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Too long


• Expert knowledge of how to 
make decisions


• Too expensive to compute


• Need for fast approximation



Too heuristic


• No idea which strategy will 
perform better


• Need a well performing policy


• Need to discover policies



Requirement

• We want to keep the guarantees provided by exact OR 
algorithms (feasibility, optimality)



The structure hypothesis

• We do not care about most instances that could exist;


• Instead, we look at problem instances as data points from 
a specific, intractable, probability distribution;


•  “Similar” instances show “similar” solving procedures.



Random Images

Random iid pixels Random face (GAN) 
thispersondoesnotexist.com



Random Instances

Random iid coefficients a1c1s1 from MipLib 2017 



Business Applications
• Many businesses care about 

solving similar problems 
repeatedly


• Solvers do not make any use of 
this aspect


• Power systems and market 
[Xavier et al. 2019]


• Schedule 3.8 kWh ($400 billion) 
market annually in the US


• Solved multiple times a day


• 12x speed up combining ML 
and MILP
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Deep Learning Reminder
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Reinforcement Learning 
Reminder
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Markov Decision Process for Reinforcement Learning



Learning Methods
Demonstration


• An expert/algorithm provides 
a policy


• Assumes theoretical / 
empirical knowledge about 
the decisions


• Decisions are too long to 
compute


• Supervised imitation learning

Experience


• Learn and discover new 
policies (better hopefully)


• Unsatisfactory knowledge (not 
mathematically well-defined)


• Decisions are too heuristic


• Reinforcement learning



Demonstration

• Approximating strong branching 
[Marcos Alvarez et al. 2014, 2016, 2017][Khalil et al. 2016]


• Approximating lower bound improvement for cut selection 
[Baltean-Lugojan et al. 2018]


• Approximating optimal node selection 
[He et al. 2014]

Decision?

πexpert

π̂ml ^action

action

min distance



Experience

• Learning greedy node selection (e.g. for TSP) 
[Khalil et al 2017a]


• Learning TSP solutions 
[Bello et al. 2017][Kool and Welling 2018][Emami and Ranka 2018]

Decision?
π̂ml

^action reward
score

max return



.

Supervised 

• Cannot beat the expert (an 
algorithm) 
→ only interesting if the 
approximation is faster


• Can be unstable


• Cannot cope with equally good 
actions

Not mutually exclusive

Better combined!

Reinforcement 

• Reinforcement can potentially 
discover better policies


• Harder, with local maxima 
(exploration difficult)


• Need to define a reward



Algorithmic Structure

• How do we build such algorithm? How do we mix OR 
with ML? 

• How do we keep guarantees provided by OR algorithms 
(feasibility, optimality)?



End to End Learning

• Learning TSP solutions 
[Bello et al. 2017][Kool and Welling 2018][Emami and Ranka 2018] 
[Vinyals et al. 2015][Nowak et al. 2017]


• Predict aggregated solutions to MILP under partial 
information 
[Larsen et al. 2018]


• Approximate obj value to SDP (for cut selection) 
[Baltean-Lugojan et al. 2018]

SolutionML
Problem

definition



Learning Properties

• Use a decomposition method 
[Kruber et al. 2017]


• Linearize an MIQP 
[Bonami et al. 2018]


• Provide initial cancer treatment plans to inverse 
optimization 
[Mahmood et al. 2018]

SolutionML
Problem

definition
ORDecision



Learning Repeated 
Decisions 

• Learning where to run heuristics in 
B&B 
[Khalil et al. 2017b]


• Learning to branch 
[Lodi and Zarpellon 2017] (survey)


• Learning gradient descent 
e.g. [Andrychowicz et al. 2016]


• Predict booking decisions under 
inperfect information 
[Larsen et al. 2018]


• Learning cutting plane selection 
[Baltean-Lugojan et al. 2018]

SolutionOR
Problem

definition

ML

State Decision

}Just a question 
of viewpoint



Evaluation

• What are our metrics?


• What instances do we want to generalize to?


• Instance specific policies should be easier to learn, but 
have to be re-learned every time


• Policies that generalize can take some training offline 
(multi-task learning) 
→ transfer learning, fine-tuning, meta-learning


• What distribution of instances are we interested in? 



Challenges
• Which models and DL/RL algorithms will perform well?


• How do we represent the data? Should we approximate it?


• Can we scale?

• In the computations?


• Generalizing?

• Learning?


• How to anticipate learning? Which distribution? How to 
generate data?



Paper

• All references are listed in the paper: 
Bengio, Lodi, Prouvost (2018) - Machine Learning for 
Combinatorial Optimization: a Methodological Tour d'Horizon 
https://arxiv.org/abs/1811.06128


• Xavier, A. S., Qiu, F., & Ahmed, S. (2019). Learning to Solve Large-Scale 
Security-Constrained Unit Commitment Problems. ArXiv:1902.01697 
[Cs, Math, Stat]. Retrieved from http://arxiv.org/abs/1902.01697
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