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Neural Networks & AI:
Underlying Assumption

• There	are	principles	giving	rise	to	intelligence	(machine,	human	
or	animal)	via	learning,	simple	enough	that	they	can	be	
described	compactly,	similarly	to	the	laws	of	physics,	i.e.,	our	
intelligence	is	not	just	the	result	of	a	huge	bag	of	tricks	and	
pieces	of	knowledge,	but	of	general	mechanisms	to	acquire	
knowledge.



Learning Multiple Levels of 
Abstraction
• The	big	payoff	of	deep	learning	is	to	facilitate	learning	
higher	levels	of	abstraction

• Higher-level	abstractions	can	disentangle	the	
factors	of	variation,	which	allows	much	easier	
generalization	and	transfer
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(Bengio	&	LeCun 2007)



Deep Learning AI Breakthroughs

Computers	have	made	huge
strides in	

perception,	
manipulating language,	playing
games,	reasoning,	...
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2010-2012: breakthrough in 
speech recognition

Source: Microsoft



2012-2015: breakthrough
in computer vision

• Graphics Processing Units
(GPUs) + 10x more data

• 1,000 object categories,
• Facebook: millions of faces
• 2015: human-level performance
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Top-5 Classification task 
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Well received by expert clinicians and industry at many 
conferences, including Digestive Disease Week 2016

Accuracy

Medical Image Classification
Clinical Validation: Optical Colonoscopy

Imagia > 90%, real
time

GI Experts (Key Opinion 
Leaders)* ~ 90%

GI Doctors Trained by 
KOLs* ~ 75%

*(D. Rex, 2015)

World’s first real-time colon polyp 
malignancy determination from 
unmodified endoscope raw video 
with deep learning 
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Separately Controlling Style & Content

[Luan et. al., 2017]

Input Target style Output

[à la Zhu et. al., 2017]



Computers become Creative with 
Deep Generative Models

• Progress	in	unsupervised	generative	neural	
nets	allows	them	to	synthesize	a	diversity	
images,	sounds	and	text	imitating	
unlabeled	images,	sounds	or	text
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Generator
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Fake
Image

Real
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Training
Set

Random
Vector

Random
Index

(Karras et	al	2017)

(Nguyen	et	al	2016)

Predict	a	
multi-modal	
future

GANs	(Goodfellow
et	al	NIPS’2014)	

Under review as a conference paper at ICLR 2018

Figure 5: 1024 ⇥ 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations. On the right, two
images from an earlier megapixel GAN by Marchesi (2017) show limited detail and variation.

Mao et al. (2016b) (128⇥ 128) Gulrajani et al. (2017) (128⇥ 128) Our (256⇥ 256)

Figure 6: Visual quality comparison in LSUN BEDROOM; pictures copied from the cited articles.

mentation used an adaptive minibatch size depending on the current output resolution so that the
available memory budget was optimally utilized.

In order to demonstrate that our contributions are largely orthogonal to the choice of a loss function,
we have also trained the same network using LSGAN loss instead of WGAN-GP loss. Figure 1
shows six examples of 10242 images produced using our method using LSGAN. Further details of
this setup are given in Appendix B.

6.4 LSUN RESULTS

Figure 6 shows a purely visual comparison between our solution and earlier results in LSUN BED-
ROOM. Figure 7 gives selected examples from seven very different LSUN categories at 2562. A
larger, non-curated set of results from all 30 LSUN categories is available in Appendix G, and the
video demonstrates interpolations. We are not aware of earlier results in most of these categories,
and while some categories work better than others, we feel that the overall quality is high.

6.5 CIFAR10 INCEPTION SCORES

The best inception scores for CIFAR10 (10 categories of 32 ⇥ 32 RGB images) we are aware of
are 7.90 for unsupervised and 8.87 for label conditioned setups (Grinblat et al., 2017). The large
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Intelligence Needs Knowledge

• Learning:	

powerful	way	to	transfer	knowledge	to	intelligent	agents
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• Failure	of	classical	symbolic	
AI:	a	lot	of	knowledge	is	
intuitive,	difficult	to	put	in	
rules	&	facts,	not	
consciously	accessible

• Solution:	get	knowledge	
from	data	&	experience

Artificial	Intelligence

Machine	Learning

Deep	
Learning



Machine Learning, AI 
& No Free Lunch
• Five	key ingredients for	ML	towards AI

1. Lots	&	lots	of	data
2. Very flexible	models
3. Enough computing power
4. Computationally efficient	inference

5. Powerful priors that can defeat the	curse of	
dimensionality
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ML 101. What We Are 
Fighting Against:  The Curse 
of Dimensionality

To	generalize	
locally,	need	
representative	
examples	for	all	
relevant	
variations!

Classical	solution:	
hope	for	a	smooth	
enough	target	
function,	or	make	
it	smooth	by	
handcrafting	good	
features	/	kernel



Bypassing the curse of 
dimensionality
We	need	to	build	compositionality into	our	ML	models	

Just	as	human	languages	exploit	compositionality	to	give	
representations	and	meanings	to	complex	ideas

Exploiting	compositionality	can	give	an	exponential gain	
in	representational	power

Distributed	representations	/	embeddings:	feature	learning

Deep	architecture:	multiple	levels	of	feature	learning

Prior	assumption:	compositionality	is	useful	to	
describe	the	world	around	us	efficiently
14



Learning Representations

15



Distributed Representations: The Power of 
Compositionality – Part 1

• Distributed	(possibly	sparse)	representations,	learned	from	
data,	can	capture	the	meaning of	the	data	and	state

• Parallel	composition	of	features:	can	be	exponentially	
advantageous

16

DistributedNot	Distributed



Each feature can be discovered
without the need for seeing the 
exponentially large number of 
configurations of the other features

• Consider a	network	whose hidden units discover the	following
features:
• Person	wears glasses
• Person	is female
• Person	is a	child
• Etc.

If	each of	n feature requires O(k) parameters,	need O(nk)	examples

Non-parametric methods would require O(nd)	examples
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9/25/2016 sofaloca.com/themes/ypanel/ionicons/src/ios7-glasses-outline.svg

http://sofaloca.com/themes/ypanel/ionicons/src/ios7-glasses-outline.svg 1/1



Under review as a conference paper at ICLR 2015
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Figure 9: (a) Segmentations from pool5 in Places-CNN. Many classes are encoded by several units
covering different object appearances. Each row shows the 3 top most confident images for each
unit. (b) Object frequency in SUN (only top 50 objects shown), (c) Counts of objects discovered by
pool5 in Places-CNN. (d) Frequency of most informative objects for scene classification.

4 EMERGENCE OF OBJECTS AS THE INTERNAL REPRESENTATION

As shown before, a large number of units in pool5 are devoted to detecting objects and scene-
regions (Fig. 8). But what categories are found? Is each category mapped to a single unit or are
there multiple units for each object class? Can we actually use this information to segment a scene?

4.1 WHAT OBJECT CLASSES EMERGE?

Fig. 9(a) shows some units from the Places-CNN grouped by the object class they seem to be detect-
ing. Each row shows the top three images for a particular unit that produce the strongest activations.
The segmentation shows the region of the image for which the unit is above a threshold. Each unit
seems to be selective to a particular appearance of the object. For instance, there are 6 units that
detect lamps, each unit detecting a particular type of lamp providing finer-grained discrimination;
there are 9 units selective to people, each one tuned to different scales or people doing different
tasks. ImageNet has an abundance of animals among the categories present: in the ImageNet-CNN,
out of the 256 units in pool5, there are 23 units devoted to detecting dogs or parts of dogs. The
categories found in pool5 tend to follow the target categories in ImageNet.

To answer the question of why certain objects emerge from pool5, we tested the Places-CNN on
fully annotated images from the SUN database (Xiao et al., 2014). The SUN database contains
8220 fully annotated images from the same 205 place categories used to train Places-CNN. There
are no duplicate images between SUN and Places. We use SUN instead of COCO (Lin et al., 2014)
as we need dense object annotations to study what the most informative object classes for scene
categorization are, and what the natural object frequencies in scene images are. For this study, we
manually mapped the tags given by AMT workers to the SUN categories. Fig. 9(b) shows the sorted
distribution of object counts in the SUN database which follows Zipf’s law.

One possibility is that the objects that emerge in pool5 correspond to the most frequent ones in the
database. Fig. 9(c) shows the counts of units found in pool5 for each object class (same sorting
as in Fig. 9(b)). The correlation between object frequency in the database and object frequency
discovered by the units in pool5 is 0.54. Another possibility is that the objects that emerge are the
objects that allow discriminating among scene categories. To measure the set of discriminant objects
we used the ground truth in the SUN database to measure the classification performance achieved by
each object class for scene classification. Then we count how many times each object class appears
as the most informative one. This measures the number of scene categories a particular object class
is the most useful for. The counts are shown in Fig. 9(d). Note the similarity between Fig. 9(c) and
Fig. 9(d). The correlation is 0.84 indicating that the network is automatically identifying the most
discriminative object categories to a large extent.

7

Hidden Units Can Discover
Semantically Meaningful Concepts

• Zhou	et	al	&	Torralba,	arXiv1412.6856	,	ICLR	2015
• Network	trained to	recognize places,	not	objects

18

Under review as a conference paper at ICLR 2015

Figure 10: Interpretation of a picture by different layers of the Places-CNN using the tags provided
by AMT workers. The first shows the final layer output of Places-CNN. The other three show
detection results along with the confidence based on the units’ activation and the semantic tags.
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Figure 11: (a) Segmentation of images from the SUN database using pool5 of Places-CNN (J =
Jaccard segmentation index, AP = average precision-recall.) (b) Precision-recall curves for some
discovered objects. (c) Histogram of AP for all discovered object classes.

Note that there are 115 units in pool5 of Places-CNN not detecting objects. This could be due to
incomplete learning or a complementary texture-based or part-based representation of the scenes.

4.2 OBJECT LOCALIZATION WITHIN THE INNER LAYERS

Places-CNN is trained to do scene classification using the output of the final layer of logistic re-
gression and achieves the state-of-the-art performance. From our analysis above, many of the units
in the inner layers could perform interpretable object localization. Thus we could use this single
Places-CNN with the annotation of units to do both scene recognition and object localization in a
single forward-pass. Fig. 10 shows an example of the output of different layers of the Places-CNN
using the tags provided by AMT workers. Bounding boxes are shown around the areas where each
unit is activated within its RF above a threshold.

In Fig. 11 we evaluate the segmentation performance of the objects discovered in pool5 using the
SUN database. The performance of many units is very high which provides strong evidence that
they are indeed detecting those object classes despite being trained for scene classification.

5 CONCLUSION

We find that object detectors emerge as a result of learning to classify scene categories, showing
that a single network can support recognition at several levels of abstraction (e.g., edges, textures,
objects, and scenes) without needing multiple outputs or networks. While it is common to train a
network to do several tasks and to use the final layer as the output, here we show that reliable outputs
can be extracted at each layer. As objects are the parts that compose a scene, detectors tuned to the
objects that are discriminant between scenes are learned in the inner layers of the network. Note
that only informative objects for specific scene recognition tasks will emerge. Future work should
explore which other tasks would allow for other object classes to be learned without the explicit
supervision of object labels.
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Deep Learning: Learning an 
Internal Representation

• Unlike	other	ML	methods	with	either
• no	intermediate	representation	(linear)
• or	fixed	(generally	very	high-dimensional)	
intermediate	representations	(SVMs,	kernel	
machines)	

• What	is	a	good	representation?	Makes	other	
tasks	easier.

19
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Learning multiple levels 
of representation
Successive	model	layers	learn	deeper	intermediate	representations

Layer	1

Layer	2

Layer	3
High-level

linguistic	representations

(Lee,	Largman,	Pham	&	Ng,	NIPS	2009)
(Lee,	Grosse,	Ranganath &	Ng,	ICML	2009)

21
Prior:	underlying	factors	& concepts	compactly	expressed	w/	multiple	levels	of	abstraction

Parts	combine
to	form	objects



Why Multiple Layers? The World is 
Compositional

Hierarchy	of	representations	with	increasing	level	of	abstraction
Each	stage	is	a	kind	of	trainable	feature	transform
Image	recognition:	Pixel	→	edge	→	texton →	motif	→	part	→	object
Text:	Character	→	word	→	word	group	→	clause	→	sentence	→	story
Speech:	Sample	→	spectral	band	→	sound	→	…	→	phone	→	phoneme	→	word

Trainable 
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature



Deep Representations: The Power of 
Compositionality – Part 2

• Learned	function	seen	as	a	composition	of	simpler	operations,	
e.g.	inspired	by	neural	computation

• Hierarchy	of	features,	concepts,	leading	to	more	abstract	
factors	enabling	better	generalization

• Again,	theory	shows	this	can	be	exponentially	advantageous

23

Why multiple layers? The world is compositional



• Expressiveness of	deep networks	with piecewise linear activation	
functions:	exponential advantage for	depth

• (Montufar et	al	&	Bengio,	NIPS	2014)
• Number of	pieces distinguished for	a	network	with depth L and	

ni units per	layer	is at least

or,	if	hidden layers have	width n and	input	has	size	n0

24

Exponential advantage
of depth



Myth	busted:
• Local	minima	dominate	in	low-D,	but	

saddle	points	dominate	in	high-D
• Most	local	minima	are	relatively	close	

to	the	bottom	(global	minimum	error)
(Dauphin	et	al	NIPS’2014,
Choromanska et	al	AISTATS’2015)

25

Not so terrible local minima:
convexity is not needed



Deep Nets and Backprop

26



Recap: Machine Learning 101

• Family of	functions
• Tunable parameters
• Examples (x,y) sampled from unknown data	generating

distribution	P(x,y)

• Loss fn L compares	target y	and	output													,	returns a	
number

• Regularizer R (typically depends on				but	possibly also on	x	&	y)
• Training	criterion for	supervised learning:

• Approximate minimization algorithm to	search for	good	

27

f✓
✓

✓

✓

C(✓) = average(x,y)⇠datasetL(f✓(x), y) +R(✓, x, y)

f✓(x)



Logistic Regression

• Predict the	probability of	a	category y,	
given input	x
• P(Y=y	|	X=x)

• Simple	extension	of	linear regression
(binary case):
• P(Y=1	|	X=x)	=	sigmoid(b	+	w.	x)

• Train	by	tuning (b,w) to	maximize average
log-likelihood
Average(	log	P(Y=y|X=x) )
over	training	pairs	(x,y),	by	gradient-

based optimization
• This	is a	very shallow neural	network (no	

hidden layer)
28

input	x

logistic output	
neuron

P(Y=1|x)



Hidden units

(from
Hugo	
Larochelle)

29

ARTIFICIAL NEURON
2

Topics: connection weights, bias, activation function
Neuron pre-activation (or input activation):

Neuron (output) activation

     are the connection weights
    is the neuron bias 
         is called the activation function

•

•

•

•

•

...
1



A neural network = running several 
logistic regressions at the same time

If	we	feed	a	vector	of	inputs	through	a	bunch	of	logistic	regression	
functions,	then	we	get	a	vector	of	outputs

But	we	don’t	have	to	
decide	ahead	of	time	
what	variables	these	
logistic	regressions	
are	trying	to	predict!

30



A neural network = running several 
logistic regressions at the same time

…	which	we	can	feed	into	another	logistic	regression	function

and	it	is	the	training	
criterion	that	will	
decide	what	those	
intermediate	binary	
target	variables	should	
be,	so	as	to	make	a	
good	job	of	predicting	
the	targets	for	the	next	
layer,	etc.

31



A neural network = running several 
logistic regressions at the same time

• Before	we	know	it,	we	have	a	multilayer	neural	network….

32



Multilayer network as universal 
approximator

A	series	of	non-linear	
transformations	of	the	same	
type	but	different	parameters
A	single	but	large	enough	
hidden	layer	yields	a	
universal approximator

More	layers	allow	
representing	more	
complex	functions	with	
less	parameters

33

Universal	
approximator
property	does	not	
guarantee

1. easy	
optimization	
(low	training	
error	is	found)

2. good	
generalization



Non-linearity = activation function

• Stacking	linear	layers:	like	one	(factorized)	linear	layer	
• Universal	approximator :	stack	linear+nonlinear transformations
• Many	types	of	non-linearities are	possible:	activation	function

• E.g.	linear,	sigmoid,	tanh,	rectifier	(ReLU),	softmax

• Breakthrough	in	2011:	it	is	much	easier	to	train	a	deep	multilayer	
network	with	rectifiers	(ReLU)	than	with	sigmoid	or	tanh,	making	
it	possible	to	train	deep	nets	in	a	purely	supervised	way	for	the	
first	first	time	(Glorot &	Bengio	AISTATS	2011)

34
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ACTIVATION FUNCTION
4

Topics: sigmoid activation function
Squashes the neuron’s

pre-activation between 
0 and 1
Always positive
Bounded
Strictly increasing

•

•

•

•

NEURAL NETWORK
4

Topics: softmax activation function
For multi-class classification:

we need multiple outputs (1 output per class)
we would like to estimate the conditional probability 

We use the softmax activation function at the output:

strictly positive
sums to one

Predicted class is the one with highest estimated probability

•
‣

‣

•

‣

‣

•

ACTIVATION FUNCTION
5

Topics: hyperbolic tangent (‘‘tanh’’) activation function
Squashes the neuron’s

pre-activation between 
-1 and 1
Can be positive or

negative 
Bounded
Strictly increasing

•

•

•

•

ACTIVATION FUNCTION
6

Topics: rectified linear activation function
Bounded below by 0

(always non-negative)
Not upper bounded
Strictly increasing
Tends to give neurons

with sparse activities

•

•

•

•



…

…

input

features

…More abstract
features

…
Even more 

abstract 
features

Output 
f(X) six

Target 
Y two!=

?

Supervised training of an MLP by 
backpropagation

Requires(X,Y)=(input,target)	pairs	as	training	data
36



Iterative training by SGD
(from
Hugo	
Larochelle)

37

MACHINE LEARNING
2

Topics: stochastic gradient descent (SGD)
Algorithm that performs updates after each example

initialize           (                                                                    )
for N iterations

for each training example

To apply this algorithm to neural network training, we need
the loss function
a procedure to compute the parameter gradients
the regularizer             (and the gradient                 )
initialization method

•
‣

‣
-

•
‣

‣

‣

‣

training epoch 
=

iteration over all examples



Motivation for backpropagation: 
gradient-based optimization

• Knowing	how	a	small	change	of	parameters	influences	loss	L tells	
us	how	to	change	the	parameters

• The	gradient								measures	the	ratio	of	error	change	due	to	a	

small	parameter	change.			

• Indicates	the	best	local	descent	direction!

38
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Why backprop is powerful

• With	n parameters	need	O(n)	computations	to	obtain	L
• Also	need	only	O(n)	computations	to	obtain	gradient	by	backprop

• Dumb	alternative,	by	finite	differences:

• But	that	would	cost	O(n2)	instead	of	O(n)	by	backprop!

39
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Confusion on the word BACKPROP

• Backprop:	the	backward	accumulation	procedure	to	compute	
gradients	efficiently	wrt a	scalar	(the	loss)

• NOT	THE	SAME	THING	AS	gradient	descent,	nor	the	MLP	
architecture.

• Backprop is	not	just	used	for	supervised	learning:	also	for	
unsupervised	learning	and	RL,	with	different	losses	
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Back-Prop & Chain Rule

• Compute	gradient	of	example-wise	loss	wrt
parameters,	by	considering	intermediate	values	such	
as	the	outputs	of	neurons	

• Simply	applying	the	derivative	chain	rule	wisely
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Chain Rule

42

Also	works	if	all	these	
quantities	are	tensors,	
using	the	appropriate	
tensor	products



Multiple Paths Chain Rule
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Multiple Paths Chain Rule - General

…
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Chain Rule in Flow Graph

…

…

…

Flow	graph:	any	directed	acyclic	graph
node	=	computation	result
arc	=	computation	dependency

=	successors	of	
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Back-Prop in Multi-Layer Net

…

…
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…

…
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smaller
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Backprop in 
Multi-Layer 
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How W1 could 
change to 
make error 
smaller



Back-Prop in General Flow Graph

…

…

…

=	successors	of	

1. Fprop:	visit	nodes	in	topo-sort	order	
- Compute	value	of	node	given	predecessors

2. Bprop:
- initialize	output	gradient	=	1	
- visit	nodes	in	reverse	order:

Compute	gradient	wrt each	node	using	
gradient	wrt successors

Single	scalar	output
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Back-Prop in Recurrent & Recursive 
Nets

• Replicate	a	
parameterized	function	
over	different	time	steps	
or	nodes	of	a	DAG	

• Output	state	at	one	
time-step	/	node	is	used	
as	input	for	another	
time-step	/	node

A	small	crowd	
quietly	enters	
the	historic	
church

historicthe

quietly	
enters

S
VP

Det. Adj.

NPVP

A	small	
crowd

NP

NP

church

N.

Semantic		
Representations

xt−1 xt xt+1

zt−1 zt zt+1
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Automatic Differentiation

• The	gradient	computation	
can	be	automatically	
inferred	from	the	symbolic	
expression	of	the	fprop.

• Each	node	type	needs	to	
know	how	to	compute	its	
output	and	how	to	compute	
the	gradient	wrt its	inputs	
given	the	gradient	wrt its	
output

• Easy	and	fast	prototyping
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Batch Normalization
(Ioffe & Szegedy 2015)

• Helps	training	by	reparametrization which	improves	condition	
number,	helps	generalization	by	acting	as	a	regularizer

• Other	normalization	methods	proposed	since	then
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Log-likelihood as loss function
(from
Hugo	
Larochelle)

56

LOSS FUNCTION
3

Topics: loss function for classification
Neural network estimates

we could maximize the probabilities of         given         in the training set

To frame as minimization, we minimize the 
negative log-likelihood

we take the log to simplify for numerical stability and math simplicity
sometimes referred to as cross-entropy

•
‣

•

‣

‣

natural log (ln)



Log-Likelihood for Neural Nets

• Estimating a	conditional probability
• Parametrize it by
• Loss =	
• E.g.	Gaussian Y,

typically only is the	network	output,	depends on	X
Equivalent	to	MSE	criterion:	

Loss =
• E.g.	Multinoulli Y for	classification,	

Loss =	
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P (Y |X)
P (Y |X) = P (Y |! = f✓(X))

! = (µ,�)
µ

� logP (Y |X) = log � + ||f✓(X)� Y ||2/�2

!i = P (Y = i|x) = f✓,i(X) = softmaxi(a(X))

� logP (Y |X)

� log!Y = � log f✓,Y (X)



Multiple Output Variables

• If	they are	conditionally independent (given X),	the	individual
prediction losses add up:

• Likelihood if	some Yi’s are	missing:	just ignore	those losses

• If	not	conditionally independent,	need to	capture	the	conditional
joint	distribution
• Example:	output	=	image,	sentence,	tree,	etc.
• Similar to	unsupervised learning problem of	capturing joint
• Exact	likelihood may similarly be intractable,	depending on	
model
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� logP (Y |X) = � logP (Y1, . . . Yk|X) = � log
Y

i

P (Yi|X) = �
X

i

logP (Yi|X)

P (Y1, . . . Yk|X)



Combining Representations
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Neural Language Models

• Bengio	et	al	NIPS’2000	
and	JMLR	2003	“A	
Neural	Probabilistic	
Language	Model”
• Each	word	represented	by	
a	distributed	continuous-
valued	code	vector	=	
embedding

• Generalizes	to	sequences	
of	words	that	are	
semantically	similar	to	
training	sequences
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P (w1, w2, w3, . . . , wT ) =
Y

t

P (wt|wt�1, wt�2, . . . , w1)
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Softmax:



Neural word embeddings -
visualization
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Analogical Representations for Free
(Mikolov et al, ICLR 2013)

• Semantic	relations	appear	as	linear	relationships	in	the	space	of	
learned	representations

• King	– Queen	≈		Man	– Woman
• Paris	– France	+	Italy	≈	Rome
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Google Image Search: 
Different object types represented in the 
same space

Google:
S. Bengio,	J.	
Weston	& N.	
Usunier

(IJCAI	2011,	
NIPS’2010,	
JMLR	2010,	
MLJ	2010)



x and	y represent
different modalities,	e.g.,	
image,	text,	sound…

Can	provide 0-shot	
generalization to	new	
categories (values	of	y)
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pairs in the training set(x,y)
-representation (encoder) functionx

y

hx = fx(x)

x

xtest

ytest

hy = fy(y)

y-space-space

fx
-representation (encoder) function fy

relationship between embedded points 
within one of the domains
maps between representation spaces 

fx
fy

Maps Between
Representations

(Larochelle et	al	AAAI	2008)



Multi-Task Learning
• Generalizing	better	to	new	tasks	

(tens	of	thousands!)	is	crucial	to	
approach	AI

• Deep	architectures	learn	good	
intermediate	representations	that	
can	be	shared	across	tasks
(Collobert	&	Weston	ICML	2008,
Bengio	et	al	AISTATS	2011)

• Good	representations	that	
disentangle	underlying	factors	of	
variation	make	sense	for	many	tasks	
because	each	task	concerns	a	
subset	of	the	factors
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raw input x

task 1 
output y1

task 3 
output y3

task 2
output y2

Task	A Task	B Task	C

Prior:	shared	underlying	explanatory	factors	between	tasks	

E.g.	dictionary,	with	intermediate	
concepts	re-used	across	many	definitions



Combining Multiple Sources of Evidence 
with Shared Representations

• Traditional	ML:	data	=	matrix
• Relational	learning:	multiple	sources,	

different	tuples	of	variables
• Share	representations	of	same	types	

across	data	sources
• Shared	learned	representations	help	

propagate	information	among	data	
sources:	e.g.,	WordNet,	XWN,	
Wikipedia,	FreeBase,	
ImageNet…(Bordes et	al	AISTATS	2012,	ML	
J.	2013)

• FACTS	=	DATA
• Deduction	=	Generalization66
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Hyper-Parameters & Meta-Learning
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Hyper-parameters & validation set

• Parameters:	optimized	by	gradient-based	optimization	on	the	training	set	
• Hyper-parameters:	design	decisions	and	settings	of	the	optimization	

procedure
• Optimized	based	on	performance	on	a	validation	set	disjoint	from	training	
set.

• Choosing	hyper-parameters	based	on	training	set	would	lead	to	high-capacity	
choices	with	overfitting (hence	need	a	validation	set)

• A	disjoint	test	set	is	used	to	obtain	final	unbiased	estimation	of	
generalization	performance.

• Training,	validation	and	test	sets	are	subsets	of	randomized	(shuffled)	data,		
to	mimic	iid assumption	

68

Training	set Validation	set Test	set



Hyper-parameters of MLPs

• Global	learning	rate
• Number	of	training	epochs	(passes	over	training	set)
• Number	of	neurons	per	layer
• Depth	(number	of	layers)
• Choice	of	activation	function(s)	
• Regularization	coefficients	(L1,	L2,	etc.)
• Noise	injection	&	dropout
• Loss	function	and	output	non-linearity	
• Minibatch size	(with	parallel	computation	within	minibatch)
• Weight	normalization	method	(e.g.	batch	normalization)
• Input	and	targets	normalization	
• Data	deformations	
• Etc.
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Nested optimisation of parameters and  
hyper-parameters

• For	each	considered	configuration	of	hyper-parameters	
• Train	parameters	with	this	configuration	(optimize	train	loss)
• Measure	resulting	model’s	validation	error
• Keep	this	configuration	if	it’s	the	best	seen	up	to	now

• An	old	form	of	meta-learning:	two	nested	optimizations

• Optionally:	Retrain	with	training+validation set

• Measure	resulting	model’s	test	error
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Hyper-Optimization

• Manual	search
• Don’t	use	test	error!	
• Slow	and	sequential,	but	trained	humans	still	generally	do	it.
• Not	systematic,	harder	to	reproduce

• Grid search:	inefficient	with more	than 2	hyper-parameters
• Random search (Bergstra &	Bengio,	2012,	JMLR)

• Simple,	robust &	parallelizable
• Bayesian optimisation	(sequential,	automated),	reinforcement

learning
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Random Sampling of Hyperparameters
(Bergstra &	Bengio	2012)

• Random	search:	simple	&	efficient
• Independently	sample	each	HP,	e.g.	
l.rate~exp(U[log(.1),log(.0001)])

• Each	training	trial	is	iid
• If	a	HP	is	irrelevant	grid	search	is	wasteful
• More	convenient:	ok	to	early-stop,	continue	
further,	etc.
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L1 regularisation to remove 
weights and inputs

73

Add	a	term	that	pushes	weights	or	groups	of	weights	to	0

prediction	error	+

pushes	individual	weights	to	0,	whereas

prediction	error	+

is	trying	to	make	all	the	weights	in	the	group																go	to	0		

�
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|Wij |
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Weight Initialisation
(from
Hugo	Larochelle)
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INITIALIZATION
 3

Topics: initialization
• For biases
‣ initialize all to 0

• For weights
‣ Can’t initialize weights to 0 with tanh activation

- we can show that all gradients would then be 0 (saddle point)

‣ Can’t initialize all weights to the same value
- we can show that all hidden units in a layer will always behave the same

- need to break symmetry

‣ Recipe: sample          from                   where
- the idea is to sample around 0 but break symmetry  

- other values of b could work well (not an exact science)
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Early Stopping : 
free lunch (T jobs for the price of 1)

(from
Hugo	
Larochelle)
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Regularizing by injecting noise: 
dropout

(from
Hugo	
Larochelle)

No	noise	
at	test	
time.
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DROPOUT
 3

Topics: dropout
• Idea: «cripple» neural network by 

removing hidden units stochastically
‣ each hidden unit is set to 0 with  

probability 0.5
‣ hidden units cannot co-adapt to other 

units
‣ hidden units must be more generally  

useful

• Could use a different dropout 
probability, but 0.5 usually 
works well

...
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Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

September 6, 2012

Abstract

Math for my slides “Feedforward neural network”.

• a(x) = b+
P

i wixi = b+w>x

• h(x) = g(a(x)) = g(b+
P

i wixi)

• x1 xd b w1 wd

• w

• {

• g(a) = a

• g(a) = sigm(a) = 1
1+exp(�a)

• g(a) = tanh(a) = exp(a)�exp(�a)
exp(a)+exp(�a) = exp(2a)�1

exp(2a)+1

• g(a) = max(0, a)

• g(a) = reclin(a) = max(0, a)

• g(·) b

• W (1)
i,j b(1)i xj h(x)i

• h(x) = g(a(x))

• a(x) = b(1) +W(1)x
⇣
a(x)i = b(1)i

P
j W

(1)
i,j xj

⌘

• o(x) = g(out)(b(2) +w(2)>x)

1

1

1

...... 1

......

...

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2



Diagnostic: overfitting vs underfitting?
(from
Hugo	
Larochelle)
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DEEP LEARNING
 2

Topics: why training is hard
• Depending on the problem, one or the other situation will 

tend to prevail

• If first hypothesis (underfitting): use better optimization
‣ this is an active area of research

• If second hypothesis (overfitting): use better regularization
‣ unsupervised learning
‣ stochastic «dropout» training 

or	collect	more	dataor	semi-supervised



How to know if you are overfitting or 
underfitting?

Overfitting:	if	you	increase	capacity	(number	of	parameters,	
training	time,	better	optimizer,	smaller	regularization	coefficient,	
etc.),	test	or	validation	error	increase
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Meta-Learning / Learning to learn

• Generalize the	idea of	hyper-parameter optimization
• Inner loop optimization (normal	training),	a	fn of	meta-params

• Outer	loop optimization (meta-training),	optimize meta-params

• Meta-parameters can be the	learning rule itself (Bengio	&	Bengio	
1991;	Schmidhuber 1992),	learn 2	optimize

• Meta-learn an	objective	or	reward function,	or	a	shared encoder
• Meta-learning can be used to	learn to	generalize or	transfer
• Can	backprop through ,	use	RL,	evolution,	or	other tricks	
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Injecting Noise in a Nonsmooth Net

• Injecting	noise	corresponds	to	convolving	the	objective	function	
with	the	noise	kernel:

• Same	thing	for	the	gradient,	so	we	get	a	stochastic	gradient	on	a	
smooth	of	the	original	objective	function,	which	should	be	
easier	to	optimize.

• Gradually	reducing	the	noise	level	=	simulated	annealing
80
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Track local minima 

 

Final solution 

 

Easy to find minimum 

 

Continuation Methods and Simulated 
Annealing

• Gradually	consider	less	easy	versions	of	the	objective	of	interest,	
tracking	the	local	minima	found	along	the	way
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Order & Selection of Examples Matters
(Bengio,	Louradour,	Collobert &	Weston,	ICML’2009) A

• Curriculum	learning	
(Bengio	et	al	2009,	Krueger	&	Dayan	2009)	
is	a	form	of	continuation	method

• Start	with	easier	examples

• Faster	convergence	to	a	better	
solutions	in	deep	architectures
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Guided Training, Intermediate
Concepts

• Breaking the	problem in	two sub-problems and	pre-training	
each module	separately,	then fine-tuning,	nails it

• Need prior knowledge to	decompose the	task
• Guided pre-training	allows to	find much better solutions,	escape	

effective	local	minima
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HINTS

inputs outputs

(Gulcehre &	Bengio	ICLR’2013)	



Debugging

• Instrument	the	code	to	make	experiments	reproducible

• Use	tools	to	verify	gradients	(finite	differences)

• Train	on	a	small	dataset:	verify	can	reach	0	training	error

• Track	error	curves	during	training	(training	error,	validation	
error);	training	error	should	roughly	go	down

• Track	distribution	statistics	of	weights	and	gradients	during	
training
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Validate and Analyze 

• Vary	capacity	and	observe	error	curves	to	identify	if	the	
system	is	rather	overfitting or	rather	underfitting

• Compare	with	simpler	reference	models	(logistic	regression,	
SVMs,	random	forests)	

• Track	several	relevant	metrics
• Look	at	the	training	and	validation	examples	which	give	the	

worse	error	(input,	output	and	target)
• Measure	effect	of	changing	the	number	of	training	examples
• Make	sure	you	have	enough	test	examples	to	be	able	to	

conclude	with	statistical	significance

85



Convolutional Nets
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Anything New with Deep Learning since the 
Neural Nets of the 90s?
• Rectified	linear	units	instead	of	sigmoids,	enable	training	much	

deeper	networks	by	backprop (Glorot &	Bengio	AISTATS	2011)

• Some	forms	of	noise	(like	dropout)	are	powerful	regularizers
yielding	superior	generalization	abilities

• Success	of	deep	convnets trained	on	large	labeled	image	datasets,	
success	of	skip	connections	(ResNets)	

• Success	of	recurrent	nets	with	more	memory,	with	gating	units
• Success	of	word	embedding,	neural	machine	translation,	deep	NLP
• Attention	mechanisms	liberate	neural	nets	from	fixed-size	inputs,	

self-attention	allows	to	work	on	sets,	graphs
• Autoencoders,	adversarial	training,	generating	images	&	sounds
• Transfer	learning,	meta-learning,	deep	reinforcement	learning



2012-2015: breakthrough
in computer vision

• Graphics Processing Units
(GPUs) + 10x more data

• 1,000 object categories

• Facebook: millions of faces
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Convolutional Networks

• Scale	up	neural	networks	to	process	very	large	images	/	
video	sequences

- Sparse	connections

- Parameter	sharing

• Automatically	generalize	across	spatial	translations	of	
inputs

• Applicable	to	any	input	that	is	laid	out	on	a	grid	(1-D,	2-
D,	3-D,	…)



Convnets: Key Idea

• Replace	matrix	multiplication	in	ordinary	
neural	nets	with	convolution

• Everything	else	stays	the	same
- Maximum	likelihood
- Back-propagation
- etc.



Convolutional Neural Networks

• A	special	kind	of	deep	learning	tailored	for	images
• Exploits	the	invariance	to	translations
• Exploits	multi-scale	hierarchy

92

Convolutional	neural	network	for	imaging	data



2D Convolution

Figure	9.1,	Deep	Learning	book,	Goodfellow	et	al	2016



Sparse Connectivity

Sparse
connections
due	to	small
convolution
kernel

Dense
connections

Figure	9.2



Sparse Connectivity

Sparse
connections
due	to	small
convolution
kernel

Dense
connections

Figure	9.3



Growing Receptive Fields

Figure	9.4



Parameter Sharing

Convolution	shares	the	
same	parameters	across	
all	spatial	locations

Traditional	matrix	
multiplication	does	not	
share	any	parameters

Figure	9.5



Cross-Channel Pooling and 
Invariance to Learned 
Transformations

Figure	9.9



Pooling with 
Downsampling

Figure	9.10



Convolution with Stride

Figure	9.12



Major ConvNet Architectures
• Spatial	Transducer	Net:	input	size	scales	with	output	size,	
all	layers	are	convolutional

• All	Convolutional	Net:	no	pooling	layers,	just	use	strided	
convolution	to	shrink	representation	size

• Inception:	complicated	architecture	designed	to	achieve	
high	accuracy	with	low	computational	cost

• ResNet:	blocks	of	layers	with	same	spatial	size,	with	each	
layer’s	output	added	to	the	same	buffer	that	is	repeatedly	
updated.	Very	many	updates	=	very	deep	net,	but	without	
vanishing	gradient.



ResNets: Skip Connections

• Identity	paths	make	it	possible	for	gradients	to	flow	through	
deeper	networks	(He	et	al	2015),	SOTA	on	object	recognition
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Deep Data Fusion

• Deep	nets	are	very	good	at	combining	multiple	sources	of	data,	
multiple	sensors	or	modalities

• Can	have	separate	pre-processing	stages	for	each	modality,	then	
CONCATENATE	the	representations	before	continuing	processing

103

Need	to	map
to	the	same	
spatial	scale,
or	‘copy’	a	
non-spatial	
modality	at	all	
positions.



Generating Text from Images
• (Kiros et	al.,	2014;	Mao	et	al.,	

2014;	Donahue et	al.,	2014;	
Vinyals et	al.,	2014;	Fang	et	
al.,	2014;	Chen	and	Zitnick,	
2014;	Karpathy and	Li,	2014;	
Venugopalan et	al.,	2014).	

• Convolutional net	à
generative RNN
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U-Net Architecture for CNNs with 
Pixel-Wise Outputs



Generating Images from Text

• With U-Net	like architectures	and	multi-stage refinement
• With GAN	types	of	objectives
• With attention	mechanism

106

Xu	et	al	2018,	AttnGAN



AttnGAN Architecture

Many bells and	whistles in	modern	deep learning…
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Recurrent Neural Networks

108



Recurrent Neural Networks

• Can	produce an	output	at each time	step:	unfolding the	graph	
tells	us	how	to	back-prop through time.
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Recurrent Neural Networks

• Selectively summarize an	input	sequence in	a	fixed-size	state	
vector via	a	recursive update
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Generative RNNs
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• An	RNN	can represent a	fully-connected directed generative
model:	every variable	predicted from all	previous ones.



Neural word embeddings - visualization

112



113

h(t�1)h(t�1)

W h(t)h(t) . . .. . .

x(t�1)x(t�1) x(t)x(t) x(...)x(...)

W W

U U U

h(⌧)h(⌧)

x(⌧)x(⌧)

W

U

o(⌧)o(⌧)y(⌧)y(⌧)

L(⌧)L(⌧)

V

. . .. . .

Conditional Distributions

• Sequence	to	vector

• Sequence	to	sequence	of	the	
same	length,	aligned

• Vector	to	sequence

• Sequence	to	sequence	

stst�1 st+1

F✓ F✓ F✓

xtxt�1 xt+1x

s
F✓

unfold

UU

VV

WW

o(t�1)o(t�1)

hh

oo

yy

LL

xx

o(t)o(t) o(t+1)o(t+1)

L(t�1)L(t�1) L(t)L(t) L(t+1)L(t+1)

y(t�1)y(t�1) y(t)y(t) y(t+1)y(t+1)

h(t�1)h(t�1) h(t)h(t) h(t+1)h(t+1)

x(t�1)x(t�1) x(t)x(t) x(t+1)x(t+1)

WWWW WW WW

h(... )h(... ) h(... )h(... )

VV VV VV

UU UU UU

Unfold

xtxt�1 xt+1

W W W

V V V

U U U

st�1

ot�1 ot

st st+1

ot+1

xt+2

xtxt�1 xt+1

st�1

ot�1 ot

st st+1

ot+1

xt+2



• During training,	past y
in	input	is from training	
data

• At generation time,	
past y in	input	is
generated

• Mismatch can
cause	 ”compounding	
error”
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P (yt | ht)

ht

xt

ŷt ⇠ P (yt | ht)

(xt, yt) : next input/output training pair

yt

Test-time	
path

Training-
time	path

Maximum Likelihood = 
Teacher Forcing



Ideas to reduce the train/generate 
mismatch in teacher forcing
• Scheduled	sampling	(S.	Bengio et	al,	NIPS	2015)

• Backprop through	open-loop	sampling	recurrence	&	minimize	
long-term	cost	(but	which	one?	GAN	would	be	most	natural	à
Professor	Forcing)
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Related	to
SEARN	(Daumé et	al	2009)
DAGGER	(Ross	et	al	2010)

Gradually	increase	the
probability	of	using
the	model’s	samples
vs the	ground	truth
as	input.



Increasing the Expressive Power of 
RNNs with more Depth

• ICLR	2014,	How	to	construct deep recurrent neural	networks
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Bidirectional RNNs, Recursive Nets, 
Multidimensional RNNs, etc.
• The	unfolded	architecture	needs	not	be	a	straight	chain	
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(Multidimensional RNNs,	Graves	et	al	2007)

Figure 1: 2D RNN Forward pass. Figure 2: 2D RNN Backward pass.

Various statistical models have been proposed for multi-dimensional data, notably
multi-dimensional HMMs. However, multi-dimensional HMMs suffer from two severe
drawbacks: (1) the time required to run the Viterbi algorithm, and thereby calculate
the optimal state sequences, grows exponentially with the number of data points; (2)
the number of transition probabilities, and hence the required memory, grows expo-
nentially with the data dimensionality. Numerous approximate methods have been
proposed to alleviate one or both of these problems, including pseudo 2D and 3D
HMMs [8], isolating elements [12], approximate Viterbi algorithms [10], and depen-
dency tree HMMs [9]. However, none of these methods are able to exploit the full
multi-dimensional structure of the data.

As we will see, multi dimensional recurrent neural networks (MDRNNs) bring
the benefits of RNNs to multi-dimensional data, without suffering from the scaling
problems described above.

Section 2 describes the MDRNN architecture, Section 3 presents two experiments
on image segmentation, and concluding remarks are given in Section 4.

2 Multi-Dimensional Recurrent Neural Networks
The basic idea of MDRNNs is to replace the single recurrent connection found in stan-
dard RNNs with as many recurrent connections as there are dimensions in the data.
During the forward pass, at each point in the data sequence, the hidden layer of the net-
work receives both an external input and its own activations from one step back along
all dimensions. Figure 1 illustrates the two dimensional case.

Note that, although the word sequence usually connotes one dimensional data, we
will use it to refer to data examplars of any dimensionality. For example, an image is
a two dimensional sequence, a video is a three dimensional sequence, and a series of
fMRI brain scans is a four dimensional sequence.

Clearly, the data must be processed in such a way that when the network reaches a
point in an n-dimensional sequence, it has already passed through all the points from
which it will receive its previous activations. This can be ensured by following a
suitable ordering on the points {(x1, x2, ..., xn)}. One example of a suitable order-
ing is (x1, . . . , xn) < (x0

1, . . . , x
0
n) if 9 m 2 (1, . . . , n) such that xm < x

0
m and

xi = x
0
i 8 i 2 (1, . . . ,m� 1). Note that this is not the only possible ordering, and that

its realisation for a particular sequence depends on an arbitrary choice of axes. We will
return to this point in Section 2.1. Figure 3 illustrates the ordering for a 2 dimensional
sequence.

The forward pass of an MDRNN can then be carried out by feeding forward the
input and the n previous hidden layer activations at each point in the ordered input
sequence, and storing the resulting hidden layer activations. Care must be taken at the
sequence boundaries not to feed forward activations from points outside the sequence.

2

Bidirectional RNNs	(Schuster	and	Paliwal,	1997)	

See	Alex	Graves’s	work,	e.g.,	2012	
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Multiplicative Interactions

• Multiplicative	Integration	RNNs:	

• Replace

• By

• Or	more	general:
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Abstract

We introduce a general simple structural design called “Multiplicative Integra-1

tion” (MI) to improve recurrent neural networks (RNNs). MI changes the way2

of how the information flow gets integrated in the computational building block3

of an RNN, while introducing almost no extra parameters. The new structure4

can be easily embedded into many popular RNN models, including LSTMs and5

GRUs. We empirically analyze its learning behaviour and conduct evaluations on6

several tasks using different RNN models. Our experimental results demonstrate7

that Multiplicative Integration can provide a substantial performance boost over8

many of the existing RNN models.9

1 Introduction10

Recently there has been a resurgence of new structural designs for recurrent neural networks (RNNs)11

[1, 2, 3]. Most of these designs are derived from popular structures including vanilla RNNs, Long12

Short Term Memory networks (LSTMs) [4] and Gated Recurrent Units (GRUs) [5]. Despite of their13

varying characteristics, most of them share a common computational building block, described by the14

following equation:15

�(Wx+Uz + b), (1)

where x 2 Rn and z 2 Rm are state vectors coming from different information sources, W 2 Rd⇥n16

and U 2 Rd⇥m are state-to-state transition matrices, and b is a bias vector. This computational17

building block serves as a combinator for integrating information flow from the x and z by a sum18

operation “+”, followed by a nonlinearity �. We refer it as the additive building block. Additive19

building blocks are widely implemented in various state computations in RNNs (e.g. hidden state20

computations for vanilla-RNNs, gate/cell computations of LSTMs and GRUs).21

In this work, we propose an alternative design for constructing the computational building block by22

changing the procedure of information integration. Specifically, instead of utilizing sum operation23

“+", we propose to use the Hadamard product “�” to fuse Wx and Uz:24

�(Wx�Uz + b) (2)

The result of this modification changes the RNN from first order to second order [6], while introducing25

no extra parameters. We call this information integration design as Multiplicative Integration. The26

effect of multiplication naturally results in a gating type structure, in which Wx and Uz are the gates27

of each other. More specifically, one can think of the state-to-state computation Uz as dynamically28

rescaled by the Wx. Such rescaling does not exist in the additive building block in which Uz is29

independent of x. This relatively simple modification brings about advantages over the additive30

building block as it alters RNN’s gradient properties, which we discuss in detail in the next section,31

as well as verify through extensive experiments.32
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In the following sections, we first introduce a general formulation of Multiplicative Integration. We33

then compare it to the additive building block on several sequence learning tasks, including character34

level language modelling, speech recognition, large scale sentence representation learning using a35

Skip-Thought model, and teaching machine to read and comprehend for the question answering36

task. The experimental results (together with several existing state-of-the-art models) show that37

various RNN structures (including vanilla RNNs, LSTMs, and GRUs) equipped with Multiplicative38

Integration provide better generalization and easier optimization. Its main advantages include: (1) It39

enjoys better gradient properties due to the gating effect. Most of the hidden units are non-saturated;40

(2) The general formulation of Multiplicative Integration naturally includes the additive building41

block as a special case, and introduces almost no extra parameters compared to the additive building42

block; and (3) Rather than inflexible ad-hoc structural design, it can be easily embedded into most of43

the popular RNN models, including LSTMs and GRUs. It can also be combined with other RNN44

training techniques such as Recurrent Batch Normalization [7]. We further discuss its relationship45

to existing models, including Hidden Markov Models (HMMs) [8], second order RNNs [9, 6] and46

Multiplicative RNNs [10].47

2 Structure Description and Analysis48

2.1 General Formulation of Multiplicative Integration49

The key idea behind Multiplicative Integration is to integrate different information flows Wx and Uz,50

by the Hadamard product “�”. A more general formulation of Multiplicative Integration includes51

two more bias vectors �1 and �2 added to Wx and Uz:52

�((Wx+ �1)� (Uz + �2) + b) (3)
where �1,�2 2 Rd are bias vectors. Notice that such formulation contains the first order terms as53

in a additive building block, i.e., �1 �Uht�1 + �2 �Wxt. In order to make the Multiplicative54

Integration more flexible, we introduce another bias vector ↵ 2 Rd to gate1 the term Wx �Uz,55

obtaining the following formulation:56

�(↵�Wx�Uz + �1 �Uz + �2 �Wx+ b), (4)
Note that the number of parameters of the Multiplicative Integration is about the same as that of the57

additive building block, since the number of new parameters (↵, �1 and �2) are negligible compared58

to total number of parameters. Also, Multiplicative Integration can be easily extended to LSTMs59

and GRUs2, that adopt vanilla building blocks for computing gates and output states, where one can60

directly replace them with the Multiplicative Integration. More generally, in any kind of structure61

where k information flows (k � 2) are involved (e.g. RNN with multiple skip connections [11]62

or in feedforward models like residual networks [12]), one can implement pairwise Multiplicative63

Integration for integrating all k information sources.64

2.2 Gradient Properties65

The Multiplicative Integration has different gradient properties compared to the additive building66

block. For clarity of presentation, we first look at vanilla-RNN and RNN with Multiplicative67

Integration embedded, referred to as MI-RNN. That is, ht = �(Wxt + Uht�1 + b) versus68

ht = �(Wxt �Uht�1 + b). In a vanilla-RNN, the gradient @ht
@ht�n

can be computed as follows:69

@ht

@ht�n
=

tY

k=t�n+1

UTdiag(�0
k), (5)

where �0
k = �0(Wxk +Uhk�1 +b). The equation above shows that the gradient flow through time70

heavily depends on the hidden-to-hidden matrix U, but W and xk appear to play a limited role: they71

only come in the derivative of �0 mixed with Uhk�1. On the other hand, the gradient @ht
@ht�n

of a72

MI-RNN is3:73

@ht

@ht�n
=

tY

k=t�n+1

UTdiag(Wxk)diag(�
0
k), (6)

1If ↵ = 0, the Multiplicative Integration will degenerate to the vanilla additive building block.
2See exact formulations in the Appendix.
3Here we adopt the simplest formulation of Multiplicative Integration for illustration. In the more general

case (Eq. 4), diag(Wxk) in Eq. 6 will become diag(↵�Wxk + �1).

2

(Wu	et	al,	2016,	arXiv:1606.06630)

Figure 1: (a) Curves of log-L2-norm of gradients for lin-RNN (blue) and lin-MI-RNN (orange). Time gradually
changes from {1, 5, 10}. (b) Validation BPC curves for vanilla-RNN, MI-RNN-simple using Eq. 2, and MI-
RNN-general using Eq. 4. (c) Histogram of vanilla-RNN’s hidden activations over the validation set, most
activations are saturated. (d) Histogram of MI-RNN’s hidden activations over the validation set, most activations
are not saturated.

We next tried different initialization of W and U to test their sensitivities to the scaling. For each129

model, we fix the initialization of U to uniform[�0.02, 0.02] and initialize W to uniform[�rW, rW]130

where rW varies in {0.02, 0.1, 0.3, 0.6}. Table 1, top left panel, shows results. As we increase131

the scale of W, performance of the vanilla-RNN improves, suggesting that the model is able to132

better utilize the input information. On the other hand, MI-RNN is much more robust to different133

initializations, where the scaling has almost no effect on the final performance.134

3.1.3 On different choices of the formulation135

In our third experiment, we evaluated the performance of different computational building blocks,136

which are Eq. 1 (vanilla-RNN), Eq. 2 (MI-RNN-simple) and Eq. 4 (MI-RNN-general)4. From the137

validation curves in Figure 1 (b), we see that both MI-RNN, simple and MI-RNN-general yield much138

better performance compared to vanilla-RNN, and MI-RNN-general has a faster convergence speed139

compared to MI-RNN-simple. We also compared our results to the previously published models140

in Table 1, bottom left panel, where MI-RNN-general achieves a test BPC of 1.39, which is to our141

knowledge the best result for RNNs on this task without complex gating/cell mechanisms.142

3.2 Character Level Language Modeling143

In addition to the Penn-Treebank dataset, we also perform character level language modeling on two144

larger datasets: text8
5 and Hutter Challenge Wikipedia

6. Both of them contain 100M characters from145

Wikipedia while text8 has an alphabet size of 27 and Hutter Challenge Wikipedia has an alphabet146

size of 205. For both datasets, we follow the training protocols in [14] and [1] respectively. We use147

Adam for optimization with the starting learning rate grid-searched in {0.002, 0.001, 0.0005}. If the148

validation BPC (bits-per-character) does not decrease for 2 epochs, we half the learning rate.149

We implemented Multiplicative Integration on both vanilla-RNN and LSTM, referred to as MI-150

RNN and MI-LSTM. The results for the text8 dataset are shown in Table 1, bottom middle panel.151

All five models, including some of the previously published models, have the same number of152

4We perform hyper-parameter search for the initialization of {↵,�1,�2,b} in MI-RNN-general.
5http://mattmahoney.net/dc/textdata
6http://prize.hutter1.net/
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Multiscale or Hierarchical RNNs
• Motivation : 

o Gradients can propagate over longer spans through slow time-scale paths

• Approach : 

o Introduce a network architecture that update the states of its hidden layers 
with different speeds in order to capture multiscale representation of 
sequences.
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(Bengio	&	Elhihi, NIPS	1995)



Learning Long-Term
Dependencies with
Gradient Descent is

Difficult

Y.	Bengio,	P.	Simard &	P.	Frasconi,	IEEE	Trans.	Neural	Nets,	1994



How to store 1 bit? Dynamics with 
multiple basins of attraction in some 
dimensions
• Some	subspace	of	the	state	can	store	1	or	more	bits	of	

information	if	the	dynamical	system	has	multiple	basins	of	
attraction	in	some	dimensions
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Basins	boundary

Bit=1

Bit=0

Note:	gradients	MUST	be	high	near	the	boundary



Robustly storing 1 bit in the presence 
of bounded noise

• With	spectral	radius	>	1,	noise	can	kick	state	out	of	attractor

• Not	so	with	radius<1
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Storing Reliably è Vanishing gradients

• Reliably	storing	bits	of	information	requires	spectral	radius<1
• The	product	of	T	matrices	whose	spectral	radius	is	<	1	is	a	matrix	

whose	spectral	radius	converges	to	0	 at	exponential	rate	in	T

• If	spectral	radius	of	Jacobian is	<	1	è propagated	gradients	vanish
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Vanishing or Exploding Gradients

• Hochreiter’s 1991	MSc	thesis	(in	German)	had	independently	
discovered	that	backpropagated gradients	in	RNNs	tend	to	either	
vanish	or	explode	as	sequence	length	increases
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Why it hurts gradient-based learning

• Long-term	dependencies	get	a	weight	that	is	exponentially	
smaller	(in	T)	compared	to	short-term	dependencies

125

Becomes	exponentially	smaller
for	longer	time	differences,
when	spectral	radius	<	1



Vanishing Gradients in Deep Nets are 
Different from the Case in RNNs

• If	it	was	just	a	case	of	vanishing	gradients	in	deep	nets,	
we	could	just	rescale	the	per-layer	learning	rate,	but	
that	does	not	really	fix	the	training	difficulties.

• Can’t	do	that	with	RNNs	because	the	weights	are	
shared,	&	total	true	gradient	= sum	over	different	
“depths”
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To store information robustly the 
dynamics must be contractive
• The	RNN	gradient	is	a	product	of	Jacobian matrices,	each	

associated	with	a	step	in	the	forward	computation.	To	store	
information	robustly	in	a	finite-dimensional	state,	the	dynamics	
must	be	contractive	[Bengio	et	al	1994].	

• Problems:	
• e-values	of	Jacobians >	1	à gradients	explode	
• or	e-values	<	1	à gradients	shrink	&	vanish
• or	random	à variance	grows	exponentially
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Storing bits
robustly requires
e-values<1

Gradient	
clipping



Dealing with Gradient Explosion by 
Gradient Norm Clipping
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(Mikolov thesis	2012;
Pascanu,	Mikolov,	Bengio,	ICML	2013)

error

✓
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RNN Tricks 
(Pascanu,	Mikolov,	Bengio,	ICML	2013;	Bengio,	Boulanger	&	Pascanu,	ICASSP	2013)

• Clipping	gradients	(avoid	exploding	gradients)
• Leaky	integration	(propagate	long-term	dependencies)
• Momentum	(cheap	2nd order)
• Initialization	(start	in	right	ballpark	avoids	exploding/vanishing)
• Sparse	Gradients	(symmetry	breaking)
• Gradient	propagation	regularizer	(avoid	vanishing	gradient)
• Gated	self-loops	(LSTM	&	GRU,	reduces	vanishing	gradient)
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Delays & Hierarchies to Reach Farther
• Delays and	multiple	time	scales,	Elhihi &	Bengio	NIPS	1995,	

Koutnik et	al	ICML	2014
• How	to	do	this right?
• How	to	automatically
and	adaptively do	it?

130

Hierarchical	RNNs	(words	/	sentences):
Sordoni et	al	CIKM	2015,	Serban et	al	
AAAI	2016	



×

input input gate forget gate output gate

output

state

self-loop

×

+ ×

Fighting the vanishing gradient:
LSTM & GRU

• Create a	path where
gradients	can flow	for	
longer	with a	self-loop

• Corresponds	to	an	
eigenvalue of	Jacobian
slightly less than 1

• LSTM	is now heavily used
(Hochreiter &	Schmidhuber
1997)

• GRU	light-weight version	
(Cho	et	al	2014)

131

LSTM:	(Hochreiter &	Schmidhuber 1997)(Hochreiter 1991);	first	version	of	
the	LSTM,	called	Neural	Long-
Term	Storage	with	self-loop

new state ⇡ old state + update

@new state

@old state
⇡ I



Attention Mechanisms

132



Gating for Attention-Based Neural 
Machine Translation

• (Bahdanau,	Cho	&	Bengio,	arXiv	sept.	2014)
• (Jean,	Cho,	Memisevic	&	Bengio,	arXiv	dec.	2014)
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What’s New with Deep Learning?

• Incorporating	the	idea	of	attention,	using	GATING	units, has	
unlocked	a	breakthrough	in	machine	translation:	

Neural	Machine	Translation

• Now	in	Google	Translate:	
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Lower-level

Higher-level
Softmax over	lower
locations	conditioned
on	context at lower and
higher locations	

Human
evaluation

human
translation

n-gram
translation

current
neural	net
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(ICLR’2015)



Graph Attention Networks
Velickovic et al, ICLR 2018

• Handle	variable-size	neighborhood	of	each	node	using	the	same	
neural	net	by	using	an	attention	mechanism	to	aggregate	
information	from	the	neighbors

• Use	multiple	attention	heads	to	collect	different	kinds	of	
information
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Published as a conference paper at ICLR 2018
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Figure 1: Left: The attention mechanism a(W~hi,W~hj) employed by our model, parametrized
by a weight vector ~a 2 R2F 0

, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are
concatenated or averaged to obtain ~h0
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applying a nonlinearity, �):
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To stabilize the learning process of self-attention, we have found extending our mechanism to em-
ploy multi-head attention to be beneficial, similarly to Vaswani et al. (2017). Specifically, K inde-
pendent attention mechanisms execute the transformation of Equation 4, and then their features are
concatenated, resulting in the following output feature representation:
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where k represents concatenation, ↵k
ij are normalized attention coefficients computed by the k-th

attention mechanism (ak), and Wk is the corresponding input linear transformation’s weight matrix.
Note that, in this setting, the final returned output, h0, will consist of KF

0 features (rather than F
0)

for each node.

Specially, if we perform multi-head attention on the final (prediction) layer of the network, concate-
nation is no longer sensible—instead, we employ averaging, and delay applying the final nonlinear-
ity (usually a softmax or logistic sigmoid for classification problems) until then:
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The aggregation process of a multi-head graph attentional layer is illustrated by Figure 1 (right).

2.2 COMPARISONS TO RELATED WORK

The graph attentional layer described in subsection 2.1 directly addresses several issues that were
present in prior approaches to modelling graph-structured data with neural networks:

• Computationally, it is highly efficient: the operation of the self-attentional layer can be par-
allelized across all edges, and the computation of output features can be parallelized across

4



What’s New with Deep Learning?

• Attention	has	also	opened	the	door	to	neural	nets	which	can		
write	to	and	read	from	a	memory
• 2	systems:	
• Cortex-like	(state	controller	and	representations)
• System	1,	intuition,	fast	heuristic	answer

• Hippocampus-like	(memory)	+	prefrontal	cortex
• System	2,	slow,	logical,	sequential	

136

write

read

• Memory-augmented	networks	gave	rise	to
• Systems	which	reason
• Sequentially	combining	several	selected	pieces	of	
information	(from	the	memory)	in	order	to	obtain	
a	conclusion

• Systems	which	answer	questions
• Accessing	relevant	facts	and	combining	them



Attention Mechanisms for Memory Access

• Neural	Turing	Machines	(Graves	et	al	2014)
• and	Memory	Networks	(Weston	et	al	2014)
• Use	a	content-based attention	mechanism

(Bahdanau et	al	2014)	to	control	the	read
and	write access into a	memory

• The	attention	mechanism outputs	a	softmax
over	memory locations
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Large Memory Networks: Sparse Access 
Memory for Long-Term Dependencies
• Memory	=	part	of	the	state
• Memory-based networks	are	special RNNs
• A	mental	state	stored in	an	external memory can stay for	arbitrarily long	

durations,	until it is overwritten (partially or	not)
• Forgetting =	vanishing gradient.
• Memory	=	higher-dimensional state,	avoiding or	reducing the	need for	

forgetting/vanishing
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Pointing the Unknown Words

The	next	word	
generated	can	either	
come	from	vocabulary	
or	is	copied	from	the	
input	sequence.
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Gulcehre,	Ahn,	Nallapati,	Zhou	&	Bengio ACL	2016
Based	on	‘Pointer	Networks’,	Vinyals et	al	2015

ior of humans and recent advances in the atten-
tion mechanism (Bahdanau et al., 2014) and the
pointer networks (Vinyals et al., 2015), we pro-
pose a novel method to deal with the rare or un-
known word problem. The basic idea is that we
can see in many NLP problems as a task of predict-
ing target text given context text, where some of
the target words appear in the context as well. We
observe that in this case we can make the model
learn to point a word in the context and copy it to
the target text, as well as when to point. For exam-
ple, in machine translation, we can see the source
sentence as the context, and the target sentence as
what we need to predict. In Figure 1, we show
an example depiction of how words can be copied
from source to target in machine translation. Al-
though the source and target languages are differ-
ent, many of the words such as named entities are
usually represented by the same characters in both
languages, making it possible to copy. Similarly,
in text summarization, it is natural to use some
words in the original text in the summarized text
as well.

Specifically, to predict a target word at each
timestep, our model first determines the source of
the word generation, that is, on whether to take
one from a predefined shortlist or to copy one from
the context. For the former, we apply the typical
softmax operation, and for the latter, we use the
attention mechanism to obtain the pointing soft-
max probability over the context words and pick
the one of high probability. The model learns this
decision so as to use the pointing only when the
context includes a word that can be copied to the
target. This way, our model can predict even the
words which are not in the shortlist, as long as
it appears in the context. Although some of the
words still need to be labeled as UNK, i.e., if it is
neither in the shortlist nor in the context, in ex-
periments we show that this learning when and
where to point improves the performance in ma-
chine translation and text summarization.

The rest of the paper is organized as follows. In
the next section, we review the related works in-
cluding pointer networks and previous approaches
to the rare/unknown problem. In Section 3, we
review the neural machine translation with atten-
tion mechanism which is the baseline in our ex-
periments. Then, in Section 4, we propose our
method dealing with the rare/unknown word prob-
lem, called the Pointer Softmax (PS). The exper-

Guillaume et Cesar ont une voiture bleue a Lausanne.

Guillaume and Cesar have a blue car in Lausanne.
Copy Copy Copy

French:

English:

Figure 1: An example of how copying can happen
for machine translation. Common words that ap-
pear both in source and the target can directly be
copied from input to source. The rest of the un-
known in the target can be copied from the input
after being translated with a dictionary.

imental results are provided in the Section 5 and
we conclude our work in Section 6.

2 Related Work

The attention-based pointing mechanism is intro-
duced first in the pointer networks (Vinyals et al.,
2015). In the pointer networks, the output space of
the target sequence is constrained to be the obser-
vations in the input sequence (not the input space).
Instead of having a fixed dimension softmax out-
put layer, softmax outputs of varying dimension is
dynamically computed for each input sequence in
such a way to maximize the attention probability
of the target input. However, its applicability is
rather limited because, unlike our model, there is
no option to choose whether to point or not; it al-
ways points. In this sense, we can see the pointer
networks as a special case of our model where we
always choose to point a context word.

Several approaches have been proposed towards
solving the rare words/unknown words problem,
which can be broadly divided into three categories.
The first category of the approaches focuses on
improving the computation speed of the softmax
output so that it can maintain a very large vocabu-
lary. Because this only increases the shortlist size,
it helps to mitigate the unknown word problem,
but still suffers from the rare word problem. The
hierarchical softmax (Morin and Bengio, 2005),
importance sampling (Bengio and Senécal, 2008;
Jean et al., 2014), and the noise contrastive esti-
mation (Gutmann and Hyvärinen, 2012; Mnih and
Kavukcuoglu, 2013) methods are in the class.

The second category, where our proposed
method also belongs to, uses information from the
context. Notable works are (Luong et al., 2015)
and (Hermann et al., 2015). In particular, ap-
plying to machine translation task, (Luong et al.,
2015) learns to point some words in source sen-
tence and copy it to the target sentence, similarly
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Vocabulary softmax

Attention distribution (lt) 

Source Sequence

x2 xTx1 …
BiRNN

Target Sequence

st-1

Figure 2: A depiction of neural machine transla-
tion architecture with attention. At each timestep,
the model generates the attention distribution lt.
We use lt and the encoder’s hidden states to obtain
the context ct. The decoder uses ct to predict a
vector of probabilities for the words wt by using
vocabulary softmax.

4 The Pointer Softmax

In this section, we introduce our method, called as
the pointer softmax (PS), to deal with the rare and
unknown words. The pointer softmax can be an
applicable approach to many NLP tasks, because
it resolves the limitations about unknown words
for neural networks. It can be used in parallel with
other existing techniques such as the large vocabu-
lary trick (Jean et al., 2014). Our model learns two
key abilities jointly to make the pointing mech-
anism applicable in more general settings: (i) to
predict whether it is required to use the pointing
or not at each time step and (ii) to point any lo-
cation of the context sequence whose length can
vary widely over examples. Note that the pointer
networks (Vinyals et al., 2015) are in lack of the
ability (i), and the ability (ii) is not achieved in the
models by (Luong et al., 2015).

To achieve this, our model uses two softmax
output layers, the shortlist softmax and the loca-
tion softmax. The shortlist softmax is the same
as the typical softmax output layer where each
dimension corresponds a word in the predefined
word shortlist. The location softmax is a pointer
network where each of the output dimension cor-
responds to the location of a word in the context
sequence. Thus, the output dimension of the loca-
tion softmax varies according to the length of the
given context sequence.

At each time-step, if the model decides to use
the shortlist softmax, we generate a word wt from
the shortlist. Otherwise, if it is expected that the
context sequence contains a word which needs to

be generated at the time step, we obtain the loca-
tion of the context word lt from the location soft-
max. The key to making this possible is decid-
ing when to use the shortlist softmax or the lo-
cation softmax at each time step. In order to ac-
complish this, we introduce a switching network
to the model. The switching network, which is
a multilayer perceptron in our experiments, takes
the representation of the context sequence (similar
to the input annotation in NMT) and the previous
hidden state of the output RNN as its input. It out-
puts a binary variable zt which indicates whether
to use the shortlist softmax (when zt = 1) or the
location softmax (when zt = 0). Note that if the
word that is expected to be generated at each time-
step is neither in the shortlist nor in the context se-
quence, the switching network selects the shortlist
softmax, and then the shortlist softmax predicts
UNK. The details of the pointer softmax model can
be seen in Figure 3 as well.

h2 hTh1 …
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zt yl
tyw

t
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Vocabulary softmax

Pointer distribution (lt) 

Source Sequence

Point & copy

x2 xTx1 …
BiRNN

Target Sequence

p 1-p

st-1

Figure 3: A depiction of the Pointer Softmax (PS)
architecture. At each timestep, lt, ct and wt for
the words over the limited vocabulary (shortlist)
is generated. We have an additional switching
variable zt that decides whether to use vocabulary
word or to copy a word from the source sequence.

More specifically, our goal is to maximize the
probability of observing the target word sequence
y = (y1, y2, . . . , yTy) and the word generation
source z = (z1, z2, . . . , zTy), given the context se-
quence x = (x1, x2, . . . , xTx):

p✓(y, z|x) =
TyY

t=1

p✓(yt, zt|y<t, z<t,x). (4)

Note that the word observation yt can be either
a word wt from the shortlist softmax or a loca-
tion lt from the location softmax, depending on
the switching variable zt.

Considering this, we can factorize the above

Table 4: Generated summaries from NMT with PS. Boldface words are the words copied from the source.
Source #1 china ’s tang gonghong set a world record with a clean and

jerk lift of ### kilograms to win the women ’s over-## kilogram
weightlifting title at the asian games on tuesday .

Target #1 china ’s tang <unk>,sets world weightlifting record
NMT+PS #1 china ’s tang gonghong wins women ’s weightlifting weightlift-

ing title at asian games
Source #2 owing to criticism , nbc said on wednesday that it was ending

a three-month-old experiment that would have brought the first
liquor advertisements onto national broadcast network television
.

Target #2 advertising : nbc retreats from liquor commercials
NMT+PS #2 nbc says it is ending a three-month-old experiment
Source #3 a senior trade union official here wednesday called on ghana ’s

government to be “ mindful of the plight ” of the ordinary people
in the country in its decisions on tax increases .

Target #3 tuc official,on behalf of ordinary ghanaians
NMT+PS #3 ghana ’s government urged to be mindful of the plight

vocabulary, we first check if the same word yt ap-
pears in the source sentence. If it is not, we then
check if a translated version of the word exists in
the source sentence by using a look-up table be-
tween the source and the target language. If the
word is in the source sentence, we then use the lo-
cation of the word in the source as the target. Oth-
erwise we check if one of the English senses from
the cross-language dictionary of the French word
is in the source. If it is in the source sentence, then
we use the location of that word as our translation.
Otherwise we just use the argmax of lt as the tar-
get.

For switching network dt, we observed that us-
ing a two-layered MLP with noisy-tanh activation
(Gulcehre et al., 2016) function with residual con-
nection from the lower layer (He et al., 2015) ac-
tivation function to the upper hidden layers im-
proves the BLEU score about 1 points over the
dt using ReLU activation function. We initialized
the biases of the last sigmoid layer of dt to �1
such that if dt becomes more biased toward choos-
ing the shortlist vocabulary at the beginning of the
training. We renormalize the gradients if the norm
of the gradients exceed 1 (Pascanu et al., 2012).

Table 5: Europarl Dataset (EN-FR)
BLEU-4

NMT 20.19
NMT + PS 23.76

In Table 5, we provided the result of NMT with
pointer softmax and we observe about 3.6 BLEU
score improvement over our baseline.

Figure 4: A comparison of the validation learning-
curves of the same NMT model trained with
pointer softmax and the regular softmax layer. As
can be seen from the figures, the model trained
with pointer softmax converges faster than the reg-
ular softmax layer. Switching network for pointer
softmax in this Figure uses ReLU activation func-
tion.

In Figure 4, we show the validation curves
of the NMT model with attention and the NMT
model with shortlist-softmax layer. Pointer soft-
max converges faster in terms of number of mini-
batch updates and achieves a lower validation
negative-log-likelihood (NLL) (63.91) after 200k
updates over the Europarl dataset than the NMT

For evaluation, we use full-length Rouge F1 us-
ing the official evaluation tool 2. In their work, the
authors of (Bahdanau et al., 2014) use full-length
Rouge Recall on this corpus, since the maximum
length of limited-length version of Rouge recall
of 75 bytes (intended for DUC data) is already
long for Gigaword summaries. However, since
full-length Recall can unfairly reward longer sum-
maries, we also use full-length F1 in our experi-
ments for a fair comparison between our models,
independent of the summary length.

The experimental results comparing the Pointer
Softmax with NMT model are displayed in Ta-
ble 1 for the UNK pointers data and in Table 2
for the entity pointers data. As our experiments
show, pointer softmax improves over the baseline
NMT on both UNK data and entities data. Our
hope was that the improvement would be larger
for the entities data since the incidence of point-
ers was much greater. However, it turns out this
is not the case, and we suspect the main reason
is anonymization of entities which removed data-
sparsity by converting all entities to integer-ids
that are shared across all documents. We believe
that on de-anonymized data, our model could help
more, since the issue of data-sparsity is more acute
in this case.

Table 1: Results on Gigaword Corpus when point-
ers are used for UNKs in the training data, using
Rouge-F1 as the evaluation metric.

Rouge-1 Rouge-2 Rouge-L
NMT + lvt 34.87 16.54 32.27
NMT + lvt + PS 35.19 16.66 32.51

Table 2: Results on anonymized Gigaword Corpus
when pointers are used for entities, using Rouge-
F1 as the evaluation metric.

Rouge-1 Rouge-2 Rouge-L
NMT + lvt 34.89 16.78 32.37
NMT + lvt + PS 35.11 16.76 32.55

In Table 3, we provide the results for summa-
rization on Gigaword corpus in terms of recall as
also similar comparison is done by (Rush et al.,
2015). We observe improvements on all the scores
with the addition of pointer softmax. Let us note

2http://www.berouge.com/Pages/default.
aspx

Table 3: Results on Gigaword Corpus for model-
ing UNK’s with pointers in terms of recall.

Rouge-1 Rouge-2 Rouge-L
NMT + lvt 36.45 17.41 33.90
NMT + lvt + PS 37.29 17.75 34.70

that, since the test set of (Rush et al., 2015) is not
publicly available, we sample 2000 texts with their
summaries without replacement from the valida-
tion set and used those examples as our test set.

In Table 4 we present a few system gener-
ated summaries from the Pointer Softmax model
trained on the UNK pointers data. From those ex-
amples, it is apparent that the model has learned to
accurately point to the source positions whenever
it needs to generate rare words in the summary.

5.3 Neural Machine Translation
In our neural machine translation (NMT) experi-
ments, we train NMT models with attention over
the Europarl corpus (Bahdanau et al., 2014) over
the sequences of length up to 50 for English to
French translation. 3. All models are trained with
early-stopping which is done based on the negative
log-likelihood (NLL) on the development set. Our
evaluations to report the performance of our mod-
els are done on newstest2011 by using BLUE
score. 4

We use 30, 000 tokens for both the source and
the target language shortlist vocabularies (1 of the
token is still reserved for the unknown words).
The whole corpus contains 134, 831 unique En-
glish words and 153, 083 unique French words.
We have created a word-level dictionary from
French to English which contains translation of
15,953 words that are neither in shortlist vocab-
ulary nor dictionary of common words for both
the source and the target. There are about 49, 490
words shared between English and French parallel
corpora of Europarl.

During the training, in order to decide whether
to pick a word from the source sentence using at-
tention/pointers or to predict the word from the
short-list vocabulary, we use the following sim-
ple heuristic. If the word is not in the short-list

3In our experiments, we use an existing code, pro-
vided in https://github.com/kyunghyuncho/
dl4mt-material, and on the original model we only
changed the last softmax layer for our experiments

4We compute the BLEU score using the multi-blue.perl
script from Moses on tokenized sentence pairs.

Text	summarization

Machine
Translation



Figure 1: Computational graph for VHRED model. Rounded boxes represent (deterministic) real-
valued vectors. Variables z represent latent stochastic variables.

At training time, for n = 1, . . . , N , a sample zn is drawn from the approximate posterior119

N (µposterior(w1, . . . ,wn),⇧posterior(w1, . . . ,wn)) and used to estimate the gradient of the varia-120

tional lower-bound given by Eq. (4). The approximate posterior is parametrized by its own one-layer121

feed-forward neural network, which takes as input the output of the context RNN at the current time122

step, as well as the output of the encoder RNN for the next sub-sequence.123

The VHRED model greatly helps to reduce the problems with the generation process used by the124

RNNLM and HRED model outlined above. The variation of the output sequence is now modelled125

in two ways: at the sequence-level with the conditional prior distribution over z, and at the sub-126

sequence-level (token-level) with the conditional distribution over tokens w1, . . . , wM . The variable z127

helps model long-term output trajectories, by representing high-level information about the sequence,128

which in turn allows the variable hm to primarily focus on summarizing the information up to token129

M . Intuitively, the randomness injected by the variable z corresponds to higher-level decisions, like130

topic or sentiment of the sentence.131

4 Experimental Evaluation132

We consider the problem of conditional natural language response generation for dialogue. This is an133

interesting problem with applications in areas such as customer service, technical support, language134

learning and entertainment [29]. It is also a task domain that requires learning to generate sequences135

with complex structures while taking into account long-term context [17, 27].136

We consider two tasks. For each task, the model is given a dialogue context, consisting of one or137

more utterances, and the goal of the model is to generate an appropriate next response to the dialogue.138

We first perform experiments on a Twitter Dialogue Corpus [22]. The task is to generate utterances139

to append to existing Twitter conversations. The dataset is extracted using a procedure similar to140

Ritter et al. [22], and is split into training, validation and test sets, containing respectively 749, 060,141

93, 633 and 10, 000 dialogues. Each dialogue contains 6.27 utterances and 94.16 tokens on average.142

The dialogues are fairly long compared to recent large-scale language modelling corpora, such as143

the 1 Billion Word Language Model Benchmark [4], which focus on modelling single sentences.144

We also experiment on the Ubuntu Dialogue Corpus [17], which contains about 500, 000 dialogues145

extracted from the #Ubuntu Internet Relayed Chat channel. Users enter the chat channel with a146

Ubuntu-related technical problem, and other users try to help them. For further details see Appendix147

6.1. We chose these corpora because they are large, and have different purposes—Ubuntu dialogues148

are typically goal driven, where as Twitter dialogues typically contain social interaction ("chit-chat").149

4

Variational Hierarchical RNNs for 
Dialogue Generation (Serban et al 2016)

• Lower	level	=	words	of	an	utterance	(turn	of	speech)
• Upper	level	=	state	of	the	dialogue
• Inject	high-level	choices

140



Auto-Encoders and 
Generative Neural Networks
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Neural Auto-Regressive Models

• Decomposes	the	joint	of	a	fully	observed	
directed	model	in	terms	of	conditionals

• Logistic	auto-regressive:	(Frey	1997)

• First	neural	version:	(Bengio&Bengio
NIPS’99)
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NADE: Neural AutoRegressive Density 
Estimator

• Introduces	smart	sharing	
between	some	weights	so	that	
the	different	hidden	groups	
use	the	same	weights	to	the	
same	input	but	look	at	more	
and	more	of	the	inputs.
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(Larochelle &	Murray	AISTATS	2011)	



Pixel RNNs

• Similar	to	NADE	and	RNNs	
but	for	2-D	images

• Surprisingly	sharp	and	
realistic	generation

• Gets	texture	right	but	not	
necessarily	global	structure
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Pixel Recurrent Neural Networks

x1

xi

xn

xn2

Figure 2. Left: To generate pixel xi one conditions on all the pre-
viously generated pixels left and above of xi. Center: Illustration
of a Row LSTM with a kernel of size 3. The dependency field of
the Row LSTM does not reach pixels further away on the sides
of the image. Right: Illustration of the two directions of the Di-
agonal BiLSTM. The dependency field of the Diagonal BiLSTM
covers the entire available context in the image.

Figure 3. In the Diagonal BiLSTM, to allow for parallelization
along the diagonals, the input map is skewed by offseting each
row by one position with respect to the previous row. When the
spatial layer is computed left to right and column by column, the
output map is shifted back into the original size. The convolution
uses a kernel of size 2⇥ 1.

(2015); Uria et al. (2014)). By contrast we model p(x) as
a discrete distribution, with every conditional distribution
in Equation 2 being a multinomial that is modeled with a
softmax layer. Each channel variable xi,⇤ simply takes one
of 256 distinct values. The discrete distribution is represen-
tationally simple and has the advantage of being arbitrarily
multimodal without prior on the shape. Experimentally we
also find the discrete distribution to be easy to learn and
to produce better performance compared to a continuous
distribution (Section 5).

3. Pixel Recurrent Neural Networks

In this section we describe the architectural components
that compose the PixelRNN. In Sections 3.1 and 3.2, we
describe the two types of LSTM layers that use convolu-
tions to compute at once the states along one of the spatial
dimensions. In Section 3.3 we describe how to incorporate
residual connections to improve the training of a PixelRNN
with many LSTM layers. In Section 3.4 we describe the
softmax layer that computes the discrete joint distribution
of the colors and the masking technique that ensures the
proper conditioning scheme. In Section 3.5 we describe the
PixelCNN architecture. Finally in Section 3.6 we describe
the multi-scale architecture.

3.1. Row LSTM

The Row LSTM is a unidirectional layer that processes
the image row by row from top to bottom computing fea-
tures for a whole row at once; the computation is per-
formed with a one-dimensional convolution. For a pixel
xi the layer captures a roughly triangular context above the
pixel as shown in Figure 2 (center). The kernel of the one-
dimensional convolution has size k ⇥ 1 where k � 3; the
larger the value of k the broader the context that is captured.
The weight sharing in the convolution ensures translation
invariance of the computed features along each row.

The computation proceeds as follows. An LSTM layer has
an input-to-state component and a recurrent state-to-state
component that together determine the four gates inside the
LSTM core. To enhance parallelization in the Row LSTM
the input-to-state component is first computed for the entire
two-dimensional input map; for this a k ⇥ 1 convolution is
used to follow the row-wise orientation of the LSTM itself.
The convolution is masked to include only the valid context
(see Section 3.4) and produces a tensor of size 4h⇥ n⇥ n,
representing the four gate vectors for each position in the
input map, where h is the number of features in the LSTM
layer.

To compute one step of the state-to-state component of
the LSTM layer, one is given the previous hidden and cell
states hi�1 and ci�1, each of size h ⇥ n ⇥ 1. The new
hidden and cell states hi, ci are obtained as follows:

[oi, fi, ii,gi] = �(Kss ~ hi�1 + Kis ~ xi)

ci = fi � ci�1 + ii � gi

hi = oi � tanh(ci)

(3)

where xi of size h ⇥ n ⇥ 1 is row i of the input map, and
~ represents the convolution operation and � the element-
wise multiplication. The weights Kss and Kis are the
kernel weights for the state-to-state and the input-to-state
components, where the latter is precomputed as described
above. In the case of the output, forget and input gates
oi, fi and ii, the activation � is the logistic sigmoid func-
tion, whereas for the content gate gi, � is the tanh func-
tion. Each step computes at once the new state for an en-
tire row of the input map. Since the Row LSTM layer is
unidirectional, it is relatively fast, but it has a considerable
drawback. Due to its roughly triangular shape, the recep-
tive field induced by the layer misses a large portion of the
previously generated context corresponding to the areas on
either side of the current pixel. For example, for a value
of k = 3 for the state-to-state convolution, which we find
gives the best performance in the experiments, the recep-
tive field for the pixels near the center of the image misses
roughly half of the generated context (Figure 2).

Pixel Recurrent Neural Networks

Figure 6. Samples from models trained on CIFAR-10 (left) and ImageNet 32x32 (right) images. In general we can see that the models
capture local spatial dependencies relatively well. The ImageNet model seems to be better at capturing more global structures than the
CIFAR-10 model. The ImageNet model was larger and trained on much more data, which explains the qualitative difference in samples.

No skip Skip

No residual: 3.22 3.09
Residual: 3.07 3.06

Table 2. Effect of residual and skip connections in the Row LSTM
network evaluated on the Cifar-10 validation set in bits/dim.

with increased depth. This holds for up to the 12 LSTM
layers that we tried.

# layers: 1 2 3 6 9 12

NLL: 3.30 3.20 3.17 3.09 3.08 3.06

Table 3. Effect of the number of layers on the negative log likeli-
hood evaluated on the CIFAR-10 validation set and measured in
bits/dim.

5.5. MNIST

Although the goal of our work was to model natural images
on a large scale, we also tried our model on the binary ver-
sion (Salakhutdinov & Murray, 2008) of MNIST (LeCun
et al., 1998) as it is a good sanity check and there is a lot
of previous art on this dataset to compare with. In Table 4
we report the performance of the Diagonal BiLSTM model
and that of previous published results. To our knowledge
this is the best reported result on MNIST so far.

Model NLL Test

DBM 2hl [1]: ⇡ 84.62
DBN 2hl [2]: ⇡ 84.55
NADE [3]: 88.33
EoNADE 2hl (128 orderings) [3]: 85.10
EoNADE-5 2hl (128 orderings) [4]: 84.68
DLGM [5]: ⇡ 86.60
DLGM 8 leapfrog steps [6]: ⇡ 85.51
DARN 1hl [7]: ⇡ 84.13
MADE 2hl (32 masks) [8]: 86.64
DRAW [9]:  80.97

Diagonal BiLSTM (1 layer, h = 32): 80.75

Diagonal BiLSTM (7 layers, h = 16): 79.20

Table 4. Test set performance of different models on MNIST
in nats (negative log-likelihood). Prior results taken from [1]
(Salakhutdinov & Hinton, 2009), [2] (Murray & Salakhutdinov,
2009), [3] (Uria et al., 2014), [4] (Raiko et al., 2014), [5] (Rezende
et al., 2014), [6] (Salimans et al., 2015), [7] (Gregor et al., 2014),
[8] (Germain et al., 2015), [9] (Gregor et al., 2015).

5.6. CIFAR-10

Next we test our models on the CIFAR-10 dataset
(Krizhevsky, 2009). Table 5 lists the results of our mod-
els and that of previously published approaches. For the
proposed networks, the Diagonal BiLSTM has the best
performance, followed by the Row LSTM and the Pixel-
CNN. This coincides with the size of the respective recep-
tive fields: the Diagonal BiLSTM has a global view, the

(van	den	Oord et	al	ICML	2016,	best	paper)

Pixel Recurrent Neural Networks

occluded completions original occluded completions original

Figure 8. Image completions sampled from a model that was trained on 32x32 ImageNet images. Note that diversity of the completions
is high, which can be attributed to the log-likelihood loss function used in this generative model, as it encourages models with high
entropy. As these are sampled from the model, we can easily generate millions of different completions. It is also interesting to see that
textures such as water, wood and shrubbery are also inputed relative well (see Figure 1).

trained to model the raw RGB pixel values of images. We
treated the pixel values as discrete random variables by us-
ing a softmax layer in the conditional distributions. We em-
ployed masked convolutions to allow PixelRNNs to model
full dependencies between the color channels. We pro-
posed and evaluated architectural improvements in these
models resulting in PixelRNNs with up to 12 LSTM lay-
ers.

We have shown that the PixelRNNs significantly improve
the state of the art on the Binary MNIST and CIFAR-10
datasets. We also provide new benchmarks for generative
image modeling on the ImageNet dataset. Based on the
samples and completions drawn from the models we can
conclude that the PixelRNNs are able to model both spa-
tially local and long-range correlations and are able to pro-
duce images that are sharp and coherent. Given that these
models improve as we make them larger and that there is
practically unlimited data available to train on, more com-
putation and larger models are likely to further improve the
results.
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• MLP	whose	target	output	=	input
• Reconstruction=decoder(encoder(input)),															e.g.

• Code	=	new	coordinate	system
• Encoder	and	decoder	can	have	more	layers
• Reconstruction	can	be	probability	distribution

Unsupervised Learning of 
Representations: Simple Auto-Encoders

…

code=	latent	features

…

encoder decoder
input

reconstruction
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Denoising Auto-Encoder
(Vincent	et	al	2008)

• Corrupt	the	input	during	training	only
• Train	to	reconstruct	the	uncorrupted	input

KL(reconstruction | raw input)Hidden code (representation)

Corrupted input Raw input reconstruction

• Encoder	&	decoder:	any	parametrization
• As	good	or	better	than	RBMs	for	unsupervised	pre-training



Denoising Auto-Encoder
• Learns	a	vector	field	pointing	towards	higher	

probability	direction	(Alain	&	Bengio	2013)

• Some	DAEs	correspond	to	a	kind	of	Gaussian	
RBM	with	regularized Score	Matching	
(Vincent	2011)
[equivalent	when	noiseà0]

• Compared	to	RBM:
No	partition	function	issue,		 +	
can	measure	training	 criterion

Corrupted input

Corrupted input

prior:	examples	
concentrate	near	a	
lower	dimensional	
“manifold”	

r(x)-x					dlogp(x)/dx/
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Auto-Encoders Learn Salient 
Variations, like a non-linear PCA

• Minimizing	reconstruction	error	forces	to	
keep	variations	along	manifold.

• Regularizer	wants	to	throw	away	all	
variations.

• With	both:	keep	ONLY	sensitivity	to	
variations	ON	the	manifold.



Manifold Learning = 
Representation Learning
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tangent directions

tangent plane

Data on a curved manifold



Space-Filling in Representation-Space
• Deeper	representations	è abstractions	è disentangling
• Manifolds	are	expanded	and	flattened

Linear	interpolation	at	layer	2

Linear	interpolation	at	layer	1

3’s	manifold

9’s	manifold

Linear	interpolation	in	pixel	space

Pixel	space

9’s	manifold 3’s	manifold

Representation	space

9’s	manifold 3’s	manifold

X-space

H-space

(Bengio	et	al	ICML	2013)



Interpolating in Latent Space
If	the	model	is good	(unfolds the	manifold),	interpolating between
latent	values	yields plausible	images.
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Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

scene classification learn object detectors (Oquab et al., 2014). We demonstrate that an unsupervised
DCGAN trained on a large image dataset can also learn a hierarchy of features that are interesting.
Using guided backpropagation as proposed by (Springenberg et al., 2014), we show in Fig.5 that the
features learnt by the discriminator activate on typical parts of a bedroom, like beds and windows.
For comparison, in the same figure, we give a baseline for randomly initialized features that are not
activated on anything that is semantically relevant or interesting.

6.3 MANIPULATING THE GENERATOR REPRESENTATION

6.3.1 FORGETTING TO DRAW CERTAIN OBJECTS

In addition to the representations learnt by a discriminator, there is the question of what representa-
tions the generator learns. The quality of samples suggest that the generator learns specific object
representations for major scene components such as beds, windows, lamps, doors, and miscellaneous
furniture. In order to explore the form that these representations take, we conducted an experiment
to attempt to remove windows from the generator completely.

7

Under review as a conference paper at ICLR 2016

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y . The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

9

Radford	et	
al	2016



Deep Unsupervised
Generative Models
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Texture Shakespeare

Hand-writing Bedrooms

Chinese	characters



Latent Variables and Abstract 
Representations

• Encoder/decoder view:	maps
between low &	high-levels

• Encoder	does inference:	interpret
the	data	at the	abstract	level

• Decoder can generate new	
configurations

• Encoder	flattens and	disentangles
the	data	manifold
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encoder decoder P(x|h)

P(h)

data	space

Q(h|x) Abstract	
representation
space,	flattened
manifold



Extracting Structure By Gradual
Disentangling and Manifold Unfolding
(Bengio 2014, arXiv 1407.7906) 

Each level transforms the	
data	into a	representation in	
which it is easier to	model,	
unfolding it more,	
contracting the	noise	
dimensions	and	mapping the	
signal	dimensions	to	a	
factorized (uniform-like)	
distribution.

for	each intermediate level h
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Q(x)

f1
g1

Q(h1)
P(h1)

fL gL

Q(hL)
P(hL)no

ise

signal

…

P(x|h1)
Q(h1|x
)

Q(h2|h1) f2 P(h2|h1)g2

minKL(Q(x, h)||P (x, h))



Q(h1|x)

x

h1

h2

h3

P (x|h1)

P (h1|h2)

P (h2|h3)

P (h3)

Q(h2|h1)

Q(h3|h2)

Q(x)

Helmholtz Machines (Hinton	et	al	1995)		and 
Variational Auto-Encoders (VAEs)

• Parametric approximate
inference

• Successors of	Helmholtz	
machine	(Hinton	et	al	‘95)

• Maximize variational lower
bound on	log-likelihood:

where =	data	distr.	
or	equivalently

De
co
de

r=
	g
en
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En
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de

r	=
	in
fe
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nc
e

(Kingma &	Welling 2013,	ICLR	2014)
(Gregor	et	al	ICML	2014;	Rezende et	al	ICML	2014)
(Mnih &	Gregor	ICML	2014;	Kingma et	al,	NIPS	2014)

minKL(Q(x, h)||P (x, h))
Q(x)

X

x,h

Q(x)Q(h|x) log P (x, h)

Q(h|x) =
X

x,h

Q(x)Q(h|x) logP (x|h) +KL(Q(h|x)||P (h))
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Adversarial nets framework
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GAN: Generative Adversarial Networks
A radical alternative to max. likelihood

Generator
Network

Discriminator
Network

Fake
Image

Real
Image

Training
Set

Random
Vector

Random
Index

Goodfellow et	al	NIPS	2014
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Early Days of GAN Samples 

�X

MNIST TFD

CIFAR-10 (fully connected) CIFAR-10 (convolutional)



Convolutional GANs

Strided convolutions,	batch	normalization,	only convolutional
layers,	ReLU and	leaky ReLU
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(Radford et	al,	arXiv 1511.06343)

Under review as a conference paper at ICLR 2016

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate in only one epoch.

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated textures across multiple samples.

4.3 IMAGENET-1K

We use Imagenet-1k (Deng et al., 2009) as a source of natural images for unsupervised training. We
train on 32⇥ 32 min-resized center crops. No data augmentation was applied to the images.

5



Generative Adversarial Networks
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Image 2 Image
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Introduction
Image → Image

GANs

Isola et	al.	2016



Text 2 Image, B&W 2 Color
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Lucy	Li

Zhang	et	al.	2017



Horse 2 Zebra: matching 2 domains by 
analogy of their distribution structure
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Input	video Output	video

CycleGANs:	Zhu	et	al.	2017

Looks	like	a	zebra?
Looks	like	a	horse?

2-way	auto-encoder



Measuring the Tendency of CNNs to 
Learn Surface Statistical Regularities
Jason Jo and Yoshua Bengio 2017, arXiv:1711.11561

• Hypothesis:	Deep	CNNs	have	a	tendency	to	learn	superficial	statistical	
regularities	in	the	dataset	rather	than	high	level	abstract	concepts.

• From	the	perspective	of	learning	high	level	abstractions,	Fourier	image	
statistics	can	be	superficial regularities,	not	changing	object	category
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Measuring the Tendency of CNNs to 
Learn Surface Statistical Regularities
Jason Jo and Yoshua Bengio 2017, arXiv:1711.11561

• Different	Fourier	filters,	same	high	level	abstractions	(objects)	but	
different	surface	statistical	regularities	(Fourier	image	statistics).

• Experiment:	Train	on	one	training	set	and	evaluate	the	test	sets.
• A	generalization	gap:	max	difference	in	test	accuracies

• Large	generalization	gap:	CNN	exploits	too	much	of	low	level	
regularities,	as	opposed	to	learning	the	abstract	high	level	concepts.
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test



Rare & 
Dangerous States
• Example:	autonomous

vehicles in	near-accident	
situations

• Current supervised learning
may not	handle well these
cases	because they are	too
rare	(not	enough data)

• It	would be even worse with current RL	(statistical inefficiency)
• Long-term objective:	develop better predictive models of	the	

world	able	to	generalize in	completely unseen scenarios
• Example of	similar human ability:	figuring out	intuitive	physics,	

no	need to	die	a	thousand deaths



What’s	Missing	with	
Deep	Learning?



Still Far	from Human-Level AI

• Industrial successes mostly based on	supervised
learning

• Learning	superficial clues,	not	generalizing well
outside of	training	contexts,	easy to	fool trained
networks:	
– Current	models	cheat	by	picking	on	surface	regularities

• Still unable to	discover higher-level abstractions



Humans outperform machines	at
unsupervised learning

• Humans	are	very	good	at	
unsupervised	learning,	e.g.	
a	2	year	old	knows	intuitive	
physics

• Babies	construct	an	
approximate	but	sufficiently	
reliable	model	of	physics,	
how	do	they	manage	that?	
Note	that	they	interact	with	
the	world,	not	just	observe	
it.



Learning « How the world ticks »

• So	long	as	our machine	learning models « cheat »	by	relying only
on	superficial statistical regularities,	they remain vulnerable to	
out-of-distribution	examples

• Humans generalize better than other animals thanks to	a	more	
accurate internal model	of	the	underlying causal	relationships

• To	predict future	situations	(e.g.,	the	effect of	planned actions)	
far	from anything seen before while involving known concepts,	
an	essential	component	of	reasoning, intelligence	and	science
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How	to	Discover Good	
Disentangled Representations

• How	to	discover abstractions?	
• What is a	good	representation?	(Bengio	et	al	2013)
• Need clues	(=	priors)	to	help	disentangle the	
underlying factors,	such as
– Spatial	&	temporal	scales
– Marginal	independence
– Simple	dependencies between factors

• Consciousness prior
– Causal	/	mechanism independence

• Controllable factors
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Agent-Based Learning (aka RL)
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Acting	to	Guide	
Representation Learning

&	Disentangling

• Some factors (e.g.	objects)	correspond	to	
‘independently controllable’	aspects	of	the	world

• Can	only be discovered by	acting	in	the	world

– Control	linked to	notion	of	objects &	agents

– Causal	but	agent-specific &	subjective:	affordances

(E.	Bengio	et	al,	2017;	V.	Thomas	et	al,	2017)



Reinforcement Learning
• In	general	the	full	state of	the	environment	is	not	observed,	

leading	to	the	partially	observable	setting.	When	it	is	fully	
observed	we	have	a	Markov	decision	process.	

• Objective:	maximize	the	return =	
weighted	sum	of	future	rewards.
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Policy:	maps	state	or	history
of	observations to	a	distribution
over	the	next	action.	



Model-free vs Model-based RL

• Model-free:	directly	learn	a	policy	or	a	value	function	(which	
associates	a	state	or	a	state-action	pair	Q	with	an	estimated	
return),	trying	to	maximize	returns.	
• Policy-gradient	methods:	estimate	the	stochastic	gradient	of	
the	expected	return	wrt the	policy	itself,	to	update	it.

• Model-based:	
• Unsupervisedly learn	to	model	the	environment	(state	
transition,	rewards)

• Use	planning	(approximate	search/optimization)	to	choose	
actions

• Dyna:	combine	both	à internal	simulations	from	estimated	
model	trains	a	policy
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Deep Reinforcement Learning

• Map	state	or	observation	sequence	to	a	learned	representation	
to	better	generalize	to	new	states

• Use	neural	nets	to	learn	policy,	value	function,	Q-function,	
estimated	reward	function,	estimated	transition	operator,	etc.

• Share	representation	across	different	networks
• Use	offline	training	or	replay	buffer	(memory	of	past	state-

action-nextstate-reward	tuples)	to	avoid	catastrophic	forgetting
• Task	rewards	are	like	sparse	supervision,	use	intrinsic	rewards	

(e.g.	curiosity,	discovery)	as	dense	unsupervised	objectives
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Playing all 50 Atari games @ DeepMind

Simulator	from	U.	Alberta’s	Sutton’s	group.	First	DRL	breakthrough.
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March 2016:
World Go Champion 
Beaten by Machine



Coming	Deep	Learning	Revolution	in	
Robotics	(&	Mobile	Robotics)

Groups	of	Pieter	Abbeel &	Sergey	Levine	@	Berkeley
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The	Deep	Learning	way	of	training	
autonomous	agents

• Distributed	representations	everywhere
• Shared	representations	across	all	forms	of	predictions	
(value,	policy,	rewards,	transitions)

• Learn	to	represent	goals	(intentions),	subgoals,	policies	
(skills),	manipulate	distributions	over	them	and	share	
representations	

• Model	the	future	and	plan	in	latent	(representation)	space
• Partially	observed	setting	+	recurrence	to	estimate	state	
internally

• Use	an	associative	memory	to	handle	short	and	long-term	
memory	and	associate	events	across	long	time	spans

• Use	attention	to	focus	on	a	few	aspects	of	the	world	at	
each	step	of	a	high-level	plan



What’s Missing

• More	autonomous learning,	better
unsupervised learning

• Discovering the	underlying causal	factors
• Model-based RL	which extends to	completely new	
situations	by	unrolling powerful predictive models
which can help	reason about	rarely observed dangerous
states

• Deep learning to	expand from perception	&	system	1	
cognition	to	reasoning &	system	2	cognition



Current Model-Free RL is too 
Statistically Inefficient: Combine 
Model-Based and Model-Free RL

• Simulate	possible	futures	(given	current	state	and	
actions)	in	order	to	train	the	policy	(which	can	act	
quickly,	without	having	to	perform	expensive	planning)

• Need	a	good	generative	model	of	how	agents	cause	
changes	in	the	world	(effects)

• Better	to	generate	future	abstract	states	rather	than	
future	perceptions



Causality
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Deep Learning Objective: 
discover causal representation

• What are	the	right	representations?	
Causal	variables	explaining the	data

• How	to	discover them?

• How	to	discover their causal	
relationship,	the	causal	graph?



Disentangling: Factoring out aspects 
of the acquired knowledge

• How	to	disentangle the	unobserved explanatory
variables?

• How	to	separate the	dependencies between these
variables	into separate easily re-usable pieces?	

• How	to	modularize procedural knowledge into
easily re-usable pieces?	(options	etc)

• How	to	modularize knowledge for	easier re-use &	
adaptation,	good	transfer?



Separating Knowledge in Small 
Pieces

• Pieces which can be re-used combinatorially
• Pieces which are	stable	vs	nonstationary,	
subject to	interventions

Change	due
to	intervention



Missing from Current ML: 
Understanding & Generalization
Beyond the Training Distribution

• Learning	theory only deals	with generalization
within the	same distribution

• Models learn but	do	not	generalize well (or	have	
high	sample complexity when adapting)	to	
modified distributions,	non-stationarities,	etc.

• Poor	reuse,	poor modularization of	knowledge



Beyond iid: Hypotheses about how the 
environment changes
Independent Mechanisms and 
the Small Change Hypothesis

• Independent	mechanisms:	
• changing one	mechanism does not	change	the	
others (Peters,	Janzig &	Scholkopf 2017)

• Small	change:
• Non-stationarities,	changes	in	distribution,	
involve few	mechanisms (e.g.	the	result of	a	
single-variable	intervention)



What if we had the right 
modular structure?

CLAIM:	Under	the	hypothesis of	
independent mechanisms and	small
changes	across different distributions:
• smaller sample complexity to	recover
from a	distribution	change
• E.g.	for	transfer learning,	agent	learning,	
domain adaptation,	etc.



Small Change in the Right Space

Distribution	change:	only	one	or	a	few	mechanisms	change

Before:	eyes	open After:	eyes	closed,
totally	different	in	pixel	space,
small	change	in	object	space

Under	the	right	parametrization,	few	parameters need to	change	after an	intervention



Small Change è
Small Sample Complexity

Few	parameters	need	to	changeè small	L2	change	è few 
examples needed to recover from the change

Under	the	right	parametrizationè fast adaptation	to	interventions



Current Causal Team @ Mila

• Yoshua	Bengio

• Tristan	Deleu

• Nasim Rahaman

• Rosemary	Ke

• Olexa Bilaniuk

• Anirudh Goyal

• Sébastien	Lachapelle

• Chris	Pal

• Rémi	Le	Priol

• Simon	Lacoste-Julien

ArXiv paper: A Meta-Transfer Objective for 
Learning to Disentangle Causal Mechanisms



Bigger Picture
• Encoder	maps sensory data	to	
space where a	few	sparse
predictive rules relate	causal	
variables	together,	following the	
consciousness prior (Bengio	2017)

• Best	graphical model	assumption:	
sparse factor	graph

• Reasoning:		sequentially focussing on	a	
few	entities (objects)	and	relations	
(rules)	linked via	causal	links

Raw	input	X

Conscious	state	C

RULES=PREDICTIONS

Causal	variables	H	(used	
to	predict,		 or	
predicted)

future	C



The Future of Deep AI

• Scientific progress is slow	and	continuous,	but	social	and	
economic impact	can be disruptive

• Many fundamental research questions	are	in	front	of	us,	with
much uncertainty about	when we will crack	them,	but	we will

• Importance	of	continued investment in	basic	&	exploratory AI	
research,	for	both practical (recruitment)	short-term and	long-
term reasons

• Let	us	continue	to	keep the	field open	and	fluid,	be mindful of	
social	impacts,	and	make sure	AI	will bloom	for	the	benefit of	all
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