
Dealing with uncertainty:
tactical planning by machine learning

Andrea Lodi

Canada Excellence Research Chair
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DO4ML: Discrete decisions in SVM
Ramp Loss g(ξi) = (min{ξi ,2})+

min
ω>ω
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>xi + b) ≥ 1− ξi−Mzi ∀i = 1, . . . ,n

0 ≤ ξi≤ 2 ∀i = 1, . . . ,n
ω ∈ Rd ,b ∈ R

z ∈ {0,1}n

with M > 0 big enough constant.
[Brooks (2011)]

Sophisticated methods for dealing with big-M constraints in MIP have been
recently devised and integrated within the IBM-Cplex solver, so as decent-size
SVM instances above can now be routinely solved to optimality.

[Belotti, Bonami, Fischetti, Lodi, Monaci, Nogales & Salvagnin (2016)]
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What can (integer) Optimization do for ML? (reprise)

Just one example: (1) there are ML problems that are naturally casted as
MIPs (discrete), but (2) NOT solved as MIPs.

Here, the goal is not necessarily to use MIP only. However, leveraging the
quality and experience of MIP solving for discrete problems can be a plus
(bounds, rewards, interpretability, etc.)

An entire field of Interpretable Artificial Intelligence is emerging, where
classification problems are solved by decision trees modeled as MIPs.

[Bertsimas et al. (2017), Günlük et al. (2018)]

MIP (mostly, Combinatorial Optimization) sub-structure are present in
Structured Prediction problems. Namely, these are the ML problems in which
some constraints on the structure of the prediction have to be satisfied.

A classical example is word alignment (a key step in machine translation),
where matching and transportation structures can be effectively exploited.

[Lacoste-Julien et al. (2006, 2013, . . . )]
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DO4LM: Learning by Column Generation
Besides formulating learning / classification problems by IP, one can apply
sophisticated IP techniques to the learning phase.

This is the case of training a choice model in assortment optimization, where
given a subset of the consumer’s behaviors, one has to find the probability
distribution (λk ) that explains at best the training set, i.e., the observed sales.

This can be done in a very elegant way by Column Generation

	[Bertsimas and Misic (2015)]

and the challenge is to make it practical for relevant sizes of the number of
products. [Jena, Lodi, Palmer, Sole (2017, 2019)]
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LM4DO: Learning to Search

	
[Langford and Daumé III, 2015]
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LM4DO: Learning to Search (2)

The most notable outcome of the Learning to Search paradigm is the recent
bulk of work on replacing MIP to solve combinatorial optimization problems by
ML, so called End-to-end Learning.

Not surprising, the first attempts have been done in the Traveling Salesman
Problem context and two papers stand:

Supervised learning trained by precomputed (by an “expert”) TSP
solutions [Vinyals et al., 2015]

Reinforcement learning with tour length as a reward function
[Bello et al., 2017]

Currently, none of the approaches is competitive in any way with specifically
designed algorithms but the research, admittedly, led to interesting ML
architectures (that can be applied elsewhere). [Khalil et al., 2017]
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Machine Learning and Uncertainty

I believe dealing with uncertainty is one of the topics that can benefit the
most from ML.

In particular, we will deal with the uncertainty in planning and, specifically,
the uncertainty associated with planning at a tactical (or strategic) level.

In other words, we are planning, for example the resources needed to
deliver goods, at the time in which the amount of goods to be delivered is
not known yet.
Of course, we can do that by stochastic optimization but the catch is that
we want to do it in real time.
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Learning to Search for Tactical Planning

Eric Larsen Université de Montréal,CIRRELT

A machine learning algorithm for fast 
prediction of solution descriptions to an ILP 
INFORMS, November 2018

Sébastien Lachapelle Université de Montréal, CIRRELT
Yoshua Bengio Université de Montréal, Mila

Emma Frejinger Université de Montréal, CIRRELT

Simon Lacoste-Julien Université de Montréal, Mila

Andrea Lodi École Polytechnique
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Fast ML Prediction for Stochastic ILPs

intermodal.iro.umontreal.ca | Page  !3

MOTIVATING APPLICATION
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Load planning for  
double-stack trains

Shorter term 
« operational »

Longer term 
« tactical »

Accept / reject 
container bookings

Request Railcar

supply

Accepted

bookings

Accept  / reject

Planning horizon and increasing level of information
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Fast ML Prediction for Stochastic ILPs
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Fast ML Prediction for Stochastic ILPs
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CONTEXT

Solution

Problem instance x̃ = [x̃av, x̃unav]x̃av

ỹ*(x̃) :≡ arg inf
y∈#(x̃)

C(x̃, y)

ȳ* = g(ỹ*(x̃))

Perfect

information

Imperfect 

information

Deterministic

problem

Tactical solution 
description

Longer term 
« tactical »

Shorter term 
« operational »

Planning horizon and increasing level of information

Andrea Lodi (CERC) Tactical Planning by ML MINOA 2019 13 / 28



Fast ML Prediction for Stochastic ILPs
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Problem:      is a solution to a two-stage stochastic program 
that we need to solve for any value of        in very short 
computing time 

Challenge: we would not be able to solve the stochastic 
program within the time budget for the application at hand 

Objective: find best possible prediction        

PROBLEM AND OBJECTIVE

!8

y = f(x̃av; θ) ȳ*of

Machine learning model Parameters

x̃av

ȳ*
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Fast ML Prediction for Stochastic ILPs
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METHODOLOGY

Problem instances and solutions

(perfect information)
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Optimal solution to deterministic problem for given x̃ = [x̃av, x̃unav]
Optimal prediction conditional on        , expectation over distribution of 
Two-stage stochastic programming formulation

x̃av x̃unav
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APPLICATION - OPERATIONAL PROBLEM

!15

Load planning problem (LPP) for double-stack trains

The assignment of containers to slots on railcars is a 
combinatorial optimization problem that depend on, e.g., 

Railcar types 
Container types and their weight 

ILP formulation (Mantovani et al., 2018)
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Load planning problem (LPP) for double-stack trains

Containers in dark gray are heavier than the others
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Fast ML Prediction for Stochastic ILPs
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APPLICATION - TACTICAL PROBLEM

!17

Accept / reject container bookings

Request Railcar

supply

Accepted

bookings

Accept  / reject

LPP

Similar to passengers needing to 
book a seat on a flight, containers 
need a train booking 

Container weights are unknown at 
the time of booking 

A accept/reject decision does not 
require a full solution 
(assignment) and must be done in 
very short time (real-time system)
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Accept / reject container bookings
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Fast ML Prediction for Stochastic ILPs
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INPUT-OUTPUT STRUCTURE

2 container types: 40 ft and 53 ft 

10 railcar types (10 most numerous in the North American fleet) 

Solution description     is encoded as fixed size vector (size 12) 
Each element corresponds to the number of railcars and 
containers used in the solution 

Feature vector       has the same size as the output vector 
Each element corresponds to number of available railcars/
containers

!19

x̃av

ȳ
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Fast ML Prediction for Stochastic ILPs
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DATA GENERATION

1-stage (1S) random sampling 

2-stage (2S) random sampling 
Stage 1: container/railcar types. Stage 2: weights conditional on stage 1.

!20

NUMERICAL RESULTS

DATA GENERATION

Class name Description # of containers # of platforms
A Simple ILP instances [1, 150] [1, 50]
B More containers than A (excess demand) [151, 300] [1, 50]
C More platforms than A (excess supply) [1, 150] [51, 100]
D Larger and harder instances [151, 300] [51, 100]

Sampling Data # instances Percentiles time (s)
procedure class P5 P50 P95

1S A 20M 0.007 0.48 1.67
2S A 20M 0.011 0.64 2.87
2S B 20M 0.02 1.26 3.43
2S C 20M 0.72 2.59 6.03

2S D 10M 2.64 5.44 20.89

intermodal.iro.umontreal.ca |Page 14/22
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TEST ERROR

Average performance of the MLP model is very good 
MAE of only 2.1 containers/slots for instances with up to 
150 containers and 200 slots and small standard deviation 

MLP results are considerably better than benchmarks 

The marginal value of using 100 times more observations is 
fairly small (modest increase in MAE from 0.985 to 1.304) 

Prediction times are negligible, milliseconds or less and 
with very little variation

!23
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Fast ML Prediction for Stochastic ILPs
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FEASIBILITY

We assess numerically if a feasible operational solution exists to a given 
predicted tactical solution description 

All decision variables of the LPP depend on the weights but the ML 
algorithm is blind to weights and to the structure of the constraints 

We assess the share of instances that satisfy the weight constraints 
(analogy with a chance constraint formulation) 

Train algorithm on 1S-A 
Algorithm predicts tactical solution descriptions for 200K first stage 
instances of 2S-A (no weights) 
For each of the 200K instances, there are 100 full information instances, 
we solve these with CPLEX using the LPP formulation but constrained to 
the tactical solution predicted by the algorithm

!25
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FEASIBILITY

Sample ratio Std err sample ratio
feasible (gaussian approx of binomial)

ClassMLP 0.975 0.00035
LogReg 0.614 0.00109
RegMLP 0.966 0.00041
LinReg 0.742 0.00098
HeurV 0.324 0.0011
HeurS 0.400 0.0011

Table 8: Sample ratio of predictions that lead to feasible solutions to the detailed problem

prediction. The input and output vectors were by design of small and fixed size, therefore making
it possible to apply standard deep learning models and algorithms. We modeled the problem as
both a classification and a regression problem.

The results have shown that a regression feedforward neural network had the best performance
overall. Remarkably, the solutions could be predicted with a high accuracy in very short comput-
ing time (in the order of a millisecond or less). In fact, the time required to predict the solution
descriptions under imperfect information using ML is much shorter than the time required to solve
a single deterministic instance with an ILP solver. The results have also shown that the regression
feedforward neural network model that was trained and validated on simpler instances could gen-
eralize reasonably well to harder instances without specific training and validation. However, the
variations over the hyperparameter sets considered during the validation step were large when the
nature of the data was very dissimilar.

We believe the methodology successfully developed in this paper can have a relevant impact
for real-time decision problems under imperfect information where a fully detailed solution is not
required. Of course, many interesting questions remain to be addressed and, among the areas for
future research (both related to our specific application and in general), we mention:

• Among the five different aggregation methods described in the paper only two were used
in the current investigation. We believe that the third method involving aggregation over
output, i.e. “aggregation over output after ML”, known as “classification with missing inputs”
in the deep learning literature, could also be a promising direction to investigate. It was not
implemented in our application since it is costlier and the performance of the simpler methods
was already very good.

• The input and output structures considered were designed to be small and of fixed size.
A direction for future research is to predict more detailed solutions where the input and
output structures would be of large and variable size and would possibly feature additional
constraints. The trade-off between level of detail and uncertainty of the input is a question
by itself. In this context, an approach related to pointer networks (Vinyals et al., 2015) is a
potential avenue.

• Data generation is the costliest part of the methodology. Future research should investigate
active learning, where the trade-off between the cost of generating data and the predictive
performance can be controlled.
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There exists a feasible operational solution for a given 
predicted tactical solution in 96.6% of the instances


 This share is much lower for linear regression or the 
deterministic heuristics (74.2% and 40% respectively)


Variance very close to zero
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Conclusions

We have shown that standard deep learning techniques can be applied to
predict the description of a solution of a discrete optimization problem under
imperfect information, which is generally the case of the tactical level of a
planning problem.

We have shown an application in transportation of this general methodology
in which the need of giving an answer in real time motivated our approach.

In the same context, the description of the solution (computed as fast as
possible) can be used in an outer algorithm that is searching the space of the
optimal train scheduling.

I believe we are just experiencing the first steps for the use of machine
learning techniques for discrete optimization under uncertainty, another
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