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ABSTRACT

A particular non-linear function of six independent variables is

minimized, using the Los Alamos electronic computer. The values

of the variables at the minimum correspond to the phase shift

angles in the scattering of pions by hydrogen.



The Los Alamos Maniac has been used in solving a numerical prob

lem that is of importance in the interpretation of the scattering of

pions by hydrogen. Mathematically, this problem consists of searching

for the minimum of a rather complicated function of six angles. The

procedure followed in solving this problem and the experience on the

performance of the computer will be described. In the last section

some general remarks on the use of similar methods in solving compli

cated systems of ordinary equations with many unknowns will be described.

The Physical Problem.

During the last year a series of experiments have been performed

with the synchrocyclotron at the University of Chicago on the scatter

ing of pions with energies of the order of 100 Mev by protons. The ex

perimental results have been in part published.(l)

At each energy three different types of processes are investigated

experimentally. They are the elastic scattering of positive and nega

tive pions and the exchange scattering of the negative pions in which

a negative pion incident on a proton loses its negative charge to the

proton in the scattering process. The pion becomes thereby neutral and

the proton is changed into a neutron. For each of these processes a

complete angular distribution should be investigated. In the actual

experiments data have been taken at three angles only, namely R50, 900,

and 1350 in the laboratory frame of reference. At each energy therefore

(1)’ Anderson, Fermi, Nagle and Yodh, Phys. Rev., §§, 793 (1952).



nine cross sections are measured. Three of them, o
i,

0
?,

0
?, are the

elastic scattering cross sections of the negative pions for the three

above angles converted to the center of mass reference. Similarly,

the three cross sections,oi, o
f,

o
f, for the elastic scattering of posi

tive pions are measured. The exchange scattering cross sections cannot

be measured directly because of the extremely short lifetime of the

neutral pion. One can-observe, however, the gamma rays that result from

its disintegration. Three gamma ray cross sections, oi
,

0
3
,

0
2
,

are

measured in this case. In what follows, the nine cross sections will

be referred to as 01, 02, ... , o9.
Attempts have been made to express all these cross sections in terms

of phase shift angles. On the assumptions discussed in Reference (1) all

the cross sections at a given energy can be expressed in terms of six

angles which will be here indicated by' a1, a2, ... , 06. The first two

angles are the phase shifts of the s-waves of isotopic spin 3/2 and 1/2,

respectively, the angles a and a are the phase shifts of the p-waves

3 5

of angular momentum 3/2 and isotopic spins 3/2 and l/2,and the angles

on
and
a6
are the phase shifts of the p-waves of angular momentum l/2

and isotopic spins 3/2 and 1/2.

The Mathematical Problem.

The nine experimental cross sections 01, 02, ... , 09, are ex

pressed in terms of the six angles al to a6 by formulas of the type



Q ll "' fl(al,d2,ooo,d-6)
q l
2
'
f2(°'15°‘2’

' "’ “6
)

(l)

0
9 = f9(al,a2,...,q5)

The actual form of the functions fl to f9 will be given later. Because
of the experimental error in the measured quantities o

i the equations

(1) will not be exactly verified and one tries to determine the best

set of angles a In! a least squares procedure. One searches for the

set of angles that minimizes the following expression,

9

O " f (oll,...,d6)

2

(2) M(al,a2,...,a6) = Z

n

n
‘ =minimum

l n

in which en is the experimental error of the quantity on.

Because of the rather complicated structure of the functions f, a

conventional numerical solution of the minimum problem (2) is very

laborious and requires one or two weeks of fairly steady computation

for solving one single problem. An approximate solution obtained by

this method is quoted in Reference (1). Machine computation presents

great advantages in handling this problem. One problem can be solved

by the Maniac in approximately five minutes.

In order to define completely our problem, the form of the functions

f must be given. These functions are best expressed using complex nota

tions. For each of the six angles an one defines a corresponding

quantity.



(3)
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From these quantities the following nine coefficients are computed.
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These nine coefficients represent physically the amplitudes of the

scattered waves of different spin, angular momentum and electric

charge for the three processes. These quantities are used for the

computation of nine more quantities as follows:
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The symbol7f means "real part of". An asterisk means the complex

conjugate. The cross sections are expressed in terms of these nine

quantities by the following formulas



o = A +B cosxl+c COSE'X:Ll - - -
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In these formulas the cross sections on the left hand side are expressed

in units of 7
&
2

where 7
: is the de Broglie wave length in the center

of mass system. They are, therefore, pure numbers. The quantities p

and q are known constants for each energy and are given by the following

formulas.
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in which 1' and y are the total energy and the momentum of the pion in

the center of mass system expressed in units #02 and pc, respectively,

( M = pion mass; 0 = velocity of light). The quantities ,Xl, ‘Xe, and

X5
are the angles at which the cross sections are measured (h5o, 900,

1350), converted to the center of mass system. Xi, Xé, X5 are
the

angles converted to the center of mass system for the case that the par

ticle observed is a gamma ray. Both sets of angles are computed easily

for each energy with the transformation formulas of relativity.

The Coding of the Problem.

In order to solve numerically the minimum problem (2) the Maniac

must be instructed first to compute the quantity M for six given phase

shift angles. These angles will then be changed by small steps according

to a pattern to be described, searching for lower and lower values of M

until a minimum is found. The coding consists therefore of a first part

that contains the instructions for the computation of the function M and

a second part with the instructions for the search of the minimum.

The first part is rather lengthy but logically quite straightfor

ward. The machine computes in succession the real and imaginary parts of

the quantities (h) and then combines them to compute the quantities (5)

and the cross sections (6). Then it forms the sum of squares that appear

in (2). For this computation the sines and cosines of the six angles are

needed. For the initial values of the six angles the sines and cosines

are given as part of the input of the problem. In the successive



computation as the angles are changed, a simple routine is used that

gives the new values of the trigonometric functions by using the old

values and the addition theorem. The coding of this part of the problem

requires approximately 150 memory positions. In spite of the complica

tion of the function M, the machine computes its value in approximately

h-lo of a second, whereas a hand computation of the same function takes

about 20 minutes.

The search for the minimum involves a sequence of successive compu

tations of M for different values of the angles. Each time that new

angles yield a value of M smaller than any of the preceding ones, this

value is stored as a temporary minimum. The procedure stops when a

set of angles,<xl, (12, ... , a6, is found such that the values of M

for this set as smaller than the 12 values of M obtained when one of

the six angles is either increased or decreased by a specified small

step. The smaller is the step, the higher is the accuracy of the mini

mum values found.

For a coarse search of the minimum, steps of l-2o were chosen.

' After computing the value for M for the initial angles,the computer is

instructed to seek a new value of M obtained by increasing a by 1/20.1

If this value is smaller than the original, the computer keeps on cal
culating values of M, adding each time 1/20 to d until the value of1

a1
is reached such that adding 1/20 to it increases M instead of de

creasing it. If the first addition of 1/20 to 01 produces an increase
in M, the computer is instructed to subtract from a a half degree at al



time until M stops decreasing. After this operation is completed, the

computer repeats the same operation on a , and then on a , etc., up
2 3

to
06.
This cycle is repeated until two successive cycles do not pro

duce a further decrease of the value of M. After this coarse search

for the minimum is completed the computer is instructed to go through

a similar operation using this time a step of l-l6o. After this second

search is completed optimum angles and the values of the cross sections

at the minimum are printed.

If the function M had one single minimum, one would expect that no
matter what is the set of angles from which one starts, the procedure

should always end very close to the same minimum position. Errors up

to about l-2o are possible because of the finite step of l-l6o used.

For the practical problem errors of this magnitude are quite irrelevant.

If the function M has several minima, one might expect that,depending
on the set of angles from which one starts, the computer may end up at

a different relative minimum.

In the present problem it was known that the function M had at

least four minima, two of them corresponding to entirely different sets

of angles, and two more obtained from them by changing the signs of all

angles. In order to investigate whether there are any additional mini

ma, it would be necessary to have a rather complete mapping of the
function, a very staggering task for a function of six independent

variables. This point was investigated partially as follows: A

search of the minimum with the same experimental data was repeated

10



some 30 times, starting each time with a different set of initial

angles chosen at random. The minima obtained were recorded and classie

fied. Three essentially different minima were found; for each of them

sometimes one sign of the variables and sometimes the opposite is

found. Two of the minima are in the vicinity of the positions that

were already known, and the third is at quite different values of the

angles. This last minimum, however, is irrelevant from the practical

point of view, because it is only a relative minimum with a rather

high value of M and would give therefore a very poor least square

solution of the problem. While this procedure does not guarantee

that no further minima exist, we feel that it is not very probable

that any should have escaped this type of search.

Results.

Tables I and II summarize the results obtained for 113 and 135 Mev
pions. In each table, Column 1 indicates the quantity represented in

the corresponding line. Column 2 gives the measured cross sections

with experimental error expressed in mb-sterad. The third and fourth

columns, labeled "First Minimum" and "Second Minimum", give the results

of the two solutions of the problem corresponding to the two lowest

minima of M. In computing the fifth column the same code was used

but the input was changed because the three errors of o
i,

0
?,

0
?

were increased by about a factor 1000. It is clear from (2) that if
this is done the first three of the nine terms of M become negligibly

ll



small. The minimum value of M will then be very close to 0 because,

at least in general, it will be possible to find a set of six angles

that represent exactly the remaining six cross sections. In the actual

case the solution is not quite exact because of the finite step adopted

in search for the minimum of M. One will notice that the cross sections

for which the error has not been changed (lines h - 9 of the tables)

are quite close to the measured values. The first three cross sections,

for which the errors have been made practically infinite, are repre

sented, instead, rather poorly.

A similar procedure was repeated by increasing once the errors of

the three cross sections
0+ (column 6)

and once the errors of the cross

sections
07
(column 7). In all of these three cases three of the

cross sections were computed from the measured values of the remaining

six, without any use of their experimental values being made in the

computation. Inspection of the table shows that although the computed

cross sections do not come very close to the measured values, they

still have values somewhat similar to them.

Solutions of Minimum Problems by Electronic Computers.

The problem that has been here discussed is an example of a mini

mum problem for a function of many variables. In principle, problems

of this type could be handled in two ways. One involves standard

mathematical procedure of equating to O all the partial derivatives

of the function and obtaining thereby a system of n equations with n

12



unknowns (n number of variables). The second procedure is the one

chosen in the present example: to search for the minimum value by com

puting the function at very many points until the minimum is attained.

There are, of course, no general criteria for preferring one

method to the other and the choice may be different for different

problems. The present procedure was chosen in our example because

to solve the six equations with six unknowns obtained by equating to O

the partial derivatives would have been probably a more complicated

task than to compute directly the values of the function.

The following experience was gathered: If one searches for a
minimum without any previous knowledge of its location, one will start

from an arbitrary set of initial angles. It usually takes a relatively

long time before the first cycle of variation of the six variables has

taken place. In the average, this may be approximately two minutes,

corresponding to computing the function hoo times. The next cycle of

variation of the six variables is usually much shorter, and may last on

the average perhaps 30 seconds. In most cases the coarse minimum,cor

responding to a step of 1/20, is reached in about a dozen cycles,

totaling three or four minutes.

The fine search of the minimum with steps of 1/160 takes on the

average between one and two minutes. Only exceptionally it has hap

pened that the coarse minimum was actually rather far from the true

minimum position and in this case the further approach to the minimum

with the fine step is more lengthy.

13



A Method for Solving Systems of Equations with Many Variables.

The same general procedure followed in the present problem for

obtaining a minimum may be applied to the problem of solving a compli

cated system of n equations with n unknowns. Let the equations be of

the form

f1(x1x20
o
oxn)

"'

a1

o
oxn)
:

8
.2

fn(xlx2''°xn)
:
an

Consider the expression:

n 2

(Lo) M =

2
% fi(xl...xn)

-
a
1

M vanishes for a solution of (9) and is greater than 0 otherwise. A

solution corresponds therefore to a minimum of M which can be found by

a searching procedure of the same type used for our problem. Of course,

only minima where M = 0 will correspond to actual solutions of the

system nine and there might be other relative minima that would have to

be discarded.

An example of this procedure for solving a system of six equations

with six unknowns is given in the previous calculations in columns 5,

6
,

and 7 of the two tables. In fact the procedure followed would cor

respond exactly to the one described in this section if three of the
errors had been made infinite instead of being only very large. The

1%



reason why the errors were made large but not infinite was merely a

practical one, because by so doing one does not have to re-code the

problem at all, but merely to change some of the input data.

Naturally, if one wanted to obtain more accurate solutions of the
equation, one would have to use a smaller step. Probably it would save

computing time to search for the solution to start with a coarse step

and to reduce the step successively as closer and closer solutions are

found.

It is questionable whether a procedure of this type would be

practical in solving a system of linear equations. Probably in this

case a method of successive elimination would be faster than the search

for a minimum. On the other hand, it is likely that the search for a

minimum may be a very practical approach for the case of complicated

equations where the elimination procedure would not be easily feasible.

We wish to acknowledge the assistance of Mr. John B. Jackson

during the course of computer operation.
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