Ottimizzazione dei Sistemi Complessi

G. Liuzzi¹

Giovedì 2 Marzo 2017

 $^{^{1}}$ Istituto di Analisi dei Sistemi ed Informatica IASI - CNR

Pseudo-code del metodo "Fermi-Metropolis"

```
INPUT: x_0, \Delta_0, \Delta_{min}, maxit
k \leftarrow 0, x \leftarrow x_0, \Delta \leftarrow \Delta_0
while k \leq \max and \Delta \geq \Delta_{min} do
        k \leftarrow k + 1, \tilde{x} \leftarrow x
        for i = 1, 2, ..., n
            if f(\tilde{x} + \Delta e_i) < f(\tilde{x}) then
                while f(\tilde{x} + \Delta e_i) < f(\tilde{x}) do \tilde{x} \leftarrow \tilde{x} + \Delta e_i end while
            else if f(\tilde{x} - \Delta e_i) < f(\tilde{x}) then
                while f(\tilde{x} - \Delta e_i) < f(\tilde{x}) do \tilde{x} \leftarrow \tilde{x} - \Delta e_i end while
            end if
        end for
        if f(\tilde{x}) = f(x) then \Delta \leftarrow \Delta/2
        else x \leftarrow \tilde{x}
        end if
end while
Return: x (miglior punto determinato)
```

Si consideri il problema non vincolato seguente:

$$\min_{x,y} f(x,y),$$

con
$$f(x,y) = \max\{x^2 + y^2, (x-1)^2 + y^2\}.$$

Siano $x_0 = (0,0)^{\top}$ e $\Delta_0 = 1$, il punto ed il passo iniziali del metodo **Fermi-Metropolis**.

- Scrivere i punti di tentativo (e relativi valori di funzione) del metodo nella sua prima iterazione.
- Scrivere il punto x₁, determinato dal metodo alla fine della prima iterazione.

Siano ora $x_0 = (0,0)^{\top}$ e $\Delta_0 = 0.5$.

- Scrivere i punti di tentativo (e relativi valori di funzione) del metodo nella sua prima iterazione.
- Scrivere il punto x₁, determinato dal metodo alla fine della prima iterazione

Si consideri il problema non vincolato seguente:

$$\min_{x,y} f(x,y),$$

con
$$f(x, y) = \max\{x^2 + y^2, (x - 1)^2 + y^2\}.$$

Siano $x_0 = (0,0)^{\top}$ e $\Delta_0 = 1$, il punto ed il passo iniziali del metodo **Fermi-Metropolis**.

- Scrivere i punti di tentativo (e relativi valori di funzione) del metodo nella sua prima iterazione.
- Scrivere il punto x₁, determinato dal metodo alla fine della prima iterazione.

Siano ora $x_0=(0,0)^ op$ e $\Delta_0=0.5$.

- Scrivere i punti di tentativo (e relativi valori di funzione) del metodo nella sua prima iterazione.
- Scrivere il punto x₁, determinato dal metodo alla fine della prima iterazione.

Si consideri il problema non vincolato seguente:

$$\min_{x,y} f(x,y),$$

con
$$f(x, y) = \max\{x^2 + y^2, (x - 1)^2 + y^2\}.$$

Siano $x_0 = (0,0)^{\top}$ e $\Delta_0 = 1$, il punto ed il passo iniziali del metodo **Fermi-Metropolis**.

- Scrivere i punti di tentativo (e relativi valori di funzione) del metodo nella sua prima iterazione.
- Scrivere il punto x₁, determinato dal metodo alla fine della prima iterazione.

Siano ora $x_0 = (0,0)^{\top}$ e $\Delta_0 = 0.5$.

- Scrivere i punti di tentativo (e relativi valori di funzione) del metodo nella sua prima iterazione.
- Scrivere il punto x_1 , determinato dal metodo alla fine della prima iterazione

Pseudo-code del "compass search"

INPUT:
$$x_0$$
, Δ_0 , Δ_{min} , maxit, $D = \{\pm e_i, i = 1, \ldots, n\}$ $k \leftarrow 0$, $x \leftarrow x_0$, $\Delta \leftarrow \Delta_0$ while $k \leq \max$ and $\Delta \geq \Delta_{min}$ do
$$k \leftarrow k + 1$$
 Let $\bar{d} \in D$ be s.t. $f(x + \Delta \bar{d}) = \min_{d_i \in D} f(x + \Delta d_i)$ if $f(x + \Delta \bar{d}) < f(x)$ then
$$x \leftarrow x + \Delta \bar{d}$$
 else
$$\Delta \leftarrow \Delta/2$$
 endifeend while RETURN: x (miglior punto determinato)

Si consideri il problema non vincolato seguente:

$$\min_{x,y} f(x,y),$$

con
$$f(x,y) = \max\{x^2 + y^2, (x-1)^2 + y^2\}.$$

Siano $x_0=(0,0)^{\top}$ e $\Delta_0=1$, il punto ed il passo iniziali del metodo compass search.

- Scrivere i punti di tentativo (e relativi valori di funzione) del metodo nella sua prima iterazione.
- Scrivere il punto x₁, determinato dal metodo alla fine della prima iterazione.

Siano ora
$$x_0 = (0,0)^{\top}$$
 e $\Delta_0 = 0.5$.

- Scrivere i punti di tentativo (e relativi valori di funzione) del metodo nella sua prima iterazione.
- Scrivere il punto x_1 , determinato dal metodo alla fine della prima iterazione

Pseudo-code del metodo "Fermi-Metropolis"

```
INPUT: x_0, \Delta_0, \Delta_{min}, maxit
k \leftarrow 0, x \leftarrow x_0, \Delta \leftarrow \Delta_0
while k < \text{maxit} and \Delta_k > \Delta_{min} do
         k \leftarrow k + 1. \tilde{x} \leftarrow x
         for i = 1, 2, ..., n
             if f(\tilde{x} + \Delta_k e_i) < f(\tilde{x}) then
                 while f(\tilde{x} + \Delta_k e_i) < f(\tilde{x}) do \tilde{x} \leftarrow \tilde{x} + \Delta_k e_i end while
             else if f(\tilde{x} - \Delta_k e_i) < f(\tilde{x}) then
                 while f(\tilde{x} - \Delta_k e_i) < f(\tilde{x}) do \tilde{x} \leftarrow \tilde{x} - \Delta_k e_i end while
             end if
         end for
         if f(\tilde{x}) = f(x) then \Delta_{k+1} \leftarrow \Delta_k/2, x_{k+1} \leftarrow x_k
         else x_{k+1} \leftarrow \tilde{x}. \Delta_{k+1} \leftarrow \Delta_k
         end if
```

end while

RETURN: x (miglior punto determinato)

Pseudo-code del metodo "Fermi-Metropolis"

```
INPUT: x_0, \Delta_0, \Delta_{min}, maxit
k \leftarrow 0, x \leftarrow x_0, \Delta \leftarrow \Delta_0
while k < \text{maxit} and \Delta_k > \Delta_{min} do
         k \leftarrow k + 1. \tilde{\mathbf{x}} \leftarrow \mathbf{x}_{\mathbf{k}}
         for i = 1, 2, ..., n
             if f(\tilde{x} + \Delta_{k}e_{i}) < f(\tilde{x}) then
                  while f(\tilde{x} + \Delta_k e_i) < f(\tilde{x}) do \tilde{x} \leftarrow \tilde{x} + \Delta_k e_i end while
             else if f(\tilde{x} - \Delta_k e_i) < f(\tilde{x}) then
                  while f(\tilde{x} - \Delta_k e_i) < f(\tilde{x}) do \tilde{x} \leftarrow \tilde{x} - \Delta_k e_i end while
             end if
         end for
         if f(\tilde{x}) = f(x) then \Delta_{k+1} \leftarrow \Delta_k/2, x_{k+1} \leftarrow x_k
         else x_{k+1} \leftarrow \tilde{x}, \ \Delta_{k+1} \leftarrow \Delta_k
         end if
         k \leftarrow k + 1
end while
```

RETURN: $\{x_k\}, \{\Delta_k\}$ successioni di punti e passi

Pseudo-code del "compass search"

INPUT:
$$x_0$$
, Δ_0 , Δ_{min} , maxit, $D = \{\pm e_i, i = 1, \dots, n\}$ $k \leftarrow 0$, $x \leftarrow x_0$, $\Delta \leftarrow \Delta_0$ while $k \leq \max$ and $\Delta_k \geq \Delta_{min}$ do
$$k \leftarrow k + 1$$
 Let $\bar{d} \in D$ be s.t. $f(x_k + \Delta_k \bar{d}) = \min_{d_i \in D} f(x_k + \Delta_k d_i)$ if $f(x_k + \Delta_k \bar{d}) < f(x_k)$ then
$$x_{k+1} \leftarrow x_k + \Delta_k \bar{d}, \Delta_{k+1} \leftarrow \Delta_k$$
 else
$$\Delta_{k+1} \leftarrow \Delta_k / 2, x_{k+1} \leftarrow x_k$$
 endif
$$k \leftarrow k + 1$$

end while

RETURN: x (miglior punto determinato)

Pseudo-code del "compass search"

INPUT:
$$x_0$$
, Δ_0 , Δ_{min} , maxit, $D = \{\pm e_i, i = 1, \ldots, n\}$ $k \leftarrow 0$, $x \leftarrow x_0$, $\Delta \leftarrow \Delta_0$ while $k \leq \max$ and $\Delta_k \geq \Delta_{min}$ do
$$k \leftarrow k+1$$
 Let $\bar{d} \in D$ be s.t. $f(x_k + \Delta_k \bar{d}) = \min_{d_i \in D} f(x_k + \Delta_k d_i)$ if $f(x_k + \Delta_k \bar{d}) < f(x_k)$ then
$$x_{k+1} \leftarrow x_k + \Delta_k \bar{d}, \ \Delta_{k+1} \leftarrow \Delta_k$$
 else
$$\Delta_{k+1} \leftarrow \Delta_k/2, \ x_{k+1} \leftarrow x_k$$
 endif
$$k \leftarrow k+1$$

end while

RETURN: $\{x_k\}, \{\Delta_k\}$ successioni di punti e passi

Un po' di analisi

Assunzione (A1)

L'insieme di livello $L(x_0) = \{x \in \mathbb{R}^n : f(x) \le f(x_0)\}$ è compatto

N.B. nei (due) metodi visti, il passo Δ_k , iterazione dopo iterazione,

- ullet o diminuisce (di un fattore costante $\Delta_{k+1} \leftarrow \Delta_k/2$)
- ullet o rimane costante $(\Delta_{k+1} \leftarrow \Delta_k)$

_emma

Se (A1) è soddisfatta, $\Delta_{min} \leq 0$ e maxit $= +\infty$, allora $\{\Delta_k\}$ è una succ. infinita e

$$\lim_{k\to\infty}\Delta_k=0.$$

Un po' di analisi

Assunzione (A1)

L'insieme di livello $L(x_0) = \{x \in \mathbb{R}^n : f(x) \le f(x_0)\}$ è compatto

- **N.B.** nei (due) metodi visti, il passo Δ_k , iterazione dopo iterazione,
 - o diminuisce (di un fattore costante $\Delta_{k+1} \leftarrow \Delta_k/2$)
 - o rimane costante $(\Delta_{k+1} \leftarrow \Delta_k)$

_emma

Se (A1) è soddisfatta, $\Delta_{min} \leq 0$ e maxit $= +\infty$, allora $\{\Delta_k\}$ è una succ. infinita e

$$\lim_{k\to\infty}\Delta_k=0.$$

Un po' di analisi

Assunzione (A1)

L'insieme di livello $L(x_0) = \{x \in \mathbb{R}^n : f(x) \le f(x_0)\}$ è compatto

N.B. nei (due) metodi visti, il passo Δ_k , iterazione dopo iterazione,

- o diminuisce (di un fattore costante $\Delta_{k+1} \leftarrow \Delta_k/2$)
- ullet o rimane costante $(\Delta_{k+1} \leftarrow \Delta_k)$

Lemma

Se (A1) è soddisfatta, $\Delta_{min} \leq 0$ e maxit $= +\infty$, allora $\{\Delta_k\}$ è una succ. infinita e

$$\lim_{k\to\infty}\Delta_k=0.$$

Convergenza a zero del passo

Lemma

Se (A1) è soddisfatta, $\Delta_{min} \leq 0$ e maxit $= +\infty$, allora $\{\Delta_k\}$ è una succ. infinita e

$$\lim_{k\to\infty}\Delta_k=0.$$

Dim.: Se $\Delta_{min} \leq 0$ e maxit $= +\infty$, la condizione del **while** più esterno è sempre vera, quindi l'algoritmo non termina mai, producendo una succ. $\{\Delta_k\}$ infinita.

Dalla def. dell'algoritmo segue che, per ogni k,

- $\Delta_k > 0$;
- $\Delta_{k+1} \leq \Delta_k$

Quindi, $\lim_{k\to\infty} \Delta_k = \bar{\Delta} \geq 0$. Supponiamo che $\bar{\Delta} > 0$

Convergenza a zero del passo

Lemma

Se (A1) è soddisfatta, $\Delta_{min} \leq 0$ e maxit $= +\infty$, allora $\{\Delta_k\}$ è una succ. infinita e

$$\lim_{k\to\infty}\Delta_k=0.$$

Dim.: Se $\Delta_{min} \leq 0$ e maxit $= +\infty$, la condizione del **while** più esterno è sempre vera, quindi l'algoritmo non termina mai, producendo una succ. $\{\Delta_k\}$ infinita.

Dalla def. dell'algoritmo segue che, per ogni k,

- $\Delta_k > 0$;
- $\Delta_{k+1} \leq \Delta_k$.

Quindi, $\lim_{k\to\infty} \Delta_k = \bar{\Delta} \geq 0$. Supponiamo che $\bar{\Delta} > 0$.

Convergenza a zero del passo

Lemma

Se (A1) è soddisfatta, $\Delta_{min} \leq 0$ e maxit $= +\infty$, allora $\{\Delta_k\}$ è una succ. infinita e

$$\lim_{k\to\infty}\Delta_k=0.$$

Dim.: Se $\Delta_{min} \leq 0$ e maxit $= +\infty$, la condizione del **while** più esterno è sempre vera, quindi l'algoritmo non termina mai, producendo una succ. $\{\Delta_k\}$ infinita.

Dalla def. dell'algoritmo segue che, per ogni k,

- $\Delta_k > 0$;
- $\Delta_{k+1} \leq \Delta_k$.

Quindi, $\lim_{k\to\infty} \Delta_k = \bar{\Delta} \geq 0$. Supponiamo che $\bar{\Delta} > 0$.

Esiste un intero \bar{k} tale che, per $k \geq \bar{k}$ il passo non viene più ridotto. Quindi, per ogni $k \geq \bar{k}$

$$f(x_{k+1}) < f(x_k) \ e \ \Delta_{k+1} = \Delta_k = \Delta_{\bar{k}} = \bar{\Delta}.$$

Quindi, per ogni $k \geq \bar{k}$, i punti x_k appartengono ad una griglia, ovvero, per i > 0

$$x_{\bar{k}+i} = x_{\bar{k}} + \bar{\Delta} \sum_{r=0}^{i-1} d_{i_r} \in L(x_0) \quad d_{i_r} \in D$$

Questo e (A1) implicano che $\{x_k\}_{k>\bar{k}}$ (e $\{x_k\}$) è finita.

Esiste un intero \bar{k} tale che, per $k \geq \bar{k}$ il passo non viene più ridotto. Quindi, per ogni $k \geq \bar{k}$

$$f(x_{k+1}) < f(x_k) \ e \ \Delta_{k+1} = \Delta_k = \Delta_{\bar{k}} = \bar{\Delta}.$$

Quindi, per ogni $k \geq \bar{k}$, i punti x_k appartengono ad una griglia, ovvero, per i>0

$$x_{\bar{k}+i} = x_{\bar{k}} + \bar{\Delta} \sum_{r=0}^{i-1} d_{i_r} \in L(x_0) \quad d_{i_r} \in D$$

Questo e (A1) implicano che $\{x_k\}_{k>\bar{k}}$ (e $\{x_k\}$) è finita.

Esiste un intero \bar{k} tale che, per $k \geq \bar{k}$ il passo non viene più ridotto. Quindi, per ogni $k \geq \bar{k}$

$$f(x_{k+1}) < f(x_k) \ e \ \Delta_{k+1} = \Delta_k = \Delta_{\bar{k}} = \bar{\Delta}.$$

Quindi, per ogni $k \geq \bar{k}$, i punti x_k appartengono ad una griglia, ovvero, per i>0

$$x_{\bar{k}+i} = x_{\bar{k}} + \bar{\Delta} \sum_{r=0}^{i-1} d_{i_r} \in L(x_0) \quad d_{i_r} \in D$$

Questo e (A1) implicano che $\{x_k\}_{k>\bar{k}}$ (e $\{x_k\}$) è finita.

Ma allora, deve necessariamente esistere un intero $\tilde{k} > \bar{k}$ t.c.

$$x_{\tilde{k}+1}=x_{\tilde{k}},$$

ma questo contraddice il fatto che $f(x_{\tilde{k}+1}) < f(x_{\tilde{k}})$ e allora, $\bar{\Delta} = 0$.

Ma allora, deve necessariamente esistere un intero $\tilde{k}>\bar{k}$ t.c.

$$x_{\tilde{k}+1}=x_{\tilde{k}},$$

ma questo contraddice il fatto che $f(x_{\tilde{k}+1}) < f(x_{\tilde{k}})$ e allora, $\bar{\Delta} = 0$.

Convergenza a punti stazionari

Per i metodi visti vale il risultato

Teorema

Se vale (A1) e se f(x) è continuamente differenziabile, allora

$$\liminf_{k\to\infty}\|\nabla f(x_k)\|=0.$$

(Ovvero almeno un punto limite di $\{x_k\}$ è stazionario) **Dim.**

- $\{x_k\} \subset L(x_0)$;
- esiste $K_1 \subseteq \{0, 1, 2, ...\}$ s.t. $\Delta_{k+1} = \Delta_k/2$.

Consideriamo la sottosuccessione $\{x_k\}_{k\in K_1}$ (contenuta in $L(x_0)$, ammette punti limite). $K_2\subseteq K_1$ s.t.

- $\lim_{k \to \infty, k \in K_2} x_k = \bar{x};$
- $\lim_{k \to \infty} \Delta_k = 0.$

Convergenza a punti stazionari

Per i metodi visti vale il risultato

Teorema

Se vale (A1) e se f(x) è continuamente differenziabile, allora

$$\liminf_{k\to\infty}\|\nabla f(x_k)\|=0.$$

(Ovvero almeno un punto limite di $\{x_k\}$ è stazionario) **Dim.**

- $\{x_k\} \subset L(x_0)$;
- esiste $K_1 \subseteq \{0, 1, 2, ...\}$ s.t. $\Delta_{k+1} = \Delta_k/2$.

Consideriamo la sottosuccessione $\{x_k\}_{k\in K_1}$ (contenuta in $L(x_0)$, ammette punti limite). $K_2\subseteq K_1$ s.t.

- $\lim_{k \to \infty} \lim_{k \in K_2} x_k = \bar{x};$
- $\lim_{k \to \infty} \Delta_k = 0.$

Convergenza a punti stazionari

Per i metodi visti vale il risultato

Teorema

Se vale (A1) e se f(x) è continuamente differenziabile, allora

$$\liminf_{k\to\infty}\|\nabla f(x_k)\|=0.$$

(Ovvero almeno un punto limite di $\{x_k\}$ è stazionario) **Dim.**

- $\bullet \ \{x_k\} \subset L(x_0);$
- esiste $K_1 \subseteq \{0, 1, 2, ...\}$ s.t. $\Delta_{k+1} = \Delta_k/2$.

Consideriamo la sottosuccessione $\{x_k\}_{k\in\mathcal{K}_1}$ (contenuta in $L(x_0)$, ammette punti limite). $K_2\subseteq K_1$ s.t.

- $\bullet \lim_{k\to\infty,k\in K_2} x_k = \bar{x};$
- $\bullet \lim_{k\to\infty, k\in\mathcal{K}_2} \Delta_k = 0.$

Per ogni $k \in K_2$ e i = 1, ..., n, abbiamo che

$$f(x_k + \Delta_k e_i) \geq f(x_k)$$

 $f(x_k - \Delta_k e_i) \geq f(x_k)$

e, per il teorema della media,

$$f(x_k + \Delta_k e_i) = f(x_k) + \Delta_k \nabla f(u_{k,i})^{\top} e_i$$

$$f(x_k - \Delta_k e_i) = f(x_k) - \Delta_k \nabla f(v_{k,i})^{\top} e_i$$

dove $u_{k,i} = x_k + \xi_{k,i} \Delta_k e_i$ e $v_{k,i} = x_k - \mu_{k,i} \Delta_k e_i$, con $\xi_{k,i}, \mu_{k,i} \in (0,1)$ e quindi $\lim_{k \to \infty, k \in K_2} u_{k,i} = \lim_{k \to \infty, k \in K_2} v_{k,i} = \bar{x}$.

Per ogni $k \in K_2$ e i = 1, ..., n, abbiamo che

$$f(x_k + \Delta_k e_i) \geq f(x_k)$$

 $f(x_k - \Delta_k e_i) \geq f(x_k)$

e, per il teorema della media,

$$f(x_k + \Delta_k e_i) = f(x_k) + \Delta_k \nabla f(u_{k,i})^{\top} e_i$$

$$f(x_k - \Delta_k e_i) = f(x_k) - \Delta_k \nabla f(v_{k,i})^{\top} e_i$$

dove $u_{k,i}=x_k+\xi_{k,i}\Delta_k e_i$ e $v_{k,i}=x_k-\mu_{k,i}\Delta_k e_i$, con $\xi_{k,i},\mu_{k,i}\in(0,1)$ e quindi $\lim_{k\to\infty,k\in\mathcal{K}_2}u_{k,i}=\lim_{k\to\infty,k\in\mathcal{K}_2}v_{k,i}=\bar{x}.$

Per ogni $k \in K_2$ e i = 1, ..., n, abbiamo che

$$f(x_k + \Delta_k e_i) \geq f(x_k)$$

 $f(x_k - \Delta_k e_i) \geq f(x_k)$

e, per il teorema della media,

$$f(x_k + \Delta_k e_i) = f(x_k) + \Delta_k \nabla f(u_{k,i})^{\top} e_i$$

$$f(x_k - \Delta_k e_i) = f(x_k) - \Delta_k \nabla f(v_{k,i})^{\top} e_i$$

dove
$$u_{k,i} = x_k + \xi_{k,i} \Delta_k e_i$$
 e $v_{k,i} = x_k - \mu_{k,i} \Delta_k e_i$, con $\xi_{k,i}, \mu_{k,i} \in (0,1)$ e quindi $\lim_{k \to \infty, k \in K_2} u_{k,i} = \lim_{k \to \infty, k \in K_2} v_{k,i} = \bar{x}$.

Per ogni $k \in K_2$ e i = 1, ..., n, abbiamo che

$$f(x_k + \Delta_k e_i) \geq f(x_k)$$

 $f(x_k - \Delta_k e_i) \geq f(x_k)$

e, per il teorema della media,

$$f(x_k + \Delta_k e_i) = f(x_k) + \Delta_k \nabla f(u_{k,i})^{\top} e_i$$

$$f(x_k - \Delta_k e_i) = f(x_k) - \Delta_k \nabla f(v_{k,i})^{\top} e_i$$

dove
$$u_{k,i}=x_k+\xi_{k,i}\Delta_k e_i$$
 e $v_{k,i}=x_k-\mu_{k,i}\Delta_k e_i$, con $\xi_{k,i},\mu_{k,i}\in(0,1)$ e quindi $\lim_{k\to\infty,k\in K_2}u_{k,i}=\lim_{k\to\infty,k\in K_2}v_{k,i}=\bar{x}.$

Segue anche che:

$$\Delta_k \nabla f(u_{k,i})^{\top} e_i \geq 0$$

$$-\Delta_k \nabla f(v_{k,i})^{\top} e_i \geq 0.$$

Dividendo per Δ_k e prendendo il limite per $k \to \infty, k \in K_2$ otteniamo

$$\lim_{k \to \infty, k \in K_2} \nabla f(u_{k,i})^{\top} e_i = \nabla f(\bar{x})^{\top} e_i \ge 0$$

$$\lim_{k \to \infty, k \in K_2} -\nabla f(v_{k,i})^{\top} e_i = -\nabla f(\bar{x})^{\top} e_i \ge 0$$

e quindi, $\nabla f(\bar{x}) = 0$.

Segue anche che:

$$\Delta_k \nabla f(u_{k,i})^{\top} e_i \geq 0$$

$$-\Delta_k \nabla f(v_{k,i})^{\top} e_i \geq 0.$$

Dividendo per Δ_k e prendendo il limite per $k \to \infty, k \in K_2$ otteniamo

$$\lim_{k \to \infty, k \in K_2} \nabla f(u_{k,i})^{\top} e_i = \nabla f(\bar{x})^{\top} e_i \ge 0$$

$$\lim_{k \to \infty, k \in K_2} -\nabla f(v_{k,i})^{\top} e_i = -\nabla f(\bar{x})^{\top} e_i \ge 0,$$

e quindi, $\nabla f(\bar{x}) = 0$.

Segue anche che:

$$\Delta_k \nabla f(u_{k,i})^{\top} e_i \geq 0$$

$$-\Delta_k \nabla f(v_{k,i})^{\top} e_i \geq 0.$$

Dividendo per Δ_k e prendendo il limite per $k \to \infty, k \in K_2$ otteniamo

$$\lim_{k \to \infty, k \in K_2} \nabla f(u_{k,i})^{\top} e_i = \nabla f(\bar{x})^{\top} e_i \ge 0$$

$$\lim_{k \to \infty, k \in K_2} -\nabla f(v_{k,i})^{\top} e_i = -\nabla f(\bar{x})^{\top} e_i \ge 0,$$

e quindi, $\nabla f(\bar{x}) = 0$.