Ottimizzazione dei Sistemi Complessi

A.A. 2015-16 – 26 Maggio 2016

prova d'esame

1. (8 punti) Si consideri il problema non vincolato seguente:

$$\min_{x,y} (x-1)^2 + y^2.$$

- Scrivere i 4 punti (e relativi valori di funzione obiettivo) campionati del metodo (senza derivate) delle coordinate quando siano assegnati: punto iniziale $x_0 = (2.5, 0)^{\top}$ e passo iniziale $\Delta_0 = 2$.
- Scrivere il punto x_1 determinato nella prima iterazione del metodo (senza derivate) delle coordinate quando siano assegnati: punto iniziale $x_0 = (0.5, 0)^{\top}$ e passo iniziale $\Delta_0 = 0.5$.
- Scrivere i 4 punti (e relativi valori di funzione obiettivo) campionati del metodo (senza derivate) delle coordinate quando siano assegnati: punto iniziale $x_0 = (1, 0)^{\top}$ e passo iniziale $\Delta_0 = 0.5$.
- 2. (8 punti) Si consideri il seguente problema multiobiettivo:

$$\begin{aligned} & \min \ y - x, (x - 1)^2 + (y - 2)^2 \\ & s.t. \ (x - 1)^2 + y^2 \le 4 \\ & x \ge 0 \\ & 0 \le y \le \sqrt{3}. \end{aligned}$$

- Aiutandosi con una rappresentazione grafica del problema, determinare il vettore ideale degli obiettivi z^{id} .
- Scrivere il problema che si risolve nel metodo dei pesi scegliendo $w_1 = w_2 = 1$.
- Scrivere il problema che si risolve nel metodo degli ϵ -vincoli quando si vuole minimizzare la prima funzione obiettivo e si sceglie, per la seconda funzione, $\epsilon_2 = 1$.
- Determinare, nello spazio degli obiettivi, un vettore \bar{z} (anche non ammissibile) che non sia dominato e non domini z^{id} .
- Determinare, nello spazio degli obiettivi, un vettore \tilde{z} (non ammissibile) che domini z^{id} .
- Determinare, nello spazio degli obiettivi, un vettore \hat{z} (non necessariamente ammissibile) che sia dominato da z^{id} .
- 3. (8 punti) Un istituto bancario ha a disposizione 9 sedi, dislocate nelle province di Catanzaro (CZ), Cosenza (CS), Crotone (KR), Reggio Calabria (RC) e Vibo Valentia (VV), dove aprire nuove filiali. Nella seguente tabella, per ogni filiale sono riportati la provincia di appartenenza, il costo di attivazione (in migliaia di euro), il numero massimo di clienti che ciascuna filiale (se attivata) potrà servire e una stima del numero di nuovi potenziali clienti che la filiale sarà in grado di acquisire, secondo alcuni scenari (equiprobabili):

Filiale	A	В	С	D	E	F	G	Н	I
provincia	RC	CS	RC	KR	CZ	VV	CZ	VV	RC
C. di att.	50	40	30	25	40	50	60	40	30
max clienti	280	150	250	200	390	100	110	160	500
Nuovi clienti									
S1	200	80	200	190	380	100	85	90	300
S2	300	100	250	200	400	120	100	100	400
S3	350	200	300	300	420	140	150	180	600

Si vuole decidere quali filiali attivare, con l'obiettivo di massimizzare il numero medio di potenziali nuovi clienti che è possibile acquisire, tenendo presente che, per l'intera operazione, si può impiegare un budget massimo di 200.000 euro.

4. (8 punti) Scrivere nella sintassi di AMPL il seguente modello lineare

$$\begin{array}{l} \min \ x_A + 2x_B + 6x_D \\ s.t. \ x_A + 7x_B + \ x_C + 3x_D = 1 \\ x_B + 3x_C + \ x_D = 2 \\ x_A + 4x_D \leq 3 \\ x_B + 2x_C \geq 5 \\ x_A, x_B, x_C, x_D \geq 0 \end{array}$$

(N.B. in fase di valutazione peserà positivamente l'utilizzo di istruzioni set, param, sum, nonché l'utilizzo di array mono e bi-dimensionali di parametri, vincoli e variabili)