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2[18, 2℄, tighter approximation for quadrati generation osts [6℄, new formulations for thetime-depending start-up osts [20℄, and simultaneously tight and ompat desription ofthermal units operation [15, 14, 13, 12℄.The main ontribution of this paper is a slight modi�ation of the onstraints pre-sented in Morales-Espana et al. [14℄ plus the proof that the new model provides theonvex hull desription of the solutions satisfying the following set of onstraints: 1)generation limits, 2) start-up and shut-down apabilities, and 3) minimum up and downtimes. This result is a basi step towards the de�nition of a formulation desribing theonvex hull of the set of solutions satisfying also general ramp onstraints with a linearnumber of variables. Reently a formulation with O(T 3) variables (where T is the lengthof the time horizon) desribing the onvex hull of the feasible solutions have been obtainedindependently in Frangioni and Gentile [4℄, Knueven et al. [8℄, but using formulationsbased on the Dynami Programming algorithm in Frangioni and Gentile [3℄. Moreover,the tehniques used in this paper ould be possibly used also to ahieve this more gen-eral result. These results are in some sense orthogonal to those in Dami et al. [2℄. Inthis paper, we onsider both start-up and shut-down apabilities together but we do notonsider ramp onstraints, in Dami et al. [2℄ two separate polytopes are de�ned: theramp-up polytope onsidering solutions satisfying ramp-up and start-up limits and theramp-down polytope onsidering solutions satisfying ramp-down and shut-down limits.In Dami et al. [2℄ the onvex hull desriptions for ramp-up and ramp-down polytopesare provided for the ase of only two periods and some faet de�ning inequalities arepresented for the same polytopes with arbitrary time horizon.On the appliation side tighter formulations are usually solved in less time by MIPsolvers; however, this must be tested by omputational experiments. We ompare thenew formulation with two other MIP formulations obtaining results signi�antly fasterfor three di�erent ase studies. The �rst one onsists in solving a self-UC problem onlytaking into aount the onstraints proposed in this paper. Self-UC optimizes the netpro�t of a prie-taker generation ompany, that is a relatively small ompany that is notable to in�uene the market prie. If we restrit to the above mentioned onstraints, wehave a onvex hull desription also for the self-UC problem. The seond and third asestudies solve the network-onstrained UC problem for two IEEE power systems, whereother ommon onstraints are taken into aount, suh as demand balane, reserves,ramping and transmission limits.The remainder of this paper is organized as follows. Setion 2 introdues the mainnotation used to desribe the proposed formulation. Setion 3 details the basi operatingonstraints of a single generating unit. Setion 4 ontains the faet induing and onvexhull proofs for the proposed linear desription of the self-UC subproblem. Setion 5provides and disusses results from several ase studies, where a omparison with otherthree UC formulations is made. Finally, some relevant onlusions are drawn in Setion 6.2. NotationHere, we introdue the main notation used in this paper. The length of the timehorizon is denoted by T and the time is indexed by t. The set of generating units isdenoted by G and indexed with g running from 1 to G.



2.1 Unit's Tehnial Parameters 3
Figure 1: Unit's operation inluding its start-up and shut-down apabilities2.1. Unit's Tehnial Parameters

P g/P g Maximum/minimum power output [MW℄ for unit g.
SDg/SUg Shut-down/start-up apability [MW℄ for unit g.
TDg/TUg Minimum down/up time [h℄ for unit g.2.2. Deision Variables
ugt Binary variable for the ommitment status of unit g for period t, whih isequal to 1 if the unit is online and 0 otherwise.
vgt Binary variable for the start-up status of unit g, whih is equal to 1 if theunit starts up in period t and 0 otherwise.
wgt Binary variable for the shut-down status of unit g, whih is equal to 1 if theunit shuts down in period t and 0 otherwise.
pgt Power prodution above the unit's minimum output P [MW℄ for unit g inperiod t. The total generation output is equal to ugtP g + pgt.3. Modeling the Unit's OperationThis setion desribes the mathematial formulations of the basi operation of a singlegenerating unit in Unit Commitment (UC) problems. To simplify the notation, here wedo not report the unit index. In Setion 5 we onsider two multi-units UC problemswhere the single generating unit formulations must be repliated for eah unit.Two main formulations an be found in the literature: 1bin formulation, so alledbeause it uses only one vetor of binary variables ut denoting the status ON/OFF ofthe unit for eah time period t; 3bin formulation, so alled beause it uses three vetorsof binary variables by adding to the state variables also the start-up vt and shut-down
wt variables. The basi onstraints of the 1bin and 3bin formulations are presented inAppendixA.In this paper, the following set of onstraints are modeled: generation limits, mini-mum up and down times, and start-up and shut-down apabilities. As shown in Figure 1,the start-up apability SU is the maximum power that a generating unit ould produewhen it starts up. Similarly, the unit should be produing below its shut-down apability
SD when it shuts down.



4First, we use the following onstraints, whih were proposed in [19℄ to desribe theonvex hull formulation of the minimum-up and -down time onstraints:
ut − ut−1 = vt − wt t = 2, . . . , T (1)

t∑

j=t−TU+1

vj ≤ ut t = 2, . . . , T (2)
t∑

j=t−TD+1

wj ≤ 1− ut t = 2, . . . , T (3)where inequalities in (2) state that in an interval of TU onseutive time periods a unitan be started-up at most one; inequalities (3) works similarly for the shut-down ase.Here, we present the formulation that we now denote as TC obtained by adding toonstraints (1)-(3) the following onstraints with start-up and shut-down apabilities:
p1 ≤

(
P − P

)
u1 −

(
P − SD

)
w2 (4)

pt ≤
(
P − P

)
ut −

(
P − SU

)
vt −

(
P − SD

)
wt+1 t = 2, . . . , T − 1 (5)

pT ≤
(
P − P

)
uT −

(
P − SU

)
vT (6)Constraint (5) states that the maximum power above the minimum output in period

t when the unit is started-up (e.g., ut = vt = 1 and wt+1 = 0) is equal to SU − P , whenthe unit is shut-down at time t+ 1 (e.g., ut = wt+1 = 1 and vt = 0) is equal to SD− P ,and when the unit is ontinuously online (e.g, ut = 1 and vt = wt+1 = 0) is equal to
P − P . Constraints (4) and (6) desribe the �rst and the last period ases.Be aware that (5) may be infeasible in the event that the unit is online for just oneperiod. Indeed, when vt = wt+1 = 1 the right side of (5) an be negative. Consequently,(5) is only valid for units with uptime TU ≥ 2. The orret formulation for units with
TU = 1 is given by substituting (5) with the following pair of onstraints:

pt ≤
(
P − P

)
ut −

(
P − SD

)
wt+1 −max (SD−SU, 0)vt t = 2, . . . , T − 1 (7)

pt ≤
(
P − P

)
ut −

(
P − SU

)
vt −max (SU−SD, 0)wt+1 t = 2, . . . , T − 1. (8)Finally, the variable bounds are given by

0 ≤ ut ≤ 1 t = 1, . . . , T (9)
vt ≥ 0, wt ≥ 0 t = 2, . . . , T (10)

pt ≥ 0 t = 1, . . . , T. (11)In summary, inequalities (4)-(6) together with inequalities (1)-(3) and (9)-(11) de-sribe the operations for units with TU ≥ 2, and inequalities (4), (6), (7), (8) togetherwith inequalities (1)-(3) and (9)-(11) for units with TU = 1. The main ontribution ofthis paper is that the polytopes thus desribed always have integral verties with respetto the binary variables.In Morales-Espana et al. [14℄ it was presented a slightly di�erent formulation, whereinstead of onstraints (7)-(8) the following ones were used:
pt ≤

(
P − P

)
ut −

(
P − SD

)
wt+1 t = 2, . . . , T − 1 (12)

pt ≤
(
P − P

)
ut −

(
P − SU

)
vt t = 2, . . . , T − 1. (13)



5Note that if SU =SD then (7)-(8) and (12)-(13) would be equivalent. We denote the oldformulation [14℄ with the latter onstraints as TC0.4. Strength of the proposed inequalitiesIn this setion, we prove that inequalities (1)-(11) desribe the onvex hull of thefeasible solutions. Note that onstraints (1) uniquely de�ne the value of the variables was a funtion of u and v. Unless di�erently spei�ed, in the following, we will onsider onlythe spae de�ned by the variables u, v, and p. Moreover, we suppose that all onstraints(3)-(5), (7)-(8), and (10) are rewritten by substituting the w variables aordingly.De�nition 1. Let CT

(
TU, TD, P, P , SU, SD

) be the onvex hull of the feasible integersolution for the problem. That is, for TU ≥ 2, we write
CT (TU ≥ 2, TD, P, P , SU, SD) =

conv{(u, v, p) ∈ {0, 1}2T−1 × R
T
+| (u, v, p) satisfy (1)-(6) and (9)-(11)};for TU = 1, we write

CT

(
TU = 1, TD, P, P , SU, SD

)
=

conv
{
(u, v, p) ∈ {0, 1}2T−1 × R

T
+| (u, v, p) satisfy (1)-(4), (6)-(8), and (9)-(11)}.For short we write CT for CT

(
TU, TD, P, P , SU, SD

), CT (TU ≥ 2) for CT (TU ≥

2, TD, P , P , SU, SD), and CT (TU = 1) for CT (TU = 1, TD, P, P , SU, SD).Proposition 2. dim(CT ) = 3T − 1 and thus CT is full-dimensional.Proposition 3. The inequalities (4), (6) and (11) desribe faets of the polytope CT .Moreover, inequalities (5) desribe faets of the polytope CT

(
TU ≥ 2

), and inequalities(7) and (8) desribe faets of the polytope CT

(
TU = 1

).The proofs of propositions 2 and 3 an be performed by exhibiting the right numberof a�nely independent points (details of the proofs an be requested to the authors).For the onvex hull proof, we need a preliminary lemma that is very easy to provefrom well-known results (we report a proof suggested by a referee for ompleteness):Lemma 4. Suppose that P = {x ∈ R
n|Ax ≤ b} is an integer polyhedron. Suppose that

y ∈ R
K are new variables and that Q = {(x, y) : dkx ≤ yk ≤ ckx, k = 1, . . . ,K}, with atmost one lower bound dkx and one upper bound ckx for eah variable yk. If dkx ≤ ckxfor eah x ∈ P , then P ∩Q has extreme points with x integer.Proof. Consider the linear program LP(P,Q): min{qx +

∑K

k=1
hkyk : (x, y) ∈ P ∩ Q}.We prove that for eah objetive funtion this LP has an integer solution with respetto x. Set yk = dkx if hk ≥ 0 and yk = ckx otherwise. Solve the resulting LP in the

x-spae. Then x is integer and the orresponding (x, y) is optimal for the linear programLP(P,Q).Theorem 5. Let DT

(
TU, TD, P, P , SU, SD

) be a polyhedron de�ned as follows:
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• for TU ≥ 2

DT

(
TU ≥ 2, TD, P, P , SU, SD

)
={

(u, v, p) ∈ [0, 1]2T−1 × R
T
+| (u, v, p) satisfy (1)-(6) and (9)-(11) } ;

• for TU = 1

DT

(
TU = 1, TD, P, P , SU, SD

)
={

(u, v, p) ∈ [0, 1]2T−1 × R
T
+| (u, v, p) satisfy (1)-(4), (6)-(8), and (9)-(11) } .Then CT

(
TU, TD, P, P , SU, SD

)
= DT

(
TU, TD, P, P , SU, SD

).Proof. As for CT , we use short notations DT , DT

(
TU ≥ 2

), and DT

(
TU = 1

). Theproof for TU ≥ 2 easily follows from Lemma 4. Indeed, DT

(
TU ≥ 2

) is desribed bythe inequalities (1)-(3) and (9)-(10), that desribe an integral polyhedron in u and v asproved in [19℄, together with inequalities (4)-(6) and (11) satisfying the hypothesis ofLemma 4.For TU = 1 let us suppose that SU ≥ SD. We follow Approah 8 in [23℄ (seeSetion 9.2.3, Problem 2, Approah 8). We �rst introdue an extended formulationof the problem, then we prove that the extended formulation is integral, and �nallywe prove that the projetion of the new polyhedron orrespond to DT

(
TU = 1

). Wedivide the proof into a series of laims. We de�ne the following new binary variables for
t = 2, . . . , T − 1: xt = 1 if and only if vt = 1 and wt+1 = 1, if and only if vt = 1 and
wt+1 = 0, if and only if vt = 0 and wt+1 = 1, if and only if ut = 1, vt = 0, and wt+1 = 0.Moreover, ũT = 1 if and only if uT = 1 and vT = 0.Claim 1. The polyhedron P de�ned by the points (u, v, w, ũ, ṽ, w̃, x) satisfying thefollowing inequalities is integral:

vt ≤ ut t = 2, . . . , T (14)
t∑

i=t−TD+1

wi ≤ 1− ut t ∈ [TD+ 1, T ] (15)
ut − ut−1 = vt − wt t ∈ [2, T ] (16)
wt+1 = w̃t+1 + xt t ∈ [2, T − 1] (17)

vt = ṽt + xt t ∈ [2, T − 1] (18)
ut = ṽt + w̃t+1 + xt + ũt t ∈ [2, T − 1] (19)

uT = vT + ũT (20)
0 ≤ ut ≤ 1 t ∈ [1, T ] (21)

vt, wt, ũt ≥ 0 t ∈ [2, T ] (22)
ṽt, xt ≥ 0 t ∈ [2, T − 1] (23)

w̃t ≥ 0 t ∈ [3, T ] (24)Proof of Claim 1. The proof is arried on by showing that the oe�ient matrixassoiated with the above linear system is totally unimodular.



7We exploit this well-known property (proved by Ghouila-Houri, see [17℄, ChapterIII.1, Theorem 2.7): let A be a {0, 1,−1}-matrix, if eah subset J of olumns of A anbe partitioned into J1 and J2 suh that
∣∣∣∣∣∣

∑

j∈J1

aij −
∑

j∈J2

aij

∣∣∣∣∣∣
≤ 1 (25)for eah row i, then A is totally unimodular. This part of the proof has been inspired bythe proof of Malkin [10℄ for the polyhedron de�ned by (1)-(3).First we assign the variables wi ∈ J alternatively to J1 and to J2 in lexiographiorder. Then the variables ut ∈ J are assigned either to J1 if wk ∈ J2, where k =

max{i|1 ≤ i ≤ t, wi ∈ J}, or to J2 if wk ∈ J1, or to the same set with respet to ut−1 if
{i|1 ≤ i ≤ t, wi ∈ J} is empty. Thus ondition (25) is satis�ed for onstraints (15).Variables vt ∈ J are assigned either to J1 if ut ∈ J1, or to J2 if ut ∈ J2, or to theopposite set with respet to ut−1 if ut /∈ J , or to the same set as wt if both ut−1, ut /∈ J .This ensures that ondition (25) is satis�ed for onstraints (14) and (16).If vt, wt+1 ∈ J , then assign ṽt ∈ J to the same subset as vt, xt ∈ J to the opposite setwith respet to ṽt, and w̃t ∈ J to the same subset as wt. These assignments guaranteethat ondition (25) is satis�ed for onstraints (17) and (18) both in the ase that vt and
wt+1 are in the same set or in di�erent sets. Moreover, the assignment for ũt an behosen to satisfy ondition (25) for onstraints (19). If one between vt and wt+1 doesnot belong to J then proeed as follows: suppose w.l.o.g. that vt /∈ J , then assign wt+1,
w̃t+1, and ṽt to the same set and xt to the other set, then ũt an be hosen to satisfyondition (25) for onstraints (19). Similar hoies an be done if some of the variables
ṽt, w̃t+1, xt, ũt do not belong to J and the laim follows. End of Claim 1.Then we de�ne the polyhedron Q̃ by adding to (14)-(24)

pvt ≤ (SU − P )ṽt t ∈ [2, T − 1] (26)
pxt ≤ (SD − P )xt t ∈ [2, T − 1] (27)

pwt ≤ (SD − P )w̃t+1 t ∈ [2, T − 1] (28)
put ≤ (P − P )ũt t ∈ [2, T ] (29)

pvT ≤ (SU − P )vT (30)
p1 ≤ (P − P )u1 − (P − SD)w2 (31)where pv, px, pw, pu and p1 are new non-negative variables.Claim 2. The polyhedron Q̃ is integral with respet to variables u, v, w, x, ũ, ṽ, w̃.End of Claim 2.Claim 2 follows by applying Lemma 4 to the polyhedron P of Claim 1. Then wede�ne the polyhedron Q by adding to (14)-(24),(26)-(31)
pt = pvt + pxt + pwt + put t ∈ [2, . . . , T − 1] (32)

pT = pvT + puT (33)where pt for t ∈ [2 . . . T ] are non-negative variables.Claim 3. The polyhedron Q is integral with respet to variables u, v, w, x, ũ, ṽ, w̃.End of Claim 3.



8Claim 3 follows from Claim 2 and by the straightforward extension of Lemma 4, wherethe role of P is played by the integral polyhedron Q̃. Finally we prove thatClaim 4. The projetion of Q onto the spae of variables u, v, p is equivalent to DT .Proof of Claim 4. We start by eliminating the variables pvt , pxt , pwt , and put by simplysubstituting onstraints (32)-(33) with the following:
pt ≤(SU − P )ṽt + (SD − P )xt + (SD − P )w̃t+1 + (P − P )ũt t ∈ [2, T − 1] (34)
pT ≤(SU − P )vT + (P − P )ũT , (35)whih are obtained by using onstraints (26)-(30).Now, we replae ũT from (20) in (35) to obtain pT ≤

(
P − P

)
uT −

(
P − SU

)
vTthat oinides with (6). Then we eliminate variables in (34) aording to the followingorder: ũt by using the equation (19); w̃t+1 by using the equation (17); ṽt by using theequation (18). It is not di�ult to see that for t ∈ [2, T − 1] we obtain the followingonstraints:

pt ≤(P − P )ut − (P − SU)vt − (P − SD)wt+1 + (P − SU)xt (36)
xt ≥0 (37)
xt ≥vt + wt+1 − ut (38)
xt ≤vt (39)
xt ≤wt+1.. (40)Now we an apply Fourier-Motzkin elimination to variables xt by onsidering thefollowing pairs of onstraints: (i) from onstraints (39) and (36) we obtain we obtain

vt ≥ 0; and (38) we obtain (iv) from onstraints (40) and (36) we obtain we obtain
wt+1 ≥ 0; and (38) we obtain ut ≥ vt. Finally, the laim follows by observing that (31)oinides with (4). End of Claim 4.From Claim 4 it follows that DT is integral with respet to the variables u and v.The proof for SD ≥ SU an be performed in a symmetri way.5. Numerial ResultsTo illustrate the omputational performanes of the formulation presented in thispaper, three sets of ase studies are arried out: one for a self-UC problem and twoothers for a network-onstrained UC problem. This setion ompares the omputationalperformane of the proposed TC formulation with two other formulations, [1℄ and [18℄,whih have been reognized as omputationally e�ient in the literature [16, 14, 21℄.The following three formulations are then implemented:

• TC : This is the omplete formulation presented in this paper. For the network-onstrained UC, we inlude other ommon onstraints suh as demand-balane,reserves, ramping and transmission limits. The omplete network-onstrained UCis presented in AppendixB.
• 1bin: This formulation is presented in [1℄ and requires a single set of binary variables(per unit and per period), i.e., the start-up and shut-down deisions are expressedas a funtion of the ommitment deision variables.



5.1 Self-UC 9Table 1: Generator DataTehnial Information Cost Coe�ients†Gen P P TU/TD SU SD p0* Ste0⋆ CNL CLV CSU[MW℄ [MW℄ [h℄ [MW℄ [MW℄ [MW/h℄ [h℄ [$/h℄ [$/MWh℄ [$℄1 455 150 8 252 303 150 8 1000 16.19 90002 455 150 8 252 303 150 8 970 17.26 100003 130 20 5 57 75 20 5 700 16.60 11004 130 20 5 57 75 20 5 680 16.50 11205 162 25 6 71 94 25 6 450 19.70 18006 80 20 3 40 50 20 3 370 22.26 3407 85 25 3 45 55 25 3 480 27.74 5208 55 10 1 25 33 10 1 660 25.92 609 55 10 1 25 33 10 1 665 27.74 6010 55 10 1 25 33 10 1 670 27.79 60* p0 is the unit's initial prodution prior to the �rst period of the time span.
⋆Ste0 is the number of hours that the unit has been online prior to the �rst period of the time span.
†CNL, CLV and CSU stand for non-load, linear-variable and startup osts, respetively.Table 2: Energy Prie ($/MWh)
t = 1 . . . 12 → 13.0 7.2 4.6 3.3 3.9 5.9 9.8 15.0 22.1 31.3 33.2 24.8
t = 13 . . . 24 → 19.5 16.3 14.3 13.7 15.0 17.6 20.2 29.3 49.5 53.4 30.0 20.2
• 3bin: The onvex hull of the minimum up/down time onstraints proposed in [19℄(see (1)-(3) and (9)-(10)) are implemented with the three-binary formulation. Thisformulation is presented in [18℄Notie that di�erent set of onstraints are used for the self-UC and for the network-onstrained UC problems. For the self-UC problems, 1bin and 3bin are modeled onlyonsidering 1) generation limits, 2) minimum up and down times, and 4) start-up andshut-down apabilities. For the network-onstrained UC problems, 1bin and 3bin aremodeled taking into aount the full set of onstraints presented in [1℄ and its 3binequivalent [18℄, respetively; in addition, these formulations are further extended byintroduing downwards reserve (whih is modeled in the same fashion as the upwardsreserve, see AppendixB), transmission limits (see (B.5) in AppendixB), and wind gener-ation (whih is taken into aount in the demand-balane (B.2) and transmission-limitonstraints (B.5)).All tests were arried out using CPLEX 12.5 on an Intel-i7 3.4-GHz personal omputerwith 8 GB of RAMmemory. The problems are solved until they hit the time limit of 10000seonds or until they reah optimality (more preisely to 10−4% of relative optimalitygap).5.1. Self-UCWe illustrate the omputational performane of the formulation proposed in this paperby solving the self-UC problem for a prie-taker produer for di�erent time spans. Thegoal of a prie-taker produer is to maximize his pro�t (whih is the di�erene betweenthe revenue and the total operating ost [15℄) during the planning horizon:



5.1 Self-UC 10Table 3: Self-UC: Computational Performane ComparisonCase Optimum IntGap (%) LP time (s) MIP time (s)* B&C Nodes(days) (M$) TC TC0 3bin 1bin TC TC0 3bin 1bin TC TC0 3bin 1bin TC TC0 3bin 1bin64 7.259361 0 0.09 0.88 2.57 0.57 0.47 0.80 0.95 0.57 1.92 12.01 13.79 0 0 496 487128 14.517096 0 0.09 0.87 2.57 1.17 1.20 2.06 2.60 1.17 4.81 45.54 (0.033) 0 0 528 603915256 29.032567 0 0.09 0.87 2.57 3.16 3.29 5.38 6.88 3.16 7.75 199.18 (0.052) 0 0 533 229035512 58.063509 0 0.09 0.87 2.57 8.08 8.39 14.29 18.83 8.08 17.29 734.03 (0.054) 0 0 488 136128* If the time limit is reahed then the �nal % of optimality tolerane is shown between parentheses
max

T∑

t=1

G∑

g=1

[
πt

[
ugtP g + pgt

]
−
(
CNL

g ugt + CLV
g

[
ugtP g + pgt

]
+ CSU

g vgt + CSD
g wgt

)](41)where subsript g stands for generating units and G is the number of units; πt refers tothe energy pries; CNL
g , CLV

g , CSU
g and CSD

g are the non-load, linear-variable, start-up andshut-down osts of unit g, respetively (for this ase study CSD
g = 0 for all units). Theobjetive funtion (41) is optimized over the solution set desribed by generation limits,start-up and shut-down apabilities, and minimum up and down times onstraints. Theself-UC also arises when solving UC with deomposition methods suh as LagrangianRelaxation [5, 3℄ (where the pries are the Lagrangian multipliers).The 10-unit system data is presented in Table 1 and the energy pries are shown inTable 2. The power system data are based on information presented in [1, 14℄.Here, apart from TC, 1bin and 3bin, the tight and ompat formulation presented in[14℄, labeled as TC0, is also implemented. It is important to note that the formulationTC0 uses onstraints (12) and (13) instead of (7) and (8) for units with TU = 1. Apartfrom those onstraints, TC and TC0 are idential. Note however that (7) and (8) areneeded to desribe the onvex hull, as proved in Setion 4.Table 3 shows the omputational performanes for four ases with di�erent time spans.All formulations ahieve the same MIP optimum sine all of them model the same MIPproblem. However, they present di�erent LP optimums, the relative distane betweentheir MIP and LP optimums is measured with the Integrality Gap [22, 14℄. Note that theMIP optimums of TC were ahieved by just solving the LP over (1)-(11), IntGap=0,hene solving the problems in LP time. On the other hand, as usual, the branh-and-utmethod was needed to solve the MIP for TC0, 3bin and 1bin. Table 3 also shows the MIPtime and B&C nodes explored that were required by the di�erent formulations to reahoptimality. It is interesting to note that although TC0 reahed optimality exploring zeroB&C nodes, TC0 needed to make use of the solver's utting planes strategy beause therelaxed LP solution did not ahieve the integer one, IntGap 6=0 (the solver used 227 and1224 uts for the smallest and largest ase, respetively). This tightening proess tookmore time than the time required to solve the initial LP relaxation, that is why the MIPtime for TC0 is more than twie its LP relaxation time.Table 4 shows the dimensions of all the formulations for four seleted instanes. Notethat TC and TC0 are more ompat, in terms of quantity of onstraints and nonzeroelements, than 3bin and 1bin. The formulation 1bin presents a third of binary variables



5.2 Network-Constrained UC 11Table 4: Self-UC: Problem Size ComparisonCase # onstraints # nonzero elements # real var # binary var(days) TC* 3bin 1bin TC TC0 3bin 1bin TC† 1bin TC† 1bin64 65997 107459 138225 338994 334389 417313 469719 15360 46080 46080 15360128 132045 214979 276465 678450 669237 835105 939735 30720 92160 92160 30720256 264141 430019 552945 1357362 1338933 1670689 1879767 61440 184320 184320 61440512 528333 860099 1105905 2715186 2678325 3341857 3759831 12288 368640 368640 122880* TC is equal to TC0 for these ases
†TC, TC0 and 3bin are equal for these asesin omparison with the other formulations, but 3 times more ontinuous variables. Thisis beause the work in [1℄ reformulated the units' operation model to avoid the start-upand shut-down binary variables, laiming that this would redue the node enumerationin the branh-and-bound proess. Note however that this reformulation onsiderablydamaged the strength of 1bin, hene it presented the worst omputational performane,similar results are obtained in [18, 14℄. The formulation 1bin presents more ontinu-ous variables than the other formulations beause it requires the introdution of newontinuous variables to model the start-up and shut-down osts of the generating units.In onlusion, TC presents a dramati improvement in omputation in omparisonwith 3bin and 1bin due to its tightness (speedups above 90x and 8500x, respetively);and it also presents a lower LP burden due to its ompatness, see Table 4. Comparedwith TC0, the formulation TC is tighter; onsequently, TC requires less time to solvethe MIP problem (speedup above 4.1x).5.2. Network-Constrained UCHere, two IEEE systems are used for di�erent time spans, from 24 to 96 hours, theIEEE 118-bus system and the IEEE 73-bus reliability test system. All data for these twosystems an be found in [11℄ and [24, 7℄, respetively. The IEEE-118 bus system has 118buses; 186 transmission lines; 54 thermal units; 91 loads, with average and maximumlevels of 3991 MW and 5592 MW, respetively; and three wind generation units, withaggregated average and maximum prodution of 867 MW and 1333 MW, respetively.For this system, the upwards and downwards reserve requirement are set as the 5% ofthe total expeted wind prodution for eah hour.The IEEE 73-bus reliability test system has 73 buses; 120 transmission lines; 99thermal units; 51 loads, with average and maximum levels of 7094 MW and 8547 MW,respetively; and no wind generation. For this system, the upwards and downwardsreserve requirement are set as the 1% of the total expeted demand for eah hour.Bear in mind that the network-onstrained UC problem is onsiderably more omplexthan the self-UC problem, desribed in Subsetion 5.1, due to the new ompliatingonstraints that are now inluded (into all the formulations), suh as demand-balane,reserves, ramping and transmission limits (see AppendixB).Table 5 shows the problem size for all formulations for the two IEEE systems. Thistable shows the problem size for a time span of 24 hours, larger problem sizes are pro-portional (approximately) to the quantity of hours. On the other hand, there is no diretsize relation between the two systems beause they have di�erent proportions in thermal



5.2 Network-Constrained UC 12Table 5: IEEE 118-bus & 73-bus Systems: Problem Size Comparison of the UC Formulations for a TimeSpan of 24 hours # onstraints # nonzero elements # real var # binary varSystem TC 3bin 1bin TC 3bin 1bin TC 3bin 1bin TC* 1binIEEE 118-bus 15903 37803 38141 536815 473791 472969 8424 9720 11016 3888 1296IEEE 73-bus 23425 82846 83524 581704 786268 786310 11862 12384 14760 7110 2358* TC is equal to 3bin for these asesTable 6: IEEE 118-bus System Results: Computational Performane of The UC Formulations for Dif-ferent Time SpansOptimum IntGap (%) LP time (s) MIP time (s)* B&C Nodeshours M$ TC 3bin 1bin TC 3bin 1bin TC 3bin 1bin TC 3bin 1bin24 0.826814 0.53 1.13 1.75 0.33 2.48 2.9 4.13 585.22 (0.094) 77 93285 88961048 1.649732 0.49 0.70 1.37 1.17 17.88 19.19 26.15 (0.095) (0.269) 546 260545 4011572 2.472651 0.46 0.56 1.24 2.57 40.59 57.21 474.85 (0.136) (0.336) 2411 50593 2065796 3.295570 0.44 0.48 1.18 4.29 93.85 102.79 1193.92 (0.180) (0.317) 4295 40601 14605* If the time limit (10000 s) is reahed then the �nal % of optimality tolerane is shown between parenthesesand wind units as well as transmission lines. For example, the IEEE 73-bus system has45 (83%) more units than the IEEE 118-bus system, but 66 (35%) less transmissionlines. Similarly to the self-UC ase study (Subsetion 5.1), TC is more ompat thanthe others, in terms of quantity of onstraints. For the IEEE 118-bus system, having alarger number of transmission lines, TC presents more nonzeros than the others beauseTC uses P gugt + pgt, whih appear in eah of the line onstraints, to represent the totalunit's prodution, unlike other formulations that use one variable to represent the totalprodution. Beware, however, that a new variable ould be introdued representing thetotal unit's prodution, thus dereasing the number of nonzeros but this will inrease thenumber of variables and onstraints. Despite this inrease in nonzeros, the LP omplex-ity of TC for the IEEE 118-bus system is signi�antly lower than that of both 3bin and1bin, whih took in average 15.1 and 17.9 times longer than TC to solve the LP problem,respetively (see Table 6). Similarly, for the IEEE 73-bus system, TC ould solve the LPproblem in average 15.6 and 14.2 times faster than 3bin and 1bin, respetively (see Ta-ble 7). In short, TC presents a lower LP burden than the others due to its ompatness,as also onluded in the self-UC ase in Subsetion 5.1.Table 6 and Table 7 show the omputational performane of the network-onstrainedUC problem for both IEEE test systems and for all formulations and di�erent time spans(up to 96 hours). For these experiments, TC is the tightest formulation sine its IntGapis always lower than that of 1bin and 3bin. On the other hand, although 1bin has athird of binary variables in omparison with the others, it has the largest quantity ofonstraints and it is the least tight (see IntGap Table 6); onsequently, presenting theworst omputational performane, as also disussed in Subsetion 5.1.Interestingly, for the IEEE 118-bus system, all three formulations ahieved the sameoptimum integer solution (all of them model the same integer problem), although TC wasthe only formulation that ould prove optimality within the time limit. 3bin ould proveoptimality for only one ase, the smallest ase; and 1bin ould not prove optimality for



5.2 Network-Constrained UC 13Table 7: IEEE 73-bus System Results: Computational Performane of The UC Formulations for Di�erentTime SpansOptimum IntGap (%) LP time (s) MIP time (s)* B&C Nodeshours M$ TC 3bin 1bin TC 3bin 1bin TC 3bin 1bin TC 3bin 1bin24 1.695434 0,02 0.23 1.18 0.36 1.42 1.31 22.60 (0.107) (0.134) 24510 1009500 89706348 3.327422 0,02 0.24 1.13 0.80 15.3 9.66 123.17 (0.151) (0.180) 22378 245587 26465372 4.959410 0,02 0.24 1.11 1.33 22.14 21.87 (0.010) (0.187) (0.239) 1245643 100358 2775696 6.591398 0,02 0.24 1.10 1.97 45.07 48.66 (0.012) (0.175) (0.374) 655694 12768 2363* If the time limit (10000 s) is reahed then the �nal % of optimality gap is shown between parenthesesTable 8: IEEE 118-bus and 73-bus System Results: Computational Performane of TC for 0.05% ofOptimality Gap and Di�erent Time SpansMIP time (s) Optimality Gap (%) B&C Nodeshours 118-bus RTS-96 118-bus RTS-96 118-bus RTS-9624 3.45 3.54 0.030 0.045 0 548 9.25 7.94 0.036 0.032 0 072 68.2 13.09 0.034 0.049 625 096 167.44 45.76 0.041 0.049 560 490any of the ases. Notie that due to the tightness, TC ould prove optimality exploringonsiderably fewer B&C nodes less than (an order of magnitude) 3bin and 1bin, whihould not even onverge to optimality.For the IEEE 118-bus system, TC always found better integer solutions (reported inTable 6) than the other formulations. 3bin and 1bin ould not prove optimality for anyof the ases. TC ould prove optimality for the two smallest ases, where TC exploredfewer nodes than the others, whih ould not even reah optimality. For the two largestases, none of the formulations ould reah optimality, but TC was an order of magnitudenearer to optimality. Also notie that for these two large ases, TC ould explore morenodes within the time limit due to its ompatness, whih lower the LP omplexity solvedduring the iterations.Table 6 and Table 7 show the omputational performane of the UC formulationstrying to reah optimality (more preisely to 10−4% of relative optimality gap) within a10000 seonds time limit. Notie that 1bin ould only reah optimality gaps above 0.13%for 7 out of 8 ases, and in the best ase the optimality gap was above 0.09%. Similarly,3bin presented optimality gaps above 0.09% for 7 of the ases. In short, only 3bin ouldreah an optimality gap below 0.09% in just one ase. To observe the performane of TCaround these orders of magnitude of optimality gaps, Table 8 shows the performane ofTC for a requiered optimality gap of 0.05% for the two IEEE test systems. Notie that4 ases ould even be solved before branhing (0 B&C nodes), 5 ases were solved in lessthan 15 seonds, and all the ases ould be solved in less than 170 seonds, unlike 3binand 1bin whih ould not reah that low optimality gaps within 10000 seonds. Due tothe simultaneous tightness and ompatness, TC ould reah 0.05% optimality toleranefor four ases (one for the IEEE 118-bus system and three for the IEEE 73-bus system)in less time than that required by 1bin and 3bin to solve their LP problem.Furthermore, for the IEEE 73-bus system, TC presented better (higher) lower bounds



14Table 9: IEEE 73-bus System: Initial vs. Final Lower Bounds of UC formulations for Di�erent TimeSpans LP Relaxations (M$) Final best lower bound (M$)hours TC 3bin 1bin TC 3bin 1bin24 1.695161 1.691586 1.675454 1.695434 1.693621 1.69316748 3.326716 3.319535 3.289971 3.327422 3.322417 3.3214472 4.958264 4.947482 4.904489 4.958887 4.951332 4.94753296 6.589812 6.575429 6.519006 6.590607 6.57985 6.569458in the initial LP relaxation than the �nal lower bounds found by 3bin and 1bin withinthe time limit, as shown in Table 9 (this was not the ase for the IEEE 118-bus system).Thanks to the onvex hull provided in this paper, for the IEEE 73-test system, TC ouldprovide initial lower bounds, in less than 2 seonds (see LP time in Table 7), whih werebetter than the �nal lower bounds obtained by 3bin and 1bin within 10000 seonds.6. ConlusionThis paper presented the onvex hull desription of the single thermal Unit Com-mitment problem with the following basi onstraints: generation limits, start-up andshut-down apabilities, and minimum up and down times. The model does not inludesome ruial onstraints, suh as ramping, but the proposed onstraints an be used asthe ore of any UC formulation and they an help to tighten the �nal UC model.Computational experiments have been arried out among the new proposed formu-lation and two previous formulations alled 1bin and 3bin onsidering two Unit Com-mitment variants: the self-UC and the network-onstrained UC problems. For bothproblems, the new proposed formulation presents a dramati improvement in omputa-tion in omparison with 3bin and 1bin due to its tightness; and it also presents a lowerLP burden due to its ompatness (see Table 4 and Table 5).AknowledgmentsThe authors thank Laurene Wolsey, Santanu Dey, Antonio Frangioni, and PaoloVentura for useful disussions on the paper.AppendixA. 1bin and 3bin UC formulationsThis setion presents the basi onstraints for the 1bin and 3bin UC formulations. Thenomenlature used here is the same one presented in Setion 2, the new nomenlature isde�ned one it is introdued. It is important to highlight that 1bin and 3bin formulationsonsider the total energy prodution variable p̂t from 0 to P , unlike the formulationpresented in this paper where pt represents the energy prodution above P .



AppendixA.1 1bin formulation 15AppendixA.1. 1bin formulationThe 1bin formulation is the following (see Carrion and Arroyo [1℄):
Put ≤ p̂t ≤ Put t = 1, . . . , T
p̂t ≤ p̂t−1 +RUut−1 + SU(ut − ut−1) + P (1− ut) t = 2, . . . , T

p̂t−1 ≤ p̂t +RDut + SD(ut−1 − ut) + P (1− ut−1) t = 2, . . . , T∑G

j=1
(1− uj) = 0∑t+TU−1

j=t uj ≥ TU(ut − ut−1) t = G+ 1, . . . , T − TU + 1∑T

j=t [uj − (ut − ut−1)] ≥ 0 t = T − TU + 2, . . . , T∑L

j=1
uj = 0∑t+TD−1

j=t (1 − uj) ≥ TD(ut−1 − ut) t = L+ 1, . . . , T − TD+ 1∑T

j=t [1− uj − (ut−1 − ut)] ≥ 0 t = T − TD+ 2, . . . , T

suct ≥ CSU (ut − ut−1) t = 2, . . . , T
sdct ≥ CSD(ut−1 − ut) t = 2, . . . , T
0 ≤ ut ≤ 1 t = 1, . . . , T (A.1)where G = min{T, (TU − τ0)u0} and L = min{T, (TD+ τ0)(1 − u0)} are the minimumnumber of time instants the unit must be initially on or o�, respetively (τ0 indiatesthe number of time instants the unit has been on prior to time 0 if τ0 > 0, while −τ0indiates the number of time instants the unit has been o� prior to time 0 if τ0 < 0).Note that 1bin models the unit's start-up and shut-down apabilities inside theramping onstraints. For the set of experiments presented in 5.1, where no ramp-ing onstraints are onsidered, the ramping onstraints of 1bin were adapted to onlymodel the start-up and shut-down apabilities. Therefore, the onstraints for the unit'sstart-up and shut-down apability beome p̂t ≤ SU(ut − ut−1) + P (1 + ut−1 − ut) and

p̂t−1 ≤ SD(ut−1 − ut) + P (1 + ut − ut−1), respetively.AppendixA.2. 3bin formulationThe 3bin formulation is the following Ostrowski et al. [18℄:
Put ≤ p̂t ≤ Put t = 1, . . . , T
p̂t ≤ p̂t−1 +RUut−1 + SUvt t = 2, . . . , T
p̂t−1 ≤ p̂t +RDut + SDwt t = 2, . . . , T

(A.2)where the minimum up and down onstraints are guaranteed using (1)-(3), and the initialonditions of those onstraints are ensured in the same way as 1bin (see AppendixA.1).Similarly to 1bin, 3bin also models the unit's start-up and shut-down apabilitiesinside the ramping onstraints. Then, for the set of experiments presented in 5.1, theramping onstraints of 3bin were adapted to only model the start-up and shut-downapabilities. Therefore, the onstraints for the unit's start-up and shut-down apabilitybeome p̂t ≤ Put−1 + SUvt and p̂t−1 ≤ Put + SDvt , respetively.Note that, unlike 1bin, 3bin and TC do not need extra variables suct and stdt for thestart-up and shut-down osts sine these osts an be diretly expressed with variables
vt and wt and inluded in the objetive funtion, see (41).



16AppendixB. Network-Constrained UC FormulationHere, we present the network-onstrained UC formulation, of whih ore is based onthe tight and ompat model presented in Setion 3. Although some nomenlature andonstraints were introdued before, for the sake of larity and ompleteness, this setionprovides the omplete nomenlature and set of onstraints. In the following, we presentthe additional needed notations beyond the ones presented in Setion 2.AppendixB.1. NomenlatureIndexes and Sets
b ∈ B Buses, running from 1 to B.
BW Set of buses in B with wind power injetion.
l ∈ L Transmission lines, running from 1 to L.
t ∈ T Hourly periods, running from 1 to T hours.System Parameters
Dbt Energy demand on bus b at the end of hour t [MW℄.
D−

t /D+
t System requirements for downward/upward reserve for hour t [MW℄.

F l Power �ow limit on transmission line l [MW℄.
Γlb/ΓG

lg Shift fator for line l assoiated with bus b / unit g [p.u.℄.
PW
bt Nominal foreasted wind energy for hour t [MW℄.Unit's Parameters

CLV
g Linear variable prodution ost [$/MWh℄.

CNL
g Non-load ost [$/h℄.

CSD
g /CSU

g Shut-down / Sart-up ost [$℄.
RDg/RUg Ramp-down/ramp-up apability [MW/h℄.Deision Variables
pWbt Wind energy output for hour t [MW℄.
r−gt/r+gt Downwards/upwards power reserve [MW℄.AppendixB.2. Objetive FuntionThe UC seeks to minimize all prodution osts:

min
∑

g∈G

∑

t∈T

[
CLV

g

(
P gugt + pgt

)
+ CNL

g ugt + CSU
g vgt + CSD

g wgt

] (B.1)The proposed formulation also takes into aount variable start-up osts, whih de-pend on how long the unit has been o�ine. The reader is referred to [15, 14℄ for furtherdetails.



AppendixB.3 System-wide Constraints 17AppendixB.3. System-wide ConstraintsEnergy demand balane and upward/downward reserves requirements are guaranteedas follows:
∑

g∈G

(
P gugt + pgt

)
=

∑

b∈B

Dbt −
∑

b∈BW

pWbt ∀t (B.2)
∑

g∈G

r+gt ≥ D+
t ∀t (B.3)

∑

g∈G

r−gt ≥ D−
t ∀t (B.4)Transmission limits are ensured with:

−F l ≤
∑

g∈G

ΓG
lg

(
P gugt + pgt

)
+

∑

b∈BW

Γlbp
W
bt −

∑

∀b∈B

ΓlbDbt ≤ F l ∀l, t (B.5)AppendixB.4. Individual Unit ConstraintsThe ommitment, start-up/shut-down logi and the minimum up/down times areguaranteed by onstraints (1)-(3) repliated for eah generation unit g and where theinitial onditions for the minimum up/down onstraints are detailed in [14℄. Basially,
ugt is �xed (beome onstant) to 0 or 1 for the initial periods where the unit must remaino�ine or online, respetively.The energy prodution and reserves must be within the power apaity limits:

pgt + r+gt ≤
(
P g − P g

)
ugt −

(
P g − SDg

)
wg,t+1

−max (SDg−SUg, 0) vg,t ∀g∈G1, t (B.6)
pgt + r+gt ≤

(
P g − P g

)
ugt −

(
P g − SUg

)
vgt

−max (SUg−SDg, 0)wg,t+1 ∀g∈G1, t (B.7)
pgt + r+gt ≤

(
P g − P g

)
ugt −

(
P g − SUg

)
vgt

−
(
P g − SDg

)
wg,t+1 ∀g /∈G1, t (B.8)

pgt − r−gt ≥ 0 ∀g, t (B.9)where G1 is de�ned as the units in G with TUg=1.Ramping apability limits are ensured with:
(
pgt + r+gt

)
− pg,t−1 ≤ RUg ∀g, t (B.10)

−
(
pgt − r−gt

)
+ pg,t−1 ≤ RDg ∀g, t (B.11)notie that by modeling the generation output pgt above P g, the proposed formulationavoids introduing binary variables into the ramping onstraints (B.10) and (B.11), unlike1bin and 3bin, see AppendixA.1 and AppendixA.2, respetively. In other words, whenthe generation output variable is de�ned between 0 and P g, then the ramping onstraintsshould onsider the ase when a generator's output level should not be limited by theramp rate, when it is starting up or shutting down; suh ompliating situations are



AppendixB.4 Individual Unit Constraints 18usually takled by introduing big-M parameters together with binary variables into theramping onstraints.Wind prodution limits are represented by:
pWbt ≤ PW

bt ∀b ∈ BW, t (B.12)Finally, non-negative onstraints for all deision variables:
pgt, r

+
gt, r

−
gt ≥ 0 ∀g, t (B.13)

pWbt ≥ 0 ∀b ∈ BW, t (B.14)Referenes[1℄ Carrion, M., Arroyo, J., 2006. A omputationally e�ient mixed-integer linear formulation for thethermal unit ommitment problem. IEEE Transations on Power Systems 21 (3), 1371�1378.[2℄ Dami, P., Kuukyavuz, S., Rajan, D., Atamtu, A., 2015. A polyhedral study of prodution ramping.Mathematial Programming, to appear.[3℄ Frangioni, A., Gentile, C., 2006. Solving nonlinear single-unit ommitment problems with rampingonstraints. Operations Researh 54 (4), 767�775.[4℄ Frangioni, A., Gentile, C., 2015. An extended mip formulation for the single-unit ommitment prob-lem with ramping onstraints. 17th British-Frenh-German onferene on Optimization, London,June 15-17.[5℄ Frangioni, A., Gentile, C., Laalandra, F., 2008. Solving unit ommitment problems with generalramp onstraints. International Journal of Eletrial Power & Energy Systems 30 (5), 316�326.[6℄ Frangioni, A., Gentile, C., Laalandra, F., 2009. Tighter approximated MILP formulations for unitommitment problems. IEEE Transations on Power Systems 24 (1), 105�113.[7℄ Hedman, K., Ferris, M., O'Neill, R., Fisher, E., Oren, S., May 2010. Co-Optimization of Gener-ation Unit Commitment and Transmission Swithing With N-1 Reliability. Power Systems, IEEETransations on 25 (2), 1052 �1063.[8℄ Knueven, B., Ostrowski, J., Wang, J., 2015. Constrained minkowski sums of polyhedrawith an appliation in unit ommitment. Optimization Online ( http://www.optimization-online.org/DB_FILE/2015/09/5099.pdf ).[9℄ Lee, J., Leung, J., Margot, F., 2004. Min-up/min-down polytopes. Disrete Optimization 1 (1),77�85.[10℄ Malkin, P., 2003. Minimum runtime and stoptime polyhedra. manusript.[11℄ Morales-España, G., Sep. 2014. Unit Commitment: Computational Performane, System Repre-sentation and Wind Unertainty Management. Ph.D. thesis, Ponti�al Comillas University, KTHRoyal Institute of Tehnology, and Delft University of Tehnology, Spain.[12℄ Morales-Espana, G., Correa-Posada, C. M., Ramos, A., 2015. Tight and Compat MIP Formulationof Con�guration-Based Combined-Cyle Units. IEEE Transations on Power Systems PP (99), 1�10.[13℄ Morales-España, G., Gentile, C., Ramos, A., 2015. Tight MIP formulations of the power-based unitommitment problem. OR Spetrum 37 (4), 929�950.[14℄ Morales-Espana, G., Latorre, J., Ramos, A., 2013. Tight and ompat MILP formulation for thethermal unit ommitment problem. IEEE Transations on Power Systems 28 (4), 4897�4908.[15℄ Morales-Espana, G., Latorre, J. M., Ramos, A., 2013. Tight and ompat MILP formulation ofstart-up and shut-down ramping in unit ommitment. IEEE Transations on Power Systems 28 (2),1288�1296.[16℄ Morales-Espana, G., Ramos, A., Garia-Gonzalez, J., 2014. An MIP formulation for joint market-learing of energy and reserves based on ramp sheduling. IEEE Transations on Power Systems29 (1), 476�488.[17℄ Nemhauser, G. L., Wolsey, L. A., 1999. Integer and ombinatorial optimization. John Wiley andSons, New York.[18℄ Ostrowski, J., Anjos, M. F., Vannelli, A., 2012. Tight mixed integer linear programming formula-tions for the unit ommitment problem. IEEE Transations on Power Systems 27 (1), 39�46.



AppendixB.4 Individual Unit Constraints 19[19℄ Rajan, D., Takriti, S., 2005. Minimum Up/Down polytopes of the unit ommitment problem withstart-up osts. Researh Report RC23628, IBM.URL http://domino.researh.ibm.om/library/yberdig.nsf/1e4115aea78b6e785256b360066f0d4/db02a7809d89e8525702300502a0?OpenDoument[20℄ Silbernagl, M., Huber, M., Brandenberg, R., 2014. Improving auray and e�ieny of start-upost formulations in mip unit ommitment by modeling power plant temperatures. arXiv:14082644[math℄ http://arxiv.org/abs/1408.2644.[21℄ Tahanan, M., Akooij, W. v., Frangioni, A., Laalandra, F., 2015. Large-sale Unit Commitmentunder unertainty. 4OR, 1�57.[22℄ Williams, H. P., 2013. Model Building in Mathematial Programming, 5th Edition. John Wiley &Sons In.[23℄ Wolsey, L., 1998. Integer Programming. Wiley-Intersiene.[24℄ Wong, P., Albreht, P., Allan, R., Billinton, R., Chen, Q., Fong, C., Haddad, S., Li, W., Mukerji,R., Patton, D., Shneider, A., Shahidehpour, M., Singh, C., Aug. 1999. The IEEE Reliability TestSystem-1996. A report prepared by the Reliability Test System Task Fore of the Appliation ofProbability Methods Subommittee. IEEE Transations on Power Systems 14 (3), 1010�1020.

http://domino.research.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/cdcb02a7c809d89e8525702300502ac0?OpenDocument
http://domino.research.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/cdcb02a7c809d89e8525702300502ac0?OpenDocument

	Introduction
	Notation
	Unit's Technical Parameters
	Decision Variables

	Modeling the Unit's Operation
	Strength of the proposed inequalities
	Numerical Results
	Self-UC
	Network-Constrained UC

	Conclusion
	1bin and 3bin UC formulations
	1bin formulation
	3bin formulation

	Network-Constrained UC Formulation
	Nomenclature
	Objective Function
	System-wide Constraints
	Individual Unit Constraints

	References

