259361 0 0.09 0.88 2.57 0.57 0.47 0.80 0.95 0.57 1.92 12.01 13.79 0 0 496 487128 14.517096 0 0.09 0.87 2.57 1.17 1.20 2.06 2.60 1.17 4.81 45.54 (0.033) 0 0 528 603915256 29.032567 0 0.09 0.87 2.57 3.16 3.29 5.38 6.88 3.16 7.75 199.18 (0.052) 0 0 533 229035512 58.063509 0 0.09 0.87 2.57 8.08 8.39 14.29 18.83 8.08 17.29 734.03 (0.054) 0 0 488 136128* If the time limit is rea
hed then the �nal % of optimality toleran
e is shown between parentheses
max

T∑

t=1

G∑

g=1

[
πt

[
ugtP g + pgt

]
−
(
CNL

g ugt + CLV
g

[
ugtP g + pgt

]
+ CSU

g vgt + CSD
g wgt

)](41)where subs
ript g stands for generating units and G is the number of units; πt refers tothe energy pri
es; CNL
g , CLV

g , CSU
g and CSD

g are the non-load, linear-variable, start-up andshut-down 
osts of unit g, respe
tively (for this 
ase study CSD
g = 0 for all units). Theobje
tive fun
tion (41) is optimized over the solution set des
ribed by generation limits,start-up and shut-down 
apabilities, and minimum up and down times 
onstraints. Theself-UC also arises when solving UC with de
omposition methods su
h as LagrangianRelaxation [5, 3℄ (where the pri
es are the Lagrangian multipliers).The 10-unit system data is presented in Table 1 and the energy pri
es are shown inTable 2. The power system data are based on information presented in [1, 14℄.Here, apart from TC, 1bin and 3bin, the tight and 
ompa
t formulation presented in[14℄, labeled as TC0, is also implemented. It is important to note that the formulationTC0 uses 
onstraints (12) and (13) instead of (7) and (8) for units with TU = 1. Apartfrom those 
onstraints, TC and TC0 are identi
al. Note however that (7) and (8) areneeded to des
ribe the 
onvex hull, as proved in Se
tion 4.Table 3 shows the 
omputational performan
es for four 
ases with di�erent time spans.All formulations a
hieve the same MIP optimum sin
e all of them model the same MIPproblem. However, they present di�erent LP optimums, the relative distan
e betweentheir MIP and LP optimums is measured with the Integrality Gap [22, 14℄. Note that theMIP optimums of TC were a
hieved by just solving the LP over (1)-(11), IntGap=0,hen
e solving the problems in LP time. On the other hand, as usual, the bran
h-and-
utmethod was needed to solve the MIP for TC0, 3bin and 1bin. Table 3 also shows the MIPtime and B&C nodes explored that were required by the di�erent formulations to rea
hoptimality. It is interesting to note that although TC0 rea
hed optimality exploring zeroB&C nodes, TC0 needed to make use of the solver's 
utting planes strategy be
ause therelaxed LP solution did not a
hieve the integer one, IntGap 6=0 (the solver used 227 and1224 
uts for the smallest and largest 
ase, respe
tively). This tightening pro
ess tookmore time than the time required to solve the initial LP relaxation, that is why the MIPtime for TC0 is more than twi
e its LP relaxation time.Table 4 shows the dimensions of all the formulations for four sele
ted instan
es. Notethat TC and TC0 are more 
ompa
t, in terms of quantity of 
onstraints and nonzeroelements, than 3bin and 1bin. The formulation 1bin presents a third of binary variables



5.2 Network-Constrained UC 11Table 4: Self-UC: Problem Size ComparisonCase # 
onstraints # nonzero elements # real var # binary var(days) TC* 3bin 1bin TC TC0 3bin 1bin TC† 1bin TC† 1bin64 65997 107459 138225 338994 334389 417313 469719 15360 46080 46080 15360128 132045 214979 276465 678450 669237 835105 939735 30720 92160 92160 30720256 264141 430019 552945 1357362 1338933 1670689 1879767 61440 184320 184320 61440512 528333 860099 1105905 2715186 2678325 3341857 3759831 12288 368640 368640 122880* TC is equal to TC0 for these 
ases
†TC, TC0 and 3bin are equal for these 
asesin 
omparison with the other formulations, but 3 times more 
ontinuous variables. Thisis be
ause the work in [1℄ reformulated the units' operation model to avoid the start-upand shut-down binary variables, 
laiming that this would redu
e the node enumerationin the bran
h-and-bound pro
ess. Note however that this reformulation 
onsiderablydamaged the strength of 1bin, hen
e it presented the worst 
omputational performan
e,similar results are obtained in [18, 14℄. The formulation 1bin presents more 
ontinu-ous variables than the other formulations be
ause it requires the introdu
tion of new
ontinuous variables to model the start-up and shut-down 
osts of the generating units.In 
on
lusion, TC presents a dramati
 improvement in 
omputation in 
omparisonwith 3bin and 1bin due to its tightness (speedups above 90x and 8500x, respe
tively);and it also presents a lower LP burden due to its 
ompa
tness, see Table 4. Comparedwith TC0, the formulation TC is tighter; 
onsequently, TC requires less time to solvethe MIP problem (speedup above 4.1x).5.2. Network-Constrained UCHere, two IEEE systems are used for di�erent time spans, from 24 to 96 hours, theIEEE 118-bus system and the IEEE 73-bus reliability test system. All data for these twosystems 
an be found in [11℄ and [24, 7℄, respe
tively. The IEEE-118 bus system has 118buses; 186 transmission lines; 54 thermal units; 91 loads, with average and maximumlevels of 3991 MW and 5592 MW, respe
tively; and three wind generation units, withaggregated average and maximum produ
tion of 867 MW and 1333 MW, respe
tively.For this system, the upwards and downwards reserve requirement are set as the 5% ofthe total expe
ted wind produ
tion for ea
h hour.The IEEE 73-bus reliability test system has 73 buses; 120 transmission lines; 99thermal units; 51 loads, with average and maximum levels of 7094 MW and 8547 MW,respe
tively; and no wind generation. For this system, the upwards and downwardsreserve requirement are set as the 1% of the total expe
ted demand for ea
h hour.Bear in mind that the network-
onstrained UC problem is 
onsiderably more 
omplexthan the self-UC problem, des
ribed in Subse
tion 5.1, due to the new 
ompli
ating
onstraints that are now in
luded (into all the formulations), su
h as demand-balan
e,reserves, ramping and transmission limits (see AppendixB).Table 5 shows the problem size for all formulations for the two IEEE systems. Thistable shows the problem size for a time span of 24 hours, larger problem sizes are pro-portional (approximately) to the quantity of hours. On the other hand, there is no dire
tsize relation between the two systems be
ause they have di�erent proportions in thermal



5.2 Network-Constrained UC 12Table 5: IEEE 118-bus & 73-bus Systems: Problem Size Comparison of the UC Formulations for a TimeSpan of 24 hours # 
onstraints # nonzero elements # real var # binary varSystem TC 3bin 1bin TC 3bin 1bin TC 3bin 1bin TC* 1binIEEE 118-bus 15903 37803 38141 536815 473791 472969 8424 9720 11016 3888 1296IEEE 73-bus 23425 82846 83524 581704 786268 786310 11862 12384 14760 7110 2358* TC is equal to 3bin for these 
asesTable 6: IEEE 118-bus System Results: Computational Performan
e of The UC Formulations for Dif-ferent Time SpansOptimum IntGap (%) LP time (s) MIP time (s)* B&C Nodeshours M$ TC 3bin 1bin TC 3bin 1bin TC 3bin 1bin TC 3bin 1bin24 0.826814 0.53 1.13 1.75 0.33 2.48 2.9 4.13 585.22 (0.094) 77 93285 88961048 1.649732 0.49 0.70 1.37 1.17 17.88 19.19 26.15 (0.095) (0.269) 546 260545 4011572 2.472651 0.46 0.56 1.24 2.57 40.59 57.21 474.85 (0.136) (0.336) 2411 50593 2065796 3.295570 0.44 0.48 1.18 4.29 93.85 102.79 1193.92 (0.180) (0.317) 4295 40601 14605* If the time limit (10000 s) is rea
hed then the �nal % of optimality toleran
e is shown between parenthesesand wind units as well as transmission lines. For example, the IEEE 73-bus system has45 (83%) more units than the IEEE 118-bus system, but 66 (35%) less transmissionlines. Similarly to the self-UC 
ase study (Subse
tion 5.1), TC is more 
ompa
t thanthe others, in terms of quantity of 
onstraints. For the IEEE 118-bus system, having alarger number of transmission lines, TC presents more nonzeros than the others be
auseTC uses P gugt + pgt, whi
h appear in ea
h of the line 
onstraints, to represent the totalunit's produ
tion, unlike other formulations that use one variable to represent the totalprodu
tion. Beware, however, that a new variable 
ould be introdu
ed representing thetotal unit's produ
tion, thus de
reasing the number of nonzeros but this will in
rease thenumber of variables and 
onstraints. Despite this in
rease in nonzeros, the LP 
omplex-ity of TC for the IEEE 118-bus system is signi�
antly lower than that of both 3bin and1bin, whi
h took in average 15.1 and 17.9 times longer than TC to solve the LP problem,respe
tively (see Table 6). Similarly, for the IEEE 73-bus system, TC 
ould solve the LPproblem in average 15.6 and 14.2 times faster than 3bin and 1bin, respe
tively (see Ta-ble 7). In short, TC presents a lower LP burden than the others due to its 
ompa
tness,as also 
on
luded in the self-UC 
ase in Subse
tion 5.1.Table 6 and Table 7 show the 
omputational performan
e of the network-
onstrainedUC problem for both IEEE test systems and for all formulations and di�erent time spans(up to 96 hours). For these experiments, TC is the tightest formulation sin
e its IntGapis always lower than that of 1bin and 3bin. On the other hand, although 1bin has athird of binary variables in 
omparison with the others, it has the largest quantity of
onstraints and it is the least tight (see IntGap Table 6); 
onsequently, presenting theworst 
omputational performan
e, as also dis
ussed in Subse
tion 5.1.Interestingly, for the IEEE 118-bus system, all three formulations a
hieved the sameoptimum integer solution (all of them model the same integer problem), although TC wasthe only formulation that 
ould prove optimality within the time limit. 3bin 
ould proveoptimality for only one 
ase, the smallest 
ase; and 1bin 
ould not prove optimality for



5.2 Network-Constrained UC 13Table 7: IEEE 73-bus System Results: Computational Performan
e of The UC Formulations for Di�erentTime SpansOptimum IntGap (%) LP time (s) MIP time (s)* B&C Nodeshours M$ TC 3bin 1bin TC 3bin 1bin TC 3bin 1bin TC 3bin 1bin24 1.695434 0,02 0.23 1.18 0.36 1.42 1.31 22.60 (0.107) (0.134) 24510 1009500 89706348 3.327422 0,02 0.24 1.13 0.80 15.3 9.66 123.17 (0.151) (0.180) 22378 245587 26465372 4.959410 0,02 0.24 1.11 1.33 22.14 21.87 (0.010) (0.187) (0.239) 1245643 100358 2775696 6.591398 0,02 0.24 1.10 1.97 45.07 48.66 (0.012) (0.175) (0.374) 655694 12768 2363* If the time limit (10000 s) is rea
hed then the �nal % of optimality gap is shown between parenthesesTable 8: IEEE 118-bus and 73-bus System Results: Computational Performan
e of TC for 0.05% ofOptimality Gap and Di�erent Time SpansMIP time (s) Optimality Gap (%) B&C Nodeshours 118-bus RTS-96 118-bus RTS-96 118-bus RTS-9624 3.45 3.54 0.030 0.045 0 548 9.25 7.94 0.036 0.032 0 072 68.2 13.09 0.034 0.049 625 096 167.44 45.76 0.041 0.049 560 490any of the 
ases. Noti
e that due to the tightness, TC 
ould prove optimality exploring
onsiderably fewer B&C nodes less than (an order of magnitude) 3bin and 1bin, whi
h
ould not even 
onverge to optimality.For the IEEE 118-bus system, TC always found better integer solutions (reported inTable 6) than the other formulations. 3bin and 1bin 
ould not prove optimality for anyof the 
ases. TC 
ould prove optimality for the two smallest 
ases, where TC exploredfewer nodes than the others, whi
h 
ould not even rea
h optimality. For the two largest
ases, none of the formulations 
ould rea
h optimality, but TC was an order of magnitudenearer to optimality. Also noti
e that for these two large 
ases, TC 
ould explore morenodes within the time limit due to its 
ompa
tness, whi
h lower the LP 
omplexity solvedduring the iterations.Table 6 and Table 7 show the 
omputational performan
e of the UC formulationstrying to rea
h optimality (more pre
isely to 10−4% of relative optimality gap) within a10000 se
onds time limit. Noti
e that 1bin 
ould only rea
h optimality gaps above 0.13%for 7 out of 8 
ases, and in the best 
ase the optimality gap was above 0.09%. Similarly,3bin presented optimality gaps above 0.09% for 7 of the 
ases. In short, only 3bin 
ouldrea
h an optimality gap below 0.09% in just one 
ase. To observe the performan
e of TCaround these orders of magnitude of optimality gaps, Table 8 shows the performan
e ofTC for a requiered optimality gap of 0.05% for the two IEEE test systems. Noti
e that4 
ases 
ould even be solved before bran
hing (0 B&C nodes), 5 
ases were solved in lessthan 15 se
onds, and all the 
ases 
ould be solved in less than 170 se
onds, unlike 3binand 1bin whi
h 
ould not rea
h that low optimality gaps within 10000 se
onds. Due tothe simultaneous tightness and 
ompa
tness, TC 
ould rea
h 0.05% optimality toleran
efor four 
ases (one for the IEEE 118-bus system and three for the IEEE 73-bus system)in less time than that required by 1bin and 3bin to solve their LP problem.Furthermore, for the IEEE 73-bus system, TC presented better (higher) lower bounds



14Table 9: IEEE 73-bus System: Initial vs. Final Lower Bounds of UC formulations for Di�erent TimeSpans LP Relaxations (M$) Final best lower bound (M$)hours TC 3bin 1bin TC 3bin 1bin24 1.695161 1.691586 1.675454 1.695434 1.693621 1.69316748 3.326716 3.319535 3.289971 3.327422 3.322417 3.3214472 4.958264 4.947482 4.904489 4.958887 4.951332 4.94753296 6.589812 6.575429 6.519006 6.590607 6.57985 6.569458in the initial LP relaxation than the �nal lower bounds found by 3bin and 1bin withinthe time limit, as shown in Table 9 (this was not the 
ase for the IEEE 118-bus system).Thanks to the 
onvex hull provided in this paper, for the IEEE 73-test system, TC 
ouldprovide initial lower bounds, in less than 2 se
onds (see LP time in Table 7), whi
h werebetter than the �nal lower bounds obtained by 3bin and 1bin within 10000 se
onds.6. Con
lusionThis paper presented the 
onvex hull des
ription of the single thermal Unit Com-mitment problem with the following basi
 
onstraints: generation limits, start-up andshut-down 
apabilities, and minimum up and down times. The model does not in
ludesome 
ru
ial 
onstraints, su
h as ramping, but the proposed 
onstraints 
an be used asthe 
ore of any UC formulation and they 
an help to tighten the �nal UC model.Computational experiments have been 
arried out among the new proposed formu-lation and two previous formulations 
alled 1bin and 3bin 
onsidering two Unit Com-mitment variants: the self-UC and the network-
onstrained UC problems. For bothproblems, the new proposed formulation presents a dramati
 improvement in 
omputa-tion in 
omparison with 3bin and 1bin due to its tightness; and it also presents a lowerLP burden due to its 
ompa
tness (see Table 4 and Table 5).A
knowledgmentsThe authors thank Lauren
e Wolsey, Santanu Dey, Antonio Frangioni, and PaoloVentura for useful dis
ussions on the paper.AppendixA. 1bin and 3bin UC formulationsThis se
tion presents the basi
 
onstraints for the 1bin and 3bin UC formulations. Thenomen
lature used here is the same one presented in Se
tion 2, the new nomen
lature isde�ned on
e it is introdu
ed. It is important to highlight that 1bin and 3bin formulations
onsider the total energy produ
tion variable p̂t from 0 to P , unlike the formulationpresented in this paper where pt represents the energy produ
tion above P .



AppendixA.1 1bin formulation 15AppendixA.1. 1bin formulationThe 1bin formulation is the following (see Carrion and Arroyo [1℄):
Put ≤ p̂t ≤ Put t = 1, . . . , T
p̂t ≤ p̂t−1 +RUut−1 + SU(ut − ut−1) + P (1− ut) t = 2, . . . , T

p̂t−1 ≤ p̂t +RDut + SD(ut−1 − ut) + P (1− ut−1) t = 2, . . . , T∑G

j=1
(1− uj) = 0∑t+TU−1

j=t uj ≥ TU(ut − ut−1) t = G+ 1, . . . , T − TU + 1∑T

j=t [uj − (ut − ut−1)] ≥ 0 t = T − TU + 2, . . . , T∑L

j=1
uj = 0∑t+TD−1

j=t (1 − uj) ≥ TD(ut−1 − ut) t = L+ 1, . . . , T − TD+ 1∑T

j=t [1− uj − (ut−1 − ut)] ≥ 0 t = T − TD+ 2, . . . , T

suct ≥ CSU (ut − ut−1) t = 2, . . . , T
sdct ≥ CSD(ut−1 − ut) t = 2, . . . , T
0 ≤ ut ≤ 1 t = 1, . . . , T (A.1)where G = min{T, (TU − τ0)u0} and L = min{T, (TD+ τ0)(1 − u0)} are the minimumnumber of time instants the unit must be initially on or o�, respe
tively (τ0 indi
atesthe number of time instants the unit has been on prior to time 0 if τ0 > 0, while −τ0indi
ates the number of time instants the unit has been o� prior to time 0 if τ0 < 0).Note that 1bin models the unit's start-up and shut-down 
apabilities inside theramping 
onstraints. For the set of experiments presented in 5.1, where no ramp-ing 
onstraints are 
onsidered, the ramping 
onstraints of 1bin were adapted to onlymodel the start-up and shut-down 
apabilities. Therefore, the 
onstraints for the unit'sstart-up and shut-down 
apability be
ome p̂t ≤ SU(ut − ut−1) + P (1 + ut−1 − ut) and

p̂t−1 ≤ SD(ut−1 − ut) + P (1 + ut − ut−1), respe
tively.AppendixA.2. 3bin formulationThe 3bin formulation is the following Ostrowski et al. [18℄:
Put ≤ p̂t ≤ Put t = 1, . . . , T
p̂t ≤ p̂t−1 +RUut−1 + SUvt t = 2, . . . , T
p̂t−1 ≤ p̂t +RDut + SDwt t = 2, . . . , T

(A.2)where the minimum up and down 
onstraints are guaranteed using (1)-(3), and the initial
onditions of those 
onstraints are ensured in the same way as 1bin (see AppendixA.1).Similarly to 1bin, 3bin also models the unit's start-up and shut-down 
apabilitiesinside the ramping 
onstraints. Then, for the set of experiments presented in 5.1, theramping 
onstraints of 3bin were adapted to only model the start-up and shut-down
apabilities. Therefore, the 
onstraints for the unit's start-up and shut-down 
apabilitybe
ome p̂t ≤ Put−1 + SUvt and p̂t−1 ≤ Put + SDvt , respe
tively.Note that, unlike 1bin, 3bin and TC do not need extra variables suct and stdt for thestart-up and shut-down 
osts sin
e these 
osts 
an be dire
tly expressed with variables
vt and wt and in
luded in the obje
tive fun
tion, see (41).



16AppendixB. Network-Constrained UC FormulationHere, we present the network-
onstrained UC formulation, of whi
h 
ore is based onthe tight and 
ompa
t model presented in Se
tion 3. Although some nomen
lature and
onstraints were introdu
ed before, for the sake of 
larity and 
ompleteness, this se
tionprovides the 
omplete nomen
lature and set of 
onstraints. In the following, we presentthe additional needed notations beyond the ones presented in Se
tion 2.AppendixB.1. Nomen
latureIndexes and Sets
b ∈ B Buses, running from 1 to B.
BW Set of buses in B with wind power inje
tion.
l ∈ L Transmission lines, running from 1 to L.
t ∈ T Hourly periods, running from 1 to T hours.System Parameters
Dbt Energy demand on bus b at the end of hour t [MW℄.
D−

t /D+
t System requirements for downward/upward reserve for hour t [MW℄.

F l Power �ow limit on transmission line l [MW℄.
Γlb/ΓG

lg Shift fa
tor for line l asso
iated with bus b / unit g [p.u.℄.
PW
bt Nominal fore
asted wind energy for hour t [MW℄.Unit's Parameters

CLV
g Linear variable produ
tion 
ost [$/MWh℄.

CNL
g Non-load 
ost [$/h℄.

CSD
g /CSU

g Shut-down / Sart-up 
ost [$℄.
RDg/RUg Ramp-down/ramp-up 
apability [MW/h℄.De
ision Variables
pWbt Wind energy output for hour t [MW℄.
r−gt/r+gt Downwards/upwards power reserve [MW℄.AppendixB.2. Obje
tive Fun
tionThe UC seeks to minimize all produ
tion 
osts:

min
∑

g∈G

∑

t∈T

[
CLV

g

(
P gugt + pgt

)
+ CNL

g ugt + CSU
g vgt + CSD

g wgt

] (B.1)The proposed formulation also takes into a

ount variable start-up 
osts, whi
h de-pend on how long the unit has been o�ine. The reader is referred to [15, 14℄ for furtherdetails.



AppendixB.3 System-wide Constraints 17AppendixB.3. System-wide ConstraintsEnergy demand balan
e and upward/downward reserves requirements are guaranteedas follows:
∑

g∈G

(
P gugt + pgt

)
=

∑

b∈B

Dbt −
∑

b∈BW

pWbt ∀t (B.2)
∑

g∈G

r+gt ≥ D+
t ∀t (B.3)

∑

g∈G

r−gt ≥ D−
t ∀t (B.4)Transmission limits are ensured with:

−F l ≤
∑

g∈G

ΓG
lg

(
P gugt + pgt

)
+

∑

b∈BW

Γlbp
W
bt −

∑

∀b∈B

ΓlbDbt ≤ F l ∀l, t (B.5)AppendixB.4. Individual Unit ConstraintsThe 
ommitment, start-up/shut-down logi
 and the minimum up/down times areguaranteed by 
onstraints (1)-(3) repli
ated for ea
h generation unit g and where theinitial 
onditions for the minimum up/down 
onstraints are detailed in [14℄. Basi
ally,
ugt is �xed (be
ome 
onstant) to 0 or 1 for the initial periods where the unit must remaino�ine or online, respe
tively.The energy produ
tion and reserves must be within the power 
apa
ity limits:

pgt + r+gt ≤
(
P g − P g

)
ugt −

(
P g − SDg

)
wg,t+1

−max (SDg−SUg, 0) vg,t ∀g∈G1, t (B.6)
pgt + r+gt ≤

(
P g − P g

)
ugt −

(
P g − SUg

)
vgt

−max (SUg−SDg, 0)wg,t+1 ∀g∈G1, t (B.7)
pgt + r+gt ≤

(
P g − P g

)
ugt −

(
P g − SUg

)
vgt

−
(
P g − SDg

)
wg,t+1 ∀g /∈G1, t (B.8)

pgt − r−gt ≥ 0 ∀g, t (B.9)where G1 is de�ned as the units in G with TUg=1.Ramping 
apability limits are ensured with:
(
pgt + r+gt

)
− pg,t−1 ≤ RUg ∀g, t (B.10)

−
(
pgt − r−gt

)
+ pg,t−1 ≤ RDg ∀g, t (B.11)noti
e that by modeling the generation output pgt above P g, the proposed formulationavoids introdu
ing binary variables into the ramping 
onstraints (B.10) and (B.11), unlike1bin and 3bin, see AppendixA.1 and AppendixA.2, respe
tively. In other words, whenthe generation output variable is de�ned between 0 and P g, then the ramping 
onstraintsshould 
onsider the 
ase when a generator's output level should not be limited by theramp rate, when it is starting up or shutting down; su
h 
ompli
ating situations are



AppendixB.4 Individual Unit Constraints 18usually ta
kled by introdu
ing big-M parameters together with binary variables into theramping 
onstraints.Wind produ
tion limits are represented by:
pWbt ≤ PW

bt ∀b ∈ BW, t (B.12)Finally, non-negative 
onstraints for all de
ision variables:
pgt, r

+
gt, r

−
gt ≥ 0 ∀g, t (B.13)

pWbt ≥ 0 ∀b ∈ BW, t (B.14)Referen
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