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DO4ML: Discrete decisions in SVM
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with M > 0 big enough constant.
[Brooks (2011)]
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with M > 0 big enough constant.
[Brooks (2011)]

Sophisticated methods for dealing with big-M constraints in MIP have been
recently devised and integrated within the IBM-Cplex solver, so as decent-size
SVM instances above can now be routinely solved to optimality.

[Belotti, Bonami, Fischetti, Lodi, Monaci, Nogales & Salvagnin (2016)]
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What can (integer) Optimization do for ML? (reprise)

Just one example: (1) there are ML problems that are naturally casted as
MIPs (discrete), but (2) NOT solved as MIPs.

Here, the goal is not necessarily to use MIP only. However, leveraging the
quality and experience of MIP solving for discrete problems can be a plus
(bounds, rewards, interpretability, etc.)
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Just one example: (1) there are ML problems that are naturally casted as
MIPs (discrete), but (2) NOT solved as MIPs.

Here, the goal is not necessarily to use MIP only. However, leveraging the
quality and experience of MIP solving for discrete problems can be a plus
(bounds, rewards, interpretability, etc.)

An entire field of Interpretable Artificial Intelligence is emerging, where
classification problems are solved by decision trees modeled as MIPs.

[Bertsimas et al. (2017), Gunlik et al. (2018)]
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An entire field of Interpretable Artificial Intelligence is emerging, where
classification problems are solved by decision trees modeled as MIPs.

[Bertsimas et al. (2017), Gunlik et al. (2018)]

MIP (mostly, Combinatorial Optimization) sub-structure are present in
Structured Prediction problems. Namely, these are the ML problems in which
some constraints on the structure of the prediction have to be satisfied.
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What can (integer) Optimization do for ML? (reprise)

Just one example: (1) there are ML problems that are naturally casted as
MIPs (discrete), but (2) NOT solved as MIPs.

Here, the goal is not necessarily to use MIP only. However, leveraging the
quality and experience of MIP solving for discrete problems can be a plus
(bounds, rewards, interpretability, etc.)

An entire field of Interpretable Artificial Intelligence is emerging, where
classification problems are solved by decision trees modeled as MIPs.

[Bertsimas et al. (2017), Gunlik et al. (2018)]

MIP (mostly, Combinatorial Optimization) sub-structure are present in
Structured Prediction problems. Namely, these are the ML problems in which
some constraints on the structure of the prediction have to be satisfied.

A classical example is word alignment (a key step in machine translation),
where matching and transportation structures can be effectively exploited.

[Lacoste-Julien et al. (2006, 2013, ...)]
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DO4LM: Learning by Column Generation

Besides formulating learning / classification problems by IP, one can apply
sophisticated IP techniques to the learning phase.

This is the case of training a choice model in assortment optimization, where
given a subset of the consumer’s behaviors, one has to find the probability
distribution (Ax) that explains at best the training set, i.e., the observed sales.
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DO4LM: Learning by Column Generation

Besides formulating learning / classification problems by IP, one can apply
sophisticated IP techniques to the learning phase.

This is the case of training a choice model in assortment optimization, where
given a subset of the consumer’s behaviors, one has to find the probability
distribution (Ax) that explains at best the training set, i.e., the observed sales.

This can be done in a very elegant way by Column Generation

min 1Tet +1%7¢

Aet,e~
st. AA+er —e =w
1"x=1
Aetee >0

[Bertsimas and Misic (2015)]

and the challenge is to make it practical for relevant sizes of the number of
prOdUCtS. [Jena, Lodi, Palmer, Sole (2017, 2019)]
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LM4DO: Learning to Search

From Mario Al competition 2009

Output:
Jump in {0,1}
Right in {0,1}
~ Leftin {0,1}
I Speedin {0,1}

e

High level goal: )
Watch an expert play and
learn to mimic her behavior

[Langford and Daumé I, 2015]
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LM4DO: Learning to Search (2)

The most notable outcome of the Learning to Search paradigm is the recent

bulk of work on replacing MIP to solve combinatorial optimization problems by
ML, so called End-to-end Learning.
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LM4DO: Learning to Search (2)

The most notable outcome of the Learning to Search paradigm is the recent

bulk of work on replacing MIP to solve combinatorial optimization problems by
ML, so called End-to-end Learning.

Not surprising, the first attempts have been done in the Traveling Salesman
Problem context and two papers stand:
@ Supervised learning trained by precomputed (by an “expert”) TSP
solutions [Vinyals et al., 2015]
@ Reinforcement learning with tour length as a reward function
[Bello et al., 2017]
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LM4DO: Learning to Search (2)

The most notable outcome of the Learning to Search paradigm is the recent
bulk of work on replacing MIP to solve combinatorial optimization problems by
ML, so called End-to-end Learning.

Not surprising, the first attempts have been done in the Traveling Salesman
Problem context and two papers stand:
@ Supervised learning trained by precomputed (by an “expert”) TSP
solutions [Vinyals et al., 2015]

@ Reinforcement learning with tour length as a reward function
[Bello et al., 2017]

Currently, none of the approaches is competitive in any way with specifically
designed algorithms but the research, admittedly, led to interesting ML
architectures (that can be applied elsewhere). [Khalil et al., 2017]
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Machine Learning and Uncertainty

@ | believe dealing with uncertainty is one of the topics that can benefit the
most from ML.
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Machine Learning and Uncertainty

@ | believe dealing with uncertainty is one of the topics that can benefit the
most from ML.

@ In particular, we will deal with the uncertainty in planning and, specifically,
the uncertainty associated with planning at a tactical (or strategic) level.

@ In other words, we are planning, for example the resources needed to
deliver goods, at the time in which the amount of goods to be delivered is
not known yet.

@ Of course, we can do that by stochastic optimization but the catch is that
we want to do it in real time.
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Fast ML Prediction for Stochastic ILPs

MOTIVATING APPLICATION

Planning horizon and increasing level of information
S

Longer term horter term
« tactical » « operational »
Accept / reject Load planning for
= container bookings double-stack trains
o
'E Request Railcar Accepted
) N supply  bookings
| u
& |
o
<
& h
2
o F
Accept / reject
_____ SSSSSX TN
TG L oo rizarion oF i iro.umonireal.ca | Page 3
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Fast ML Prediction for Stochastic ILPs
CONTEXT

Planning horizon and increasing level of information

Long term Medium term Short term

« strategic » « tactical » « operational »
3 4 Fully detailed solution -
= implementable
2
" Description of solution - :
3 level of detail that is relevant :
] to the tactical decision
g problem
W
o
B Value of the
a solution
>
]
-
_____ SSSSS O
[ on char [aMbAlL i fo.umontreala | Page 4
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Fast ML Prediction for Stochastic ILPs
CONTEXT

Planning horizon and increasing level of information

Longer term Shorter term
« tactical » « operational »
Compute description of solution Operational problem of interest:
to operational problem under Compute solution under
imperfect information perfect information
T N
g seconds to Reasonable computing time -
minutes s .
8 within the time budget for the
w operational problem
=
-
2
= Much shorter than the
2 time it takes to solve the
= <milli- full problem under perfect
8 seconds information
_____ SSSSSS TN H
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Fast ML Prediction for Stochastic ILPs
CONTEXT

Planning horizon and increasing level of information

Longer term Shorter term
« tactical » « operational »
Compute description of solution Operational problem of interest:
to operational problem under Compute solution under
imperfect information perfect information

High solution precision
Reasonable computing time
Solve deterministic
optimization problem
mathematical programming

High-level solution
Very short computing time
Stochastic programming

Machine learning

predict the tactical solution
..... SIS N descriptions

N OPTIMIZATION OF
CN CHAIR [ARiiralichies ca|Page 6
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Fast ML Prediction for Stochastic ILPs

CONTEXT

Planning horizon and increasing level of information

Shorter term

Longer term "
« operational »

« tactical »

Problem instance Imperfect & Perfect X = [Kaw X ]
information information R haunay

) Deterministic ~ §(X) := arg inf C(X,
Solution i problem THE gye?/(i) )

Tactical solution e e
description y*=g(y*(x)

SSSSIXS T
N OPTIMIZATION OF
CN CHAIR [yl intermodal.iro.umontreal.ca | Page 7
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Fast ML Prediction for Stochastic ILPs
PROBLEM AND OBJECTIVE

» Problem: y*is a solution to a two-stage stochastic program
that we need to solve for any value of X,, in very short
computing time

» Challenge: we would not be able to solve the stochastic
program within the time budget for the application at hand
» Objective: find best possible prediction
y =f(Xav;0) of ¥*

|

Machine learning model  Parameters

_____ SSSSX O

N OPTIMIZATION OF
CN CHAIR bl bd iro ca|Page 8
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Fast ML Prediction for Stochastic ILPs

METHODOLOGY

£ Two-stage stochastic programming formulation
(]
% Optimal prediction conditional on X, , expectation over distribution of Xynay
o Optimal solution to deterministic problem for given X = [Xay, Xunav]
Problem instances and solutions Machine learning
8 (perfect information) training data
©
o
(")
H P . . . .
o Training and validation Assess prediction performance
= 0
S35
cQ
Ll
o3
_____ TSSSSX T
| ON CHAIR (SRR i iro.umontreal.ca | Page 10
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Fast ML Prediction for Stochastic ILPs

METHODOLOGY

E ¥¥(Xq) :=arg inf Ex, Ay — 8(V*(Xavs Xunaw) |l | Xay}
2 YEY (Kay)
o
2 P . - -~
o Y*(Xay> Xunav) = arg lan C(Xav> Xunav ¥)
YEY Rav-Xunav)
Problem instances and solutions Machine learning
,,g (perfect information) training data
(=]
(7]
gg Training and validation Assess prediction performance
=0
.% 5
-9
Ll
o3
_____ SSsssC
[ on cHAR [ iro.umontreal.ca | Page 11

Andrea Lodi (CERC) Tactical Planning by ML MINOA 2019 16/28



Fast ML Prediction for Stochastic ILPs

METHODOLOGY

£ V¥ Xay) :=arg inf  Eg {lly —g(V*Xay Xunaw) |l | Xay}
% av YY) S av’ “unav av
2 e & . -
o Y*(Xays Xunav) § = arg lmc~ C(Xav> Xunav Y)
YEY (Xav:Xunav)
Problem instances and solutions Machine learning
,g (perfect information) training data
= (X2 ,50y i=1,...m — (R, §®) i=1,..,m
(2]
c
=l .g Training and validation Assess prediction performance
c L
=
Eo
g
o3
_____ TSSSSS
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Fast ML Prediction for Stochastic ILPs

METHODOLOGY

£ y*(iav) = arg int; Eiunav{ ly _gy*(ianiunav))ll | iav}
K YEY (Xav)
)
2 P - - =
o Y*(Xay Xunaw) §= a1g lntN C(Xay Xunav: Y)
YE¥ Rav-Xunav)
Problem instances and solutions Machine learning
“3 (perfect information) training data
a (X2,50) i=lm e (X, §?) i=1.m
2
g’.g Training and validation, e.g., Assess prediction performance, e.g.,
= 0 ,
£33 " 1 & - . L0 | e, 5y ok
88  O=agmin— > L (fRa:0).5") MAEicst = — ) |f<x;v; )~y
= a 6 m = n -1
o3
_____ TSSSSx
m%ﬂ%ﬁ@?ﬂ%ﬁ; iro.umontreal.ca | Page 13
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Fast ML Prediction for Stochastic ILPs

APPLICATION - OPERATIONAL PROBLEM

Load planning problem (LPP) for double-stack trains
» The assignment of containers to slots on railcars is a
combinatorial optimization problem that depend on, e.g.,
» Railcar types
» Container types and their weight

» ILP formulation (Mantovani et al., 2018)
4l

SSISX T
OOOOOOOOOOOOOOOO
CN CHAIR [ARmifivieitinayiod i iro.umontreal.ca | Page 15
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Fast ML Prediction for Stochastic ILPs
APPLICATION - OPERATIONAL PROBLEM

Load planning problem (LPP) for double-stack trains

[
e
ol 40/53 40/53 40753 40/53 ‘ I | ‘ ZEDE | ‘ 3:40ft
7]
c
= 2-20/40 | | 2-20/40 | | 2-20/40 2-20:53 | 2:401t | ‘ 5:401t ‘ ‘ 6:53ft ‘
g I I i|
g v
o Railcar 1: 3x40 ft platforms, Railcar 2: 1x53 ft platform,
= 6 slots 2'slots
c
2
5 3:40 ft 10:53 ft 7:53ft | 4:40 ft | ‘ 5:40 ft ‘
g =1 e
1:40ft 20 ¢ ‘ 2:40ft 6:53ft
B 5 | 207 i I
©
© Railcar 1: 3x40 ft platforms, Railcar 2: 1x53 ft platform,
a 6 slots 2slots

Containers in dark gray are heavier than the others

_____ TSSSSX T

IN OPTIMIZATION OF
LA = way OPERATIONS i iro.

ca|Page 16
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Fast ML Prediction for Stochastic ILPs
APPLICATION - TACTICAL PROBLEM

Accept / reject container bookings

» Similar to passengers needing to
book a seat on a flight, containers  pequest  Raicar  Accepted
need a train booking = supply  bookings

» Container weights are unknown at \ ﬁ /

the time of booking « LPP

Accept / reject

» A accept/reject decision does not
require a full solution *
(assignment) and must be done in
very short time (real-time system)

SSSSX O
IN OPTIMIZATION OF
RORC I RaLwaY OPERATIONS i iro.umontreal.ca | Page 17
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Fast ML Prediction for Stochastic ILPs
APPLICATION - TACTICAL PROBLEM

Accept / reject container bookings

3:40ft 10:53 ft 7:53 ft ‘ 4:40 ft ‘ | 5:40 ft ‘
1:40 ft 2:40ft 6:53 ft
Railcar 1: 3x40 ft platforms, Railcar 2: 1x53 ft platform,

6 slots 2 slots

Nb. of used railcars of each type | Nb. of assigned containers of each size

Aggregate solution Detailed solution

t1 12 20 ft 40 ft 53 ft
1 1 2 3 3
TSSSSX T
IN OPTIMIZATION OF
LN i RiLway OPERATIONS iro. ca|Page 18
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Fast ML Prediction for Stochastic ILPs
INPUT-OUTPUT STRUCTURE

» 2 container types: 40 ft and 53 ft
» 10 railcar types (10 most numerous in the North American fleet)

» Solution description § is encoded as fixed size vector (size 12)
» Each element corresponds to the number of railcars and
containers used in the solution
» Feature vector X, has the same size as the output vector

» Each element corresponds to number of available railcars/
containers

_____ SSSSS T

IN OPTIMIZATION OF N
CN CHAIR EYRVCRETIMY iro. ca | Page 19
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Fast ML Prediction for Stochastic ILPs
DATA GENERATION

» 1-stage (1S) random sampling

» 2-stage (2S) random sampling

» Stage 1: container/railcar types. Stage 2: weights conditional on stage 1.

Class name Description # of containers # of platforms
A Simple ILP instances [1, 150] [1, 50]
B More containers than A (excess demand) [151, 300] [1, 50]
C More platforms than A (excess supply) [1, 150] [51, 100]
D Larger and harder instances [151, 300] [51, 100]
Sampling Data # instances Percentiles time (s)
procedure class Ps Ps Pys
1S A 20M 0.007 0.48 1.67
2S A 20M 0.011 0.64 2.87
2S B 20M 0.02 1.26 3.43
2S C 20M 0.72 2.59 6.03
2S D 10M 2.64 5.44 20.89
cn criaie TS oL toumonraa Page 2
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Fast ML Prediction for Stochastic ILPs
TEST ERROR

» Average performance of the MLP model is very good
» MAE of only 2.1 containers/slots for instances with up to
150 containers and 200 slots and small standard deviation
» MLP results are considerably better than benchmarks

» The marginal value of using 100 times more observations is
fairly small (modest increase in MAE from 0.985 to 1.304)

» Prediction times are negligible, milliseconds or less and
with very little variation

TSSSSX TN
IN OPTIMIZATION OF
CN CHAIR [ivicaiibiv i iro. .ca | Page 23
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Fast ML Prediction for Stochastic ILPs
FEASIBILITY

» We assess numerically if a feasible operational solution exists to a given
predicted tactical solution description

» All decision variables of the LPP depend on the weights but the ML
algorithm is blind to weights and to the structure of the constraints

» We assess the share of instances that satisfy the weight constraints
(analogy with a chance constraint formulation)

» Train algorithm on 1S-A

» Algorithm predicts tactical solution descriptions for 200K first stage
instances of 2S-A (no weights)

» For each of the 200K instances, there are 100 full information instances,
we solve these with CPLEX using the LPP formulation but constrained to
the tactical solution predicted by the algorithm

TSSO
IN OPTIMIZATION OF
L R L L R AILWAY OPERATIONS iro.1 .ca | Page 25
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Fast ML Prediction for Stochastic ILPs
FEASIBILITY

Sample ratio Std err sample ratio

feasible | (gaussian approx of binomial)

ClassMILLP 0.975 0.00035
LogReg 0.614 0.00109
RegMLP 0.966 0.00041
LinReg 0.742 0.00098
HeurV 0.324 0.0011
HeurS 0.400 0.0011

There exists a feasible operational solution for a given
predicted tactical solution in 96.6% of the instances

This share is much lower for linear regression or the
deterministic heuristics (74.2% and 40% respectively)

~_Nariance very close to zero
_____ SSSSXC

IN OPTIMIZATION OF
CN CHAIR ypriftvrmiripein iro. ca | Page 26
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Conclusions

We have shown that standard deep learning techniques can be applied to
predict the description of a solution of a discrete optimization problem under

imperfect information, which is generally the case of the tactical level of a
planning problem.
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Conclusions

We have shown that standard deep learning techniques can be applied to
predict the description of a solution of a discrete optimization problem under
imperfect information, which is generally the case of the tactical level of a
planning problem.

We have shown an application in transportation of this general methodology
in which the need of giving an answer in real time motivated our approach.

In the same context, the description of the solution (computed as fast as
possible) can be used in an outer algorithm that is searching the space of the
optimal train scheduling.
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Conclusions

We have shown that standard deep learning techniques can be applied to
predict the description of a solution of a discrete optimization problem under
imperfect information, which is generally the case of the tactical level of a
planning problem.

We have shown an application in transportation of this general methodology
in which the need of giving an answer in real time motivated our approach.

In the same context, the description of the solution (computed as fast as
possible) can be used in an outer algorithm that is searching the space of the
optimal train scheduling.

| believe we are just experiencing the first steps for the use of machine
learning techniques for discrete optimization under uncertainty, another

example being reoptimization. [Lodi, Mossina & Rachelson, 2019]
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