
Machine Learning for
Combinatorial Optimization

Andrea Lodi

(joint work with Y. Bengio & A. Prouvost)

MINOA Training School - Ischia - June 26, 2019

�1

Too long

• Expert knowledge of how to
make decisions

• Too expensive to compute

• Need for fast approximation

Too heuristic

• No idea which strategy will
perform better

• Need a well performing policy

• Need to discover policies

Requirement

• We want to keep the guarantees provided by exact OR
algorithms (feasibility, optimality)

The structure hypothesis

• We do not care about most instances that could exist;

• Instead, we look at problem instances as data points from
a specific, intractable, probability distribution;

• “Similar” instances show “similar” solving procedures.

Random Images

Random iid pixels Random face (GAN) 
thispersondoesnotexist.com

Random Instances

Random iid coefficients a1c1s1 from MipLib 2017

Business Applications
• Many businesses care about

solving similar problems
repeatedly

• Solvers do not make any use of
this aspect

• Power systems and market 
[Xavier et al. 2019]

• Schedule 3.8 kWh ($400 billion)
market annually in the US

• Solved multiple times a day

• 12x speed up combining ML
and MILP

Deep Learning Reminder

x

h

o

V
W

U

xt−1

ht−1

ot−1

V

U

xt

ht

ot

V

U

xt+1

ht+1

ot+1

V

U

W WW

RNN folded RNN unfolded

Deep Learning Reminder

f f f

softmax

∗ ∗ ∗

Σ

:::v1 v2 vp q

Attention mechanism

Reinforcement Learning
Reminder

π(ajs)

Environment

Agent

p(s0; rja; s)

ActionRewardState
AtRt+1St+1

Markov Decision Process for Reinforcement Learning

Learning Methods
Demonstration

• An expert/algorithm provides
a policy

• Assumes theoretical /
empirical knowledge about
the decisions

• Decisions are too long to
compute

• Supervised imitation learning

Experience

• Learn and discover new
policies (better hopefully)

• Unsatisfactory knowledge (not
mathematically well-defined)

• Decisions are too heuristic

• Reinforcement learning

Demonstration

• Approximating strong branching 
[Marcos Alvarez et al. 2014, 2016, 2017][Khalil et al. 2016]

• Approximating lower bound improvement for cut selection 
[Baltean-Lugojan et al. 2018]

• Approximating optimal node selection 
[He et al. 2014]

Decision?

πexpert

π̂ml ^action

action

min distance

Experience

• Learning greedy node selection (e.g. for TSP) 
[Khalil et al 2017a]

• Learning TSP solutions 
[Bello et al. 2017][Kool and Welling 2018][Emami and Ranka 2018]

Decision?
π̂ml

^action reward
score

max return

.

Supervised

• Cannot beat the expert (an
algorithm) 
→ only interesting if the
approximation is faster

• Can be unstable

• Cannot cope with equally good
actions

Not mutually exclusive

Better combined!

Reinforcement

• Reinforcement can potentially
discover better policies

• Harder, with local maxima
(exploration difficult)

• Need to define a reward

Algorithmic Structure

• How do we build such algorithm? How do we mix OR
with ML?

• How do we keep guarantees provided by OR algorithms
(feasibility, optimality)?

End to End Learning

• Learning TSP solutions 
[Bello et al. 2017][Kool and Welling 2018][Emami and Ranka 2018] 
[Vinyals et al. 2015][Nowak et al. 2017]

• Predict aggregated solutions to MILP under partial
information 
[Larsen et al. 2018]

• Approximate obj value to SDP (for cut selection) 
[Baltean-Lugojan et al. 2018]

SolutionML
Problem

definition

Learning Properties

• Use a decomposition method 
[Kruber et al. 2017]

• Linearize an MIQP 
[Bonami et al. 2018]

• Provide initial cancer treatment plans to inverse
optimization 
[Mahmood et al. 2018]

SolutionML
Problem

definition
ORDecision

Learning Repeated
Decisions

• Learning where to run heuristics in
B&B 
[Khalil et al. 2017b]

• Learning to branch 
[Lodi and Zarpellon 2017] (survey)

• Learning gradient descent 
e.g. [Andrychowicz et al. 2016]

• Predict booking decisions under
inperfect information 
[Larsen et al. 2018]

• Learning cutting plane selection 
[Baltean-Lugojan et al. 2018]

SolutionOR
Problem

definition

ML

State Decision

}Just a question
of viewpoint

Evaluation

• What are our metrics?

• What instances do we want to generalize to?

• Instance specific policies should be easier to learn, but
have to be re-learned every time

• Policies that generalize can take some training offline
(multi-task learning) 
→ transfer learning, fine-tuning, meta-learning

• What distribution of instances are we interested in?

Challenges
• Which models and DL/RL algorithms will perform well?

• How do we represent the data? Should we approximate it?

• Can we scale?

• In the computations?

• Generalizing?

• Learning?

• How to anticipate learning? Which distribution? How to
generate data?

Paper

• All references are listed in the paper: 
Bengio, Lodi, Prouvost (2018) - Machine Learning for
Combinatorial Optimization: a Methodological Tour d'Horizon 
https://arxiv.org/abs/1811.06128

• Xavier, A. S., Qiu, F., & Ahmed, S. (2019). Learning to Solve Large-Scale
Security-Constrained Unit Commitment Problems. ArXiv:1902.01697
[Cs, Math, Stat]. Retrieved from http://arxiv.org/abs/1902.01697

https://arxiv.org/abs/1811.06128

