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Abstract In this paper we consider bound constrained global optimization problems
where first-order derivatives of the objective function can be neither computed nor
approximated explicitly. For the solution of such problems the DIRECT algorithm
has been proposed which has a good ability to locate promising regions of the fea-
sible domain and convergence properties based on the generation of a dense set of
points over the feasible domain. However, the efficiency of DIRECT deteriorates as
the dimension and the ill-conditioning of the objective function increase. To over-
come these limits, we propose DIRECT-type algorithms enriched by the efficient use
of derivative-free local searches combined with nonlinear transformations of the fea-
sible domain and, possibly, of the objective function. We report extensive numerical
results both on test problems from the literature and on an application in structural
proteomics.
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1 Introduction

In the paper we refer to the following general problem

min
x∈D f (x), (1)

where D = {x ∈ �n : 0 ≤ xi ≤ 1, i = 1, . . . , n}, to which every box-constrained
problem can be reduced.

When the objective function is Lipschitz-continuous, Problem (1) can be solved
by means of the DIRECT (DIvide Rectangles) algorithm [1]. This algorithm is based
on a space-partitioning technique which is designed to adaptively balance local and
global search at each iteration. Convergence of the DIRECT algorithm to the global
minimum of Problem (1) is guaranteed by the so-called everywhere dense property,
that is DIRECT is able to generate a set of points which, in the limit, becomes dense
in the feasible set [1–3].

The original DIRECT algorithm has some known weaknesses. First of all, in prac-
tice, it is hard to develop some efficient stopping condition other than, e.g., exhaustion
of some preset computational resources.

Furthermore, DIRECT is typically quite fast in getting close to the global optimum,
but it can be slow to converge to the solution with an high accuracy. In fact, it can
oftenwaste a lot of time exploring uninteresting regions of the feasible domain, thereby
delaying the discovery of global minima.

Various attempts have been done in the literature to overcome this latter source
of inefficiency. For example, different techniques for adaptive setting the DIRECT
balancing parameter can be applied as reviewed, e.g., in [4]; transformations of the
search domain can be considered [3,5,6]; smart schemes for balancing local and
global information within the same global optimization procedure can be introduced
[4,7–9]; hybridization of a DIRECT-type method by cleverly invoking separate local
optimizers during the global optimization process is also very useful [2,3,10,11]. The
two latter approaches are particularly beneficial for solving multiextremal large-scale
problems.

More in detail, in [9] a locally-biased version of the DIRECT method is presented
for solving low-dimensional problems with a few local minimizers, which tries to
capture the best local minimum by subdividing less sub-regions at each iteration with
respect to the DIRECT algorithm.

In [7,8] a strategy inspired by bilevel (or multilevel) methods for solving large
scale algebraic systems arising from the discretization of partial differential equations
is adopted to overcome the slow convergence of DIRECT.

In [4], a two-phase approach having proved to be efficient in the DIRECT-based
schemes [12] is successfully adopted and experimentally investigated for the DIRECT
simplicial partition algorithm (originally proposed in [13,14]).

We consider in detail Algorithm DIRMIN-TL from Ref. [3] where both local min-
imizations and nonlinear transformations of the variables are introduced in DIRECT.
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The main contribution of the paper is the proposal of three new deterministic algo-
rithms for black-box derivative-free global optimization. Drawing inspiration from
[3], we present new variants of the DIRMIN-TL algorithm for black-box optimization
to try and enhance both its efficiency (i.e., number of local searches to get conver-
gence) and robustness (i.e., ability to find the global optimum of problem (1) within
a prescribed number of iterations). The basic idea consists in exploiting as much as
possible derivative-free local minimizations. This can be done mainly in two ways.
First, we can substitute the local minimization step of algorithm DIRMIN-TL from
Ref. [3] with derivative-free local minimization. This plain modification results in a
quite reliable algorithm. Then, in order to improve the efficiency of the method, we
propose to carry out the local minimizations in a “balanced” way. Second, drawing
inspiration from [15–17], we can use the derivative-free local minimization routine
to modify the objective function. It should be noted that all of the proposed mod-
ifications are also suitable to other more sophisticated partition-based algorithms,
like for instance those based on simplicial or diagonal partitioning (see, e.g., [12–
14,18]).

In Sect. 2 we present a simple adaptation of Algorithm DIRMIN-TL, from Ref.
[3], to derivative-free optimization and present its numerical performances on a bench-
mark of difficult global optimization problems. In Sect. 3 we propose a “balanced”
version of algorithm DIRMIN-TL where the local minimization are carried out in a
“balanced” way thus considerably improving the efficiency of DIRMIN-TL. In Sect.
4 we propose a new DIRECT-type algorithm based on the so-called “plateau” trans-
formation of the objective function which considerably improves the robustness of
DIRMIN-TL. In Sect. 5 we present an application of the the latter algorithm to a
protein structural alignment problem [19]. Finally, in Sect. 6 we draw some conclu-
sions.

1.1 The original DIRECT algorithm

In this section we report a brief description of the original DIRECT algorithm. At
the first step of DIRECT, f (x) is evaluated at the center of the search domain D;
the hypercube is then partitioned into a set of smaller hyperrectangles and f (x) is
evaluated at their centers. Let the partition of D at iteration k be defined as

Hk = {Di : i ∈ Ik}, with Di = {x ∈ �n : li ≤ x ≤ ui }, ∀ i ∈ Ik,

where li , ui ∈ [0, 1], i ∈ Ik , and Ik is the set of indices identifying the subsets defining
the current partition.

At the generic kth iteration of the algorithm, starting from the current partition
Hk of D into hyperrectangles, a new partition, Hk+1, is built by subdividing a set of
potentially optimal hyperrectangles of the previous partition Hk . The identification of
a potentially optimal hyperectangle is based on some measure of the hyperrectangle
itself and on the value of f at its center. The refinement of the partition continues until
a prescribed number of function evaluations has been performed, or another stopping
criterion is satisfied (see [4,12,20]). The minimum of f over all the centers of the
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H1 = {D}, c = center of D, fmin = f(c), Xmin = {c}, k = 1

repeat

identify the set of indices I∗
k ⊆ Ik of the potentially optimal hyperrectangles in Hk

for each i ∈ I∗
k , subdivide Di (generate the new partition Hk+1)

evaluate f in the centers of the new hyperrectangles

fmin = min{f(c) : c ∈ Ck}, Xmin = {c ∈ Ck : f(c) = fmin}, k = k + 1
(Ck = {centers of the hyperrectangles in Hk})

until (stopping criterion satisfied)

return fmin, Xmin

Fig. 1 Sketch of the original DIRECT algorithm

final partition, and the corresponding centers, provide an approximate solution to the
problem. The structure of DIRECT is outlined in Fig. 1.

For the sake of completeness, we recall that the new partition Hk+1 is obtained
by subdividing the potentially optimal hyperintervals according to a specific partition
procedure. In particular, for every potentially optimal hyperinterval Di the set J of
the longest edges is computed, and every potentially optimal hyperinterval is subdi-
vided along all the edges belonging to J . For each edge belonging to J , two new
points are generated with symmetric distances from the centroid xi , equal to one third
of the length of the edges in J . The generated points are the centroids of 2m new
hyperintervals, where m = |J |. If there are multiple longest edges, the division order
is chosen in such a way that the biggest hyperrectangles contain the best objective
function values.

Further details on the original DIRECT algorithm can be found in [1,3]. The con-
vergence of DIRECT is proved (see, e.g., [1,3]) by showing that the set of sampled
points becomes everywhere dense in D as the number of iterations k goes to infinity.
For a convergence analysis of DIRECT-type, as other “divide-the-best” algorithms,
we refere the interested reader to [12,18,20,21].

1.2 Algorithm DIRMIN-TL

In order to describe Algorithm DIRMIN-TL from [3], we first need to introduce a
sketch of Algorithm DIRMIN (from Ref. [3]) where local minimizations starting from
the centroids of potentially optimal hyperintervals are introduced in the DIRECT
algorithm.
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Algorithm DIRMIN

H1 = {D}, c = center of D, fmin = f (c), Xmin = {c}, tol, kmax , k = 1

Repeat

(S.1) identify the potentially optimal hyperrectangles Pk inHk

(S.2) for all centroids ci of hyperrectangles in Pk perform a local minimization
and record the best function value fml

(S.3) subdivide the potentially optimal hyperrectangles to build a new partition Hk+1

(S.4) evaluate f in the centers of the new hyperrectangles

(S.5) fmin = min{ f (c) : c ∈ Ck , fml }, Xmin = {x ∈ D : f (x) = fmin}, k = k + 1

Ck is the set of centroids c of the hyperrectangles inHk

Until (stopping criterion satisfied)

Return fmin , Xmin

AlgorithmDIRMIN-TL is obtainedby repeatedly applyingDIRMIN to the problem
obtained from Problem (1) by transforming the search space bymeans of the following
piecewise linear transformation of variables: given a point x̃ ∈ (0, 1)n , let y = Tx̃ (x)
be defined by

yi = (Tx̃ (x))i =

⎧
⎪⎨

⎪⎩

xi
2x̃i

if xi ≤ x̃i ,

1 − xi
2(x̃i − 1)

+ 1 if xi > x̃i ,
i = 1, . . . , n.

As reported in [3], operator Tx̃ : �n → �n is invertible, maps [0, 1]n into [0, 1]n ,
maps the point x̃ into the centroid of the transformed space (Tx̃ (x̃) = (1/2 . . . 1/2)�)
and reduces to the identity if x̃ = (1/2 . . . 1/2)�.

Thus, given x̃ ∈ (0, 1)n and by using operator Tx̃ , we can write

f (x) = f (T−1
x̃ (y)) = fx̃ (y).

After a fixedmaximumnumber of partitioning steps,DIRMIN produces an estimate
xmin ∈ (0, 1)n of the global minimumpoint. Then, as proposed in [3], we use the above
transformation Tx̃ with x̃ = xmin and apply again DIRMIN to the problem

min
y∈[0,1]n fx̃ (y). (2)

DIRMIN applied to Problem (2) will try to improve the current estimate of the
global minimum point by generating a different partition of the domain [0, 1]n . This
process is reiterated if DIRMIN improves on the initial point x̃ . Otherwise, DIRMIN
is restarted by choosing x̃ among the set of promising stationary points produced in
the previous iteration, which is updated during the iterations of the new algorithm.

We report below the sketch of Algorithm DIRMIN-TL.
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Algorithm DIRMIN-TL

xmin = x̃ = (1/2 . . . 1/2)�, fmin = f (xmin), N = ∅, O = ∅, maxint 	 0

Repeat

(S.1) Apply DIRMIN to Problem (2) until maxint hyperintervals have been generated and
let x̂ be the best point produced and W be the set of “promising” stationary points.

(S.2) If ( fx̃ (x̂) < fmin ) then set fmin = fx̃ (x̂), xmin = x̃ = x̂ ,N = ∅, O = ∅ and

go to Step (S.1).

(S.3) Otherwise set

N = N ∪
{
y ∈ W : f (y) − fmin ≤ ε f and minx∈N∪{xmin } d(y, x) > εd

}
.

(S.4) choose x̄ ∈ N \ O, set O = O ∪ {x̄}, x̃ = x̄ .

Until (N \ O = ∅)
Return fmin , xmin

In the algorithm, N represents the set of candidate points to restart DIRMIN, O is
the set of already used points, andW is the set of stationary points produced at Step S.2
of Algorithm DIRMIN. After DIRMIN has generated |Ik | = maxint hyperintervals,
N andO are updated, on the basis of the information gained up to that point. Any time
fmin is updated, they are initialized to the empty set. Otherwise, at step S.3 the set of
candidate pointsN is updated by settingN = N ∪{x ∈ W : x is “promising”}where
a stationary point x is considered as promising when, given two scalars ε f , εd > 0,
f (x) − fmin ≤ ε f and minx∈N∪{xmin} d(y, x) > εd , that is x is sufficiently distant
from the points in N ∪ {xmin}. Then, the new point x̃ to restart DIRMIN is chosen in
the set N \ O and the set O is updated consequently: O = O ∪ {x̃}.

2 A plain modification of algorithm DIRMIN-TL

In principle, Algorithm DIRMIN-TL (from Ref. [3]) cannot be used in the present
context of derivative-free black-box global optimization since the local minimizations
are carried out by means of a gradient based algorithm.

However, it is worth noting that Algorithm DIRMIN-TL, like other DIRECT-type
algorithms, is able to guarantee the following convergence property provided that
parameter maxint = +∞.

Lemma 2.1 For every global minimum point x∗ of Problem (1) and for every ε > 0,
there exists an iteration k and a centroid x̄ ∈ Ck such that ‖x∗ − x̄‖ ≤ ε.

This property can be exploited to accelerate convergence of DIRECT-type algo-
rithms by using suitable local minimization algorithms (which is the fundamental
consideration of [3]). In particular, the local minimization algorithm should be able to
converge to the global minimum point once the global optimization scheme has gen-
erated a point sufficiently close to it. To this aim, we recall from Ref. [3] the following
proposition concerning some minimal assumptions needed by an iterative algorithm
to be attracted by a global minimum point.
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Proposition 2.1 ([22])Let f ∈ C2 and {xk} be a sequence of feasible points generated
by an iterative method xk+1 = xk + αkdk such that

(i) f (xk+1) ≤ f (xk) − θ(αk)
2‖dk‖2, for all k, where θ > 0;

(ii) any accumulation point of the sequence {xk} is stationary for Problem (1).

For every globalminimumpoint x∗ of f (x) onDwhere∇2 f (x∗) is positive definite,
there exists an open set L containing x∗ such that, if xk̄ ∈ L for some k̄ ≥ 0, then
xk ∈ L for all k ≥ k̄ and {xk} → x∗.

By using a derivative-free local minimization algorithm satisfying the assump-
tions of above Proposition 2.1 (like, e.g., those of Refs. [23,24]), we can thus
propose straightforward modifications of DIRMIN and DIRMIN-TL (which we call
DFO-DIRMIN and DFO-DIRMIN-TL, respectively) for black-box optimization that
consists in substituting derivative-based with derivative-free local minimizations.
Algorithm DFO-DIRMIN-TL obviously preserves the convergence property stated
in Lemma 2.1.

Here, we represent a derivative-free local minimization algorithm as

(x̂, α̂) = DF(x0, α0, tol, kmax),

where x0 is the starting point of the minimization, α0 ∈ �n is a vector of tentative
steps such that maxi=1,...,n{αi

0} is an estimate of the stationarity measure [25] of
x0, tol is the target measure of stationarity and kmax is the maximum number of
allowed iterations. In output, the algorithm produces a feasible point x̂ , and the current
stepsizes α̂ ∈ �n (a sketch of a possible algorithm DF is reported in Appendix 1 for
the interested reader). We denote by α̂max = maxi=1,...,n α̂i the stationarity measure
of x̂ [25].

2.1 Efficient partition management in DIRECT

The efficiency of Algorithm DIRECT heavily depends on the data structures that are
used to store information on the current feasible domain partition and on how the
selection and partition procedures are implemented. In [26] a partly dynamic data
structure has been proposed with the aim of combining an efficient management of
the data structures with the efficiency of the algorithm. In our implementation of
DIRECT, we adopt a completely dynamic data structure for box information storage
(see Figure 2). We use two derived data types, Box and Column. A Box struc-
ture contains information on a hyperinterval, that is, the objective function value
on the centroid, the centroid coordinates, the hyperbox dimensions and pointers to
previous and next Box structures. The Column derived type is used to define a
double-linked list of columns. Each element of the list contains the diameter of
the column of hyperboxes, a pointer to the corresponding list of Box structures
and pointers to previous and next Column structures. The list of columns is kept
sorted by increasing diameter size, whereas all the lists of boxes are kept sorted by
increasing objective function value. It is worth noting that, by exploiting the above
dynamic data structure, computing the potentially optimal hyperintervals, adding,
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Fig. 2 Potentially optimal
hyperintervals
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removing and keeping columns and boxes ordered can be done very efficiently. In
particular, the set of potentially optimal hyperintervals is computed by applying the
Jarvis’s march [27] just to the top elements of the list of boxes of each column
(see Fig. 2), which is of limited cardinality. An implementation qof the above par-
tition management for DIRECT algorithms combined with the use of derivative-free
local searches, i.e., Algorithm DFO-DIRMIN, is freely available at the URL http://
www.dis.uniroma1.it/~lucidi/DFL as part of the derivative-free library as package
DIRMIN.
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2.2 Numerical results with DFO-DIRMIN-TL

We begin this section by recalling that the main drawbacks of partition-based deter-
ministic algorithms for global optimization are a possibly huge requirement in terms
of memory occupancy and a possibly high execution time. Of course, the latter aspect
depends both on the implementation of the algorithm and on the cost of a single func-
tion evaluation. In the paper we concentrate on the former aspect since it is the most
critical one.

For this reason, we choose a set of test problems with negligible computing time
per single function evaluation. Namely, our test set is composed of problems selected
from Refs. [3,28,29] (see Table 5 in Appendix 2 for problem dimensions and optimal
values) and is freely available at the URL http://www.dis.uniroma1.it/~lucidi/DFL as
package TESTGO.

We applied Algorithm DFO-DIRMIN-TL to this set of global optimization prob-
lems and, in particular, within DFO-DIRMIN-TL we allow the generation of at most
50, 000 × n hyperrectangles by algorithm DFO-DIRMIN and we set the maximum
number of “restarts” to 100, where by restart we mean the number of times that the
go to instruction is executed in Step (S.2) of DFO-DIRMIN-TL.

Furthermore, we use the following stopping criterion

f (xmin) − f ∗

max{1, | f ∗|} ≤ 10−4,

where f ∗ is sthe known optimal function value. The results are reported in the table
below, where:

– Problem, is the name of the problem;
– n, is the dimension of the problem;
– f (x̄), is the best function value produced by the algorithm, and it is in boldface
whenever the stopping criterion is not met. In this case the algorithm stops either
because N \ O is empty or because the maximum number of restarts has been
reached;

– n.f., is the number of computed function evaluations;
– n.loc., is the number of performed local minimizations;
– n.int., is the number of hyperrectangles.

We remark that the number of computed function evaluations (n.f.) is given by the
sum between n.int. and the overall number of function evaluations required by the
n.loc. local minimizations. It thus measures the overall computational burden of the
method on a single problem. Note that, the number of executed restarts is not displayed
because it is given by

number of restarts =
⌊

n.int.

50, 000 × n

⌋

.

In the first part of the table, we report the same test problems used in [3], in the
second part of the table, we test the algorithm on a further set of problems from

123

Author's personal copy

http://www.dis.uniroma1.it/~lucidi/DFL


458 G. Liuzzi et al.

the literature that can be found on the webpage [28]. Finally, the third part of the
table contains the test problems recently proposed in [29] for the special session and
competition on Real Parameter Single Objective Optimization at the Conference on
Evolutionary Computation (CEC) 2013.

From Table 1 the following can be observed:

Table 1 Results of DFO-DIRMIN-TL

Problem n f (x̄) n.f. n.loc. n.int.

Test problems from Ref. [3]

Schubert 2 −1.8673e+02 365 5 21

Schub. pen. 1 2 −1.8673e+02 2520 32 113

Schub. pen. 2 2 −1.8673e+02 881 11 45

S-H. Camel B. 2 −1.0316e+00 75 1 5

Goldstein-Price 2 3.0000e+00 107 1 5

Treccani mod. 2 7.1314e−09 78 1 5

Quartic 2 −3.5239e−01 499 6 27

Shekel m = 5 4 −1.0153e+01 142 1 9

Shekel m = 7 4 −1.0403e+01 500 3 21

Shekel m = 10 4 −1.0536e+01 1005 6 33

Espon. mod. 2 −1.0000e+00 76 1 5

Espon. mod. 4 −1.0000e+00 150 1 9

Cos-mix mod. 2 −2.0000e−01 70 1 5

Cos-mix mod. 4 −4.0000e−01 138 1 9

Hartman 3 −3.8628e+00 105 1 7

Hartman 6 −3.3224e+00 229 1 13

5n loc-min 2 2.3557e−31 62 1 5

5n loc-min 5 9.4226e−32 152 1 11

5n loc-min 10 4.7113e−32 302 1 21

5n loc-min 20 2.3557e−32 602 1 41

10n loc-min 2 2.3557e−31 62 1 5

10n loc-min 5 9.4226e−32 152 1 11

10n loc-min 10 4.7113e−32 302 1 21

10n loc-min 20 2.3557e−32 602 1 41

15n loc-min 2 1.3497e−32 62 1 5

15n loc-min 5 1.3497e−32 152 1 11

15n loc-min 10 1.3497e−32 302 1 21

15n loc-min 20 1.3497e−32 602 1 41

Griewank mod. 2 1.3472e−11 78,663 858 3089

Griewank mod. 5 6.2154e−10 490,515 1896 11,553

Griewank mod. 10 9.2333e−10 411,178 753 7359

Griewank mod. 20 9.4514e−10 942 1 41

Pinter 2 3.3940e−09 170 2 7
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Table 1 continued

Problem n f (x̄) n.f. n.loc. n.int.

Pinter 5 1.5414e−06 25,618 101 629

15n loc-min 20 1.3497e−32 602 1 41

Griewank mod. 2 1.3472e−11 78,663 858 3089

Griewank mod. 5 6.2154e−10 490,515 1896 11,553

Griewank mod. 10 9.2333e−10 411,178 753 7359

Griewank mod. 20 9.4514e−10 942 1 41

Pinter 2 3.3940e−09 170 2 7

Pinter 5 1.5414e−06 25,618 101 629

Pinter 10 6.0700e−05 444,607 1048 10,259

Pinter 20 7.1553e−05 42,682,351 55,392 1,000,478

Griewrot2 2 −1.7999e+02 80 1 5

Griewrot2 10 −1.7999e+02 816 1 21

Griewrot2 30 −1.7999e+02 5063 1 61

Griewrot2 50 −1.7998e+02 10,205 2 199

Ackley 2 3.9968e−15 3348 38 129

Ackley 10 4.4409e−16 412 1 21

Ackley 30 4.4409e−16 1232 1 61

Ackley 50 4.4409e−16 2052 1 101

Dixon Price 2 3.3621e−09 87 1 5

Dixon Price 10 5.7617e−08 178,195 503 7531

Dixon Price 25 7.6712e−08 283,077,766 339,219 12,523,913

Dixon Price 50 6.6667e−01 36,182,567 21,107 1,863,678

Easom 2 −1.0000e+00 131,165 2190 6579

Michalewicz 2 −1.8013e+00 69 1 5

Michalewicz 5 −4.6877e+00 130,058 920 6,137

Michalewicz 10 −9.6601e+00 21,699,660 67,701 662,976

Rastrigin 2 1.9443e−07 336 4 13

Rastrigin 10 9.7216e−07 12,751 30 383

Rastrigin 30 2.9165e−06 280,683 221 8491

Rastrigin 50 4.8608e−06 1,265,672 601 37,703

Test problems from Ref. [28]

Beale 2 0.0000e+00 137 1 5

Bohachevsky 1 2 2.5101e−08 96 1 5

Bohachevsky 2 2 2.0964e−08 96 1 5

Bohachevsky 3 2 1.0140e−07 122 1 5

Booth 2 0.0000e+00 75 1 5

Colville 4 6.1275e−05 225,066 62 387

Perm1 2 1.0801e−06 272 1 5

Perm1 5 8.9149e−05 1,568,231,384 582,059 4,009,631

Perm2 2 0.0000e+00 62 1 5
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Table 1 continued

Problem n f (x̄) n.f. n.loc. n.int.

Perm2 5 6.3056e−07 57,766 29 195

Powell 4 0.0000e+00 141 1 9

Powell 8 0.0000e+00 286 1 17

Powell 16 0.0000e+00 576 1 33

Powell 24 0.0000e+00 866 1 49

Powersum 4 0.0000e+00 127 1 9

Schwefel 2 5.5892e−08 1624 15 57

Schwefel 5 1.3973e−07 201,763 743 6013

Schwefel 10 2.7574e−07 24,909,898 45,504 500,094

Schwefel 20 5.5133e−07 431,426,380 496,122 10,407,001

Test problems form Ref. [29]

Sphere 10 −1.4000e+03 573 1 21

Rot. Elliptic 10 −1.2999e+03 5,642,213,969 1,261,645 14,213,501

Rot. Discus 10 −1.2000e+03 47,680 31 397

Rot. Bent Cigar 10 −4.1537e+02 10,584,086,678 2,109,744 31,004,082

Different Powers 10 −1.0000e+03 589 1 21

Rot. Rosenbrock 10 −8.9997e+02 36,686 9 145

Rot. Schaffers (F7) 10 −7.9996e+02 374,242,440 91,928 1,014,337

Rot. Ackley 10 −6.8008e+02 943,365,696 2,134,932 27,501,329

Rot. Weierstrass 10 −5.9914e+02 359,339,196 871,942 9,000,562

Rot. Griewank 10 −4.9999e+02 14,487 16 237

Rastrigin 10 −4.0000e+02 52,620,517 11,6714 1,213,659

Rot. Rastrigin 10 −2.9801e+02 3,208,062,726 4,780,133 50,004,016

Non-continuous rot. rastrigin 10 −1.9801e+02 1,939,249,826 4,921,080 50,004,772

Schwefel 10 −9.3295e+01 1,597,692,027 4,458,022 50,004,906

Rot. Schwefel 10 1.1512e+02 189,035,848 491,308 5,000,954

Rot. Katsuura 10 2.0004e+02 204,960,561 570,002 7,000,330

Lunacek Bi-Rastrigin 10 3.0003e+02 87,808,133 205,922 2,009,957

Rot. Lunacek Bi-Rastrigin 10 4.0202e+02 5,511,932,601 5,700,552 50,003,148

Expanded Griewank + Rosenbrock 10 5.0005e+02 12,087,229 3048 28,155

Expanded Schaffer (F6) 10 6.0154e+02 2,396,769,984 3,454,923 50,000,962

Comp. Function 1 10 7.0000e+02 104,003 157 1645

Comp. Function 2 10 9.0284e+02 1,655,305,428 4,450,965 50,006,510

Comp. Function 3 10 1.0268e+03 265,301,785 645,319 6,500,803

Comp. Function 4 10 1.0435e+03 363,888,151 704,658 7,500,899

Comp. Function 5 10 1.2019e+03 2,518,222,053 4,926,281 50,003,832

Comp. Function 6 10 1.2288e+03 1,265,561,798 936,028 10,501,167

Comp. Function 7 10 1.4717e+03 118,906,294 282,856 3,000,676

Comp. Function 8 10 1.4000e+03 33,824,697 49,859 412,627
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• The derivative-free version of Algorithm DFO-DIRMIN-TL fails only on one
problem from Ref. [3] (as opposed to the derivative-based version which never
fails). This confirms the good behavior of the local minimization routine that,
without using derivatives, is attracted by any global minimum point (see, e.g., [22]
for smooth problems and [30] for nonsmooth optimization).

• DFO-DIRMIN-TL fails on 17 out of 103 test problems, which can be considered
quite a good result for a derivative-free algorithm;

• 45 problems are solved by a single local minimization performed by Algorithm
DF starting from the centroid of the feasible domain;

• The huge number of function evaluations (especially corresponding to the fail-
ures) is due to the computational limits we adopt. Indeed the maximum number of
50000× n hyperrectangles is reasonably low in a DIRECT context, but the intro-
duction of local minimizations and the maximum number of 100 restarts lead to a
number of function evaluations that can be extremely high (see, e.g., problem Rot.
Bent Cigar). Of course, these numbers are not reasonable if the objective func-
tion is expensive, but they can be decreased by reducing the number of allowed
restarts. We choose a large number of restarts in order to evaluate the behavior of
the algorithm in the long run.

From now on, we focus on the subset of 58 difficult test problems: in particular we
drop from the test set the 45 “easy” problems, which are those solved by the first local
minimization.

Note that algorithm DFO-DIRMIN-TL is able to solve 41 out of 58 difficult test
problems, thus showing that the introduction of a local minimization phase within
the DIRECT framework is significantly beneficial (see, e.g., [3] for the results of
the original DIRECT method on a subset of the problems). Considering the struc-
ture of DFO-DIRMIN-TL, Lemma 2.1 and Proposition 2.1, the reported failures
are necessarily due to narrow regions of attraction surrounding every global mini-
mum.

In subsequent sections we shall propose new variants of DFO-DIRMIN-TL with
the aim of improving the above results and, in particular, its efficiency and reliability.

3 A new derivative-free algorithm

Looking at the results in the previous section, it emerges the large number of
function evaluations needed in order to get convergence. Drawing inspiration from
[22], we modify DFO-DIRMIN by updating during the iterations a working set,
of dimension nwks = 100n, of “active” local minimizations that are carried out
in a balanced way. More specifically, starting from each centroid of the poten-
tially optimal hyperrectangles, Algorithm DF is executed with an adaptive tolerance
that is updated during the iterations on the basis of the behaviour of the active
minimizations and becomes tighter and tighter as the algorithm proceeds. The
points produced by the DIRECT partitioning strategy are added to the working
set, if there are positions available. Whenever a new partial minimization is per-
formed and the working set is full, the point is added only if its objective function
value is better than the worst one present in the current working set, which is
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replaced. Hence, the above strategy implies that only a limited number of local
minimizations are completely performed, thus focusing on the most “promising”
ones.

Furthermore, at the end of every iteration, all the points in the working set are
updated by means of a single iteration of Algorithm DF. Whenever the maximum
stepsize of an active minimization falls below the threshold tol, that minimization
is removed from the working set, leaving space for a new one. We report below the
resulting algorithm BDF-DIRMIN.

Algorithm BDF-DIRMIN

H1 = {D}, c = center of D, fmin = f (c), Xmin = {c}, tol > 0, αmax > tol,
kmax ≥ 1, W1 = ∅, nwks ≥ 1, k = 1

repeat

identify the potentially optimal hyperrectangles Pk in Hk

for all centroids ci of hyperrectangles in Pk compute (ĉi , α̂i ) = DF(ci , α(ci ), αmax, kmax)

if (|Wk | < nwks )

set Wk = Wk ∪ (ĉi , α̂i ),

elseif f (ĉi ) < f (c j ), c j = argmaxy∈Wk
{ f (y)}, set Wk = Wk ∪ (ĉi , α̂i ) \ (c j , α̂ j )

end if

subdivide the potentially optimal hyperrectangles to build a new partitionHk+1

evaluate f in the centers of the new hyperrectangles

For every pair (yi , αi ) ∈ Wk set (ỹi , α̃i ) = DF(yi , αi , tol, 1). Set Wk :=
|Wk |⋃

i=1

(ỹi , α̃i )

compute f (ymin) = mini∈Wk
f (yi ) and αmax = maxi∈Wk

{αi }.
Remove fromWk all the (y, α) such that max j=1,...,n α j ≤ tol.

fmin = min{ f (c) : c ∈ Ck , f (ymin)}, Xmin = {x ∈ D : f (x) = fmin}, k = k + 1
(Ck = {centers of the hyperrectangles in Hk })

until (stopping criterion satisfied)

return fmin , Xmin

The final algorithm is obtained by embedding again the new algorithm
BDF-DIRMIN in the same general scheme as DFO-DIRMIN-TL, where the algo-
rithm is “restarted” by solving problem (2) around promising points.
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Algorithm BDF-DIRMIN-TL

xmin = x̃ = (1/2 . . . 1/2)�, fmin = f (xmin), N = ∅, O = ∅, maxint 	 0

Repeat

(S.1) Apply BDF-DIRMIN to Problem (2) until maxint hyperintervals have been generated and
let x̂ be the best point produced and W be the set of “promising” stationary points.

(S.2) If ( fx̃ (x̂) < fmin ) then set fmin = fx̃ (x̂), xmin = x̃ = x̂ , N = ∅, O = ∅ and

go to Step (S.1).

(S.3) Otherwise set

N = N ∪
{
y ∈ W : f (y) − fmin ≤ ε f and minx∈N∪{xmin } d(y, x) > εd

}
.

(S.4) choose x̄ ∈ N \ O, set O = O ∪ {x̄}, x̃ = x̄ .

Until (N \ O = ∅)
Return fmin , xmin

Note that, sinceDIRECT is the algorithmconstituting the skeletonofBDF-DIRMIN,
the latter one inherits the DIRECT convergence property, as stated in Lemma 2.1.
Further, the step size α(ci ), with ci center of Di , is given by the bounds defining
hyperrectangle Di divided by two, the parameter tol is set to 10−4, and kmax is equal
to 5000.

In Table 2, we report the results of Algorithm BDF-DIRMIN-TL on the 58 dif-
ficult problems. Looking at the table it can be noted the smaller number of function
evaluations used by Algorithm BDF-DIRMIN-TL as opposed to DFO-DIRMIN-TL.

In order to better evaluate the savings in terms of function evaluations, in Fig. 3 we
plot the cumulative distribution function ρ(τ) defined as:

ρ(τ) = 1

|P|
∣
∣
∣
∣

{

p ∈ P : nf p,2
nf p,1

≤ τ

}∣
∣
∣
∣ ,

where P is the set of test problems, and nfp,1 (nfp,2) is the number of function eval-
uations required by DFO-DIRMIN-TL (BDF-DIRMIN-TL) to stop when solving
problem p ∈ P . Function ρ(τ) helps comparing the performances of the two algo-
rithms in terms of overall computational burden. In particular, Figure 3 shows that
BDF-DIRMIN-TL stops in less than half the number of function evaluations required
by DFO-DIRMIN-TL on about 87% of the problems. Obviously, this greater effi-
ciency has a price: indeed, Algorithm BDF-DIRMIN-TL fails on 20 problems (out
of 58) whereas Algorithm DFO-DIRMIN-TL only fails on 17 problems.

4 A new algorithm using the plateau modification function

Now, we try to improve the reliability of DFO-DIRMIN-TL, i.e., its ability to locate
the global optimum, without worrying to much about the efficiency, i.e., the required
number of local minimizations and function evaluations. To this aim, we first define
the following “plateau” modification of the objective function [15]:
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Table 2 Results of BDF-DIRMIN-TL

Problem n f (x̄) n.f. n.loc. n.int.

Test problems from Ref. [3]

Schubert 2 −1.8672e+02 109 10 47

Schub. pen. 1 2 −1.8673e+02 235 31 105

Schub. pen. 2 2 −1.8673e+02 193 24 75

Quartic 2 −3.5200e−01 96 11 55

Shekel m = 7 4 −1.0402e+01 126 12 51

Shekel m = 10 4 −1.0536e+01 142 15 57

Griewank mod. 2 1.9831e−05 8072 953 3421

Griewank mod. 5 2.3800e−05 274,190 24,104 133,129

Griewank mod. 10 1.0188e−05 14,724 963 9495

Pinter 2 1.6568e−05 197 25 105

Pinter 5 9.8179e−05 1843 214 1255

Pinter 10 9.5931e−05 16,393 1310 12,939

Pinter 20 9.9644e−05 107,872 4667 97,053

Griewrot2 50 −1.7998e+02 8468 71 6491

Ackley 2 3.9968e−15 407 42 145

Dixon Price 10 8.9499e−05 12,464 679 9833

Dixon Price 25 6.6667e−01 5,492,616 134,409 5,001,820

Dixon Price 50 6.6667e−01 1,940,253 21,107 1,863,368

Easom 2 −1.0000e+00 11,043 2198 6625

Michalewicz 5 −4.6876e+00 9538 983 6523

Michalewicz 10 −9.6595e+00 849,039 67,724 663,164

Rastrigin 2 1.9443e−07 181 22 87

Rastrigin 10 9.7216e−07 1188 72 817

Rastrigin 30 2.9165e−06 13,542 346 12,217

Rastrigin 50 4.8608e−06 51,820 834 49,023

Test problems from Ref. [28]

Colville 4 7.3521e−05 1335 167 883

Perm1 5 7.6076e−04 36,624,683 3,647,938 25,003,738

Perm2 5 8.5173e−05 5275 597 3611

Schwefel 2 7.4746e−05 515 47 165

Schwefel 5 7.7473e−05 11,670 768 6177

Schwefel 10 2.5060e−05 822,302 45,537 500,522

Schwefel 20 4.4414e−05 12,217,489 496,164 10,408,019

Test problems from Ref. [29]

Rot. Elliptic 10 −1.3000e+03 581,930,281 4,448,993 50,013,308

Rot. Discus 10 −1.2000e+03 18,501 481 4751

Rot. Bent Cigar 10 −1.0907e+03 122,143,170 166,257 2,500,131

Rot. Rosenbrock 10 −9.0000e+02 96,883 144 1505

Rot. Schaffers (F7) 10 −7.9992e+02 12,735,661 61,068 668,590

Rot. Ackley 10 −6.8002e+02 15,935,575 350,139 4,500,239
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Table 2 continued

Problem n f (x̄) n.f. n.loc. n.int.

Rot. Weierstrass 10 −5.9919e+02 12,565,878 657,155 6,500,311

Rot. Griewank 10 −4.9995e+02 16,384 533 4865

Rastrigin 10 −4.0000e+02 22,445,131 146,194 1,531,248

Rot. Rastrigin 10 −2.9801e+02 87,462,231 4,774,990 50,003,974

Non-continuous Rot. Rastrigin 10 −1.9801e+02 83,304,804 4,800,436 50,004,334

Schwefel 10 −9.3233e+01 353,592,387 4,433,733 50,004,226

Rot. Schwefel 10 1.5011e+02 5,107,995 363,772 3,500,411

Rot. Katsuura 10 2.0003e+02 21,832,018 490,174 6,000,264

Lunacek Bi-Rastrigin 10 3.0003e+02 45,057,438 205,910 2,009,909

Rot. Lunacek Bi-Rastrigin 10 4.0222e+02 391,928,534 5,702,225 50,003,450

Expanded Griewank 10 5.0005e+02 1,149,771 3995 36901

Expanded Schaffer 10 6.0185e+02 685,417,439 3,499,448 50,001,068

Comp. function 1 10 7.0000e+02 29,144 189 1933

Comp. function 2 10 9.0284e+02 362,203,872 4,455,047 50,006,616

Comp. function 3 10 1.0323e+03 4,701,450 293,292 3,000,406

Comp. function 4 10 1.0291e+03 6,281,748 389,132 4,500,485

Comp. function 5 10 1.2025e+03 85,773,668 4,966,625 50,003,834

Comp. function 6 10 1.2344e+03 21,781,707 286,120 3,000,222

Comp. function 7 10 1.5882e+03 717,640 45,111 500,041

Comp. function 8 10 1.5000e+03 2,231,849 161,795 1,500,363

f̃ (x) = f (x̂), where (x̂, α̂) = DF(x, α0, tol, kmax).

In particular, we substitute to the original objective function, the function value of
the stationary point obtained by algorithm DF starting from the point x . The resulting
function is a piecewise constant function (the so called “plateau” function, see, e.g.,
[15–17]) which, under the stated assumptions, is bounded from below. Then, in place
of Problem (2), we look for a solution of the following Problem.

min
y∈[0,1]n f̃ x̃ (y). (3)

We define a new algorithm, that we call DIRFOB-TL, that, roughly speaking,
consists in repeatedly applying algorithm DIRECT to the find a global minimizer
of Problem (3), i.e. a global minimizer of the “plateau” function f̃ . In Algorithm
DIRFOB-TL we maintain the restarting technique used in DFO-DIRMIN-TL, by
means of the same nonlinear transformation applied on a set of “promising” points.

Note that, even though the plateaumodification function is notLipschitz continuous,
the everywhere convergence property of DIRECT is still valid. Indeed, as showed in
[20], this property follows from

I ∗
k ∩ {i ∈ Ik : ‖ui − li‖ = dmax

k } �= ∅,
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Fig. 3 Comparison of DFO-DIRMIN-TL and BDF-DIRMIN-TL bymeans of the cumulative distribution
function ρ(τ)

where dmax
k = maxi∈Ik ‖ui − li‖, which is true independently from the continuity of

the objective function.

Algorithm DIRFOB-TL

xmin = x̃ = (1/2 . . . 1/2)�, fmin = f̃ (xmin), N = ∅, O = ∅, maxint 	 0, k = 1, ε f , εd > 0.

Repeat

(S.1) Apply DIRECT to Problem (3) until maxint hyperintervals have been generated and
let x̂ be the best point produced and W be the set of “promising” stationary points.

(S.2) If ( f̃ x̃ (x̂) < fmin ) then set fmin = f̃ x̃ (x̂), xmin = x̃= x̂ ,N =∅, O = ∅ and go to Step (S.1).

(S.3) Otherwise set

N = N ∪
{
y ∈ W : f̃ (y) − fmin ≤ ε f and minx∈N∪{xmin } d(y, x) > εd

}
.

(S.4) choose x̄ ∈ N \ O, set O = O ∪ {x̄}, x̃ = x̄ .

Until (N \ O = ∅)
Return fmin , xmin

In Table 3 we report the results obtained by Algorithm DIRFOB-TL on the set of
58 difficult test problems.

As it can be seen, the reliability ofAlgorithmDIRFOB-TL is significantly improved
with respect to DFO-DIRMIN-TL. Indeed, DIRFOB-TL only fails on 4 problems
out of 58. Not surprisingly Algorithm DIRFOB-TL is generally more expensive than
DFO-DIRMIN-TL (and hence of BDF-DIRMIN).

However, this is not always the case as it emerges fromFig. 4wherewe plot function
ρ(τ) for the comparison among DFO-DIRMIN-TL and DIRFOB-TL. In particular,
we plot ρ(τ) for τ ∈ [0, 1] (left side of Fig. 4) and for τ ∈ [1, 60] (right side of Fig. 4).
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Table 3 Results of DIRFOB-TL

Problem n f (x̄) n.f. n.int.

Test problems from Ref. [3]

Schubert 2 −1.8673e+02 2315 205

Schub. pen. 1 2 −1.8673e+02 6,316 207

Schub. pen. 2 2 −1.8673e+02 3,868 203

Quartic 2 −3.5239e−01 84 19

Shekel m = 7 4 −1.0403e+01 164 23

Shekel m = 10 4 −1.0536e+01 160 23

Griewank mod. 2 1.7036e−09 14,746 233

Griewank mod. 5 4.3145e−10 154,689 845

Griewank mod. 10 1.4426e−09 182,128 1009

Pinter 2 3.3940e−09 90 5

Pinter 5 1.5150e−06 10,547 521

Pinter 10 1.5090e−06 24,151,879 89,033

Pinter 20 1.2913e−05 822,928,421 1,569,822

Griewrot2 50 −1.7998e+02 5104 101

Ackley 2 5.6461e−05 466 151

Dixon Price 10 9.3893e−08 137,441 1087

Dixon Price 25 1.3575e−08 5,731,881 5419

Dixon Price 50 4.8111e−08 1,269,313,104 460,873

Easom 2 −1.0000e+00 318,161 8829

Michalewicz 5 −4.6877e+00 23,308 533

Michalewicz 10 −9.6601e+00 30,065,636 178,221

Rastrigin 2 7.4494e−07 1856 209

Rastrigin 10 4.9073e−08 12,010 1103

Rastrigin 30 2.7650e−06 6145 3223

Rastrigin 50 4.4339e−06 10,277 5355

Test problems from Ref. [28]

Colville 4 2.8539e−06 13,120,363 60,281

Perm1 5 9.3933e−04 7,279,772,213 25,003,136

Perm2 5 3.6115e−05 168,322,925 560,003

Schwefel 2 5.5145e−08 525 121

Schwefel 5 1.3907e−07 91,223 527

Schwefel 10 2.7814e−07 483,319 1237

Schwefel 20 5.5629e−07 4,295,690 5361

Test problems from Ref. [29]

Rot. Elliptic 10 −1.3000e+03 121,196,868,750 34,503,835

Rot. Discus 10 −1.2000e+03 2,611,405 1925

Rot. Bent Cigar 10 −1.1000e+03 4,059,627,002 1,017,617

Rot. Rosenbrock 10 −9.0000e+02 110,939 1,067

Rot. Schaffers (F7) 10 −7.9993e+02 425,933,887 527,362

Rot. Ackley 10 −6.9997e+02 650,470,093 3,501,090
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Table 3 continued

Problem n f (x̄) n.f. n.int.

Rot. Weierstrass 10 −5.9997e+02 263,655,451 1,018,829

Rot. Griewank 10 −4.9998e+02 22,073 1047

Rastrigin 10 −4.0000e+02 202,714,074 511,630

Rot. Rastrigin 10 −3.0000e+02 8,398,182 20,159

Non-continuous rot. rastrigin 10 −2.0000e+02 3,864,394 13,701

Schwefel 10 −1.0000e+02 186,574,187 522,190

Rot. Schwefel 10 1.0000e+02 546,425,335 1,501,278

Rot. Katsuura 10 2.0003e+02 610,000,645 3,000,142

Lunacek Bi-Rastrigin 10 3.0000e+02 441,877,163 1,291,487

Rot. Lunacek Bi-Rastrigin 10 4.0000e+02 11,556,220 28,031

Expanded Griewank + Rosenbrock 10 5.0004e+02 31,844,643 49,393

Expanded Schaffer (F6) 10 6.0006e+02 54,060,331 138,325

Comp. Function 1 10 7.0000e+02 196,612 1041

Comp. Function 2 10 8.0000e+02 189,617,796 519,686

Comp. Function 3 10 9.0000e+02 97,308,583 265,987

Comp. Function 4 10 1.0000e+03 553,844,533 1,501,776

Comp. Function 5 10 1.2000e+03 2,008,600,802 5,500,523

Comp. Function 6 10 1.2000e+03 1,580,140,782 2,017,773

Comp. Function 7 10 1.4000e+03 3,127,930,717 8,000,486

Comp. Function 8 10 1.4000e+03 1,541,217 3035
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Fig. 4 Comparison of DFO-DIRMIN-TL and DIRFOB-TL by means of the cumulative distribution
function ρ(τ)

It can be seen that DIRFOB-TL requires a number of function evaluation not greater
than that required by DFO-DIRMIN-TL on approximately half of the test problems
(see, e.g., left side of Fig. 4).
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5 An application to a protein structural alignment problem

Given two protein structures P and Q, let us denote by P and Q the two finite sets of
points corresponding to the atoms of the active sites of the two structures P and Q,
respectively. We let n = |P| and m = |Q| and assume, without loss of generality,
that n ≤ m. The set P is conventionally representative of a query shape while Q
defines a reference model shape.

An isometric transformation in three-dimensional space can be defined by a unit
quaternion ar = (a0, a1, a2, a3)� ∈ �4 (‖ar‖ = 1) and by a translation vector
at ∈ �3. Let a� = (a�

r a�
t ) be the transformation defining vector and denote by Ta

the corresponding transformation, so that

y = Ta(x) = R(ar )x + at

for every x ∈ �3, where R(ar ) is the rotation matrix defined by the unit quaternion
ar .

Let � ⊂ �7 be the set of all vectors a ∈ �7 defining an isometric transformation
in �3. Given a transformation vector a ∈ �, let Ta(P) = Pa denote the set of points
obtained by applying the transformation Ta to every point of P , that is

Ta(P) = Pa = {y : y = R(ar )p + at , ∀ p ∈ P} .

Let ψ : P → Q denote a point to point mapping that associates to every point of
P a point of Q. Since, as assumed above, P and Q are finite sets, the class 	 of all
mappings ψ has finite cardinality given by |	| = mn .

Let ψ ∈ 	 be a given mapping and a be a vector defining an isometric trans-
formation, then the mean square error function between P and Q is the following

f (ψ, a) = 1

n

∑

p∈P

‖ψ(p) − R(ar )p − at‖2.

Let us denote by ψ(a) = argminψ∈	 f (ψ, a) the closest point mapping [31] and
g(a) = f (ψ(a), a). Then, the surface alignment problem can be posed as

min
a∈�

g(a). (4)

Every global solution a∗ of (4) is, by definition, a solution such that f (ψ(a∗), a∗) ≤
f (ψ(a), a), for all a ∈ �. Problem (4) is a global optimization problem with a
black-box objective function, a feasible set � described by box constraints and some
“easy” constraints (i.e., ‖ar‖ = 1). Furthermore, numerical experiments show that the
problem has many local minima and a global minimum exists with reasonably large
basin of attraction.

Since, among the proposed algorithms DIRFOB-TL is the more robust one, this is
the code that we employ to find correct alignments on the set of 19 proteins used in
[19]. The proteins all bind ligand ATP and are from different families according to the
structural classification SCOP [32].
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Table 4 Results obtained by
DIRFOB-TL for the protein
structural alignment problem

Protein pair DIRFOB-TL CO

N. align. atoms RMSD N. corresp. atoms RMSD

1atpE-1phk 66 0.90 57 0.91

1atpE-1csn 64 0.99 50 1.18

1atpE-1hck 61 1.50 62 1.20

1atpE-1ayl 29 1.91 12 1.21

1atpE-1yag 28 2.05 20 1.92

1atpE-1nsf 28 2.15 34 2.11

1atpE-1j7k 25 2.09 25 1.81

1atpE-1a82 24 1.81 19 2.02

1atpE-1mjhA 23 2.22 16 2.28

1atpE-1kp2A 22 1.92 13 1.51

1atpE-1kay 21 2.15 20 1.90

1atpE-1jjv 19 2.02 18 1.76

1atpE-1e2q 18 2.07 15 1.39

1atpE-1gn8A 16 2.11 17 2.37

1atpE-1b8aA 12 2.08 16 2.05

1atpE-1f9aC 11 2.35 21 2.17

1atpE-1e8xA 9 1.92 24 1.74

1atpE-1g5t 8 1.77 7 2.26

We performed pairwise comparisons of the active site of the catalytic subunit of
cAMP-dependent Protein-Kinase (pdb code 1atp, chain E) with each of the remaining
proteins of the input data set. Of the set of proteins only three belong to the same SCOP
family as 1atp, namely 1phk, 1csn and 1hck. In Table 4 for each comparison we report
the number of aligned atoms along with the Root Mean Square Distance (RMSD)
obtained by DIRFOB-TL and CO (i.e., the algorithm proposed in [19]), respectively.

We observe that both methods correctly rank at the top three positions (with respect
to the number of aligned atoms) proteins in the same family as 1atp, that is 1phk,
1hck and 1csn. It can also be noted that DIRFOB-TL better separates proteins in the
same SCOP family as 1atp, from the others. Indeed, DIRFOB-TL aligns 29 atoms for
the protein pair 1atp-1ayl, whereas CO aligns 34 atoms for the protein pair 1atp-1nsf.
Hence, the gaps obtained by DIRFOB-TL and CO between different SCOP families
are 32 and 28 atoms, respectively.

6 Conclusions

In the paper we focus on the definition of new deterministic algorithms for the solu-
tion of hard box-constrained global optimization problems when derivatives of the
objective function are unavailable. We concentrate on how to make efficient use of
local minimization within the framework of DIRECT-type algorithms and we propose
three different DIRECT-type algorithms making use of derivative-free local searches
combined with nonlinear transformations of the feasible domain and, possibly, of the
objective function. It should be noted that all of the proposed modifications are also
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suitable to other more sophisticated partition-based algorithms, like for instance those
based on simplicial or diagonal partitioning.

Our starting point is algorithm DIRMIN-TL, which has been recently proposed
by exploiting an efficient Newton-type local minimization routine. The first algorithm
that we propose, DFO-DIRMIN-TL, is indeed a simple adaptation of DIRMIN-TL to
the derivative-free context. The use of a derivative-free local search routine, in place of
the more efficient Newton-type one, still gives us a code with a fairly good reliability
(ability to locate the global minimum). This is most probably because both the local
search engines are attracted by any global minimum point. Then, we devise two more
algorithms trying to improve both the efficiency and reliability of DFO-DIRMIN-TL.
More precisely, we show that algorithm BDF-DIRMIN-TL is far more efficient than
DFO-DIRMIN-TL in terms of required function evaluations at the expense of a
reduced reliability. Then, we try to improve on the reliability and come up with algo-
rithm DIRFOB-TL which is indeed far more reliable than both DFO-DIRMIN-TL
and BDF-DIRMIN-TL though it is generally more expensive than the first two codes.
Finally, we report the results obtained byAlgorithmDIRFOB-TL on a difficult protein
structural alignment problem and show that it performs better than a recently proposed
random search method tailored to the specific application.

Acknowledgments We thank two anonymous Reviewers whose helpful comments and suggestions helped
up to improve the paper.

Appendix

The derivative-free local algorithm

In this section we report the sketch of a derivative-free procedure for unconstrained
local minimization [23].

Algorithm DF (x̂, α̂) = DF(x0, α0, tol, kmax)

Data d1, . . . , dn ∈ �n .

Set αmax = maxi=1,...,n αi0, k = 0

Repeat

For i = 1, . . . , n

starting from αk perform a derivative free linesearch along di producing αik+1

End For

Set xk+1 = xk +
n∑

i=1

αik+1d
i

Set αmax = maxi=1,...,n αik+1, k = k + 1.

Until ((αmax < tol) and (k = kmax))

Return (xk , αk , αmax)
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Table 5 Test problems
Problem n f ∗

Problems from [3]

Schubert 2 −1.8673e+02

Schub. pen. 1 2 −1.8673e+02

Schub. pen. 2 2 −1.8673e+02

S-H. Camel B. 2 −1.0316e+00

Goldstein-Price 2 3.0000e+00

Treccani mod. 2 0.0000e+00

Quartic 2 −3.5200e−01

Shekel m = 5 4 −1.0153e+01

Shekel m = 7 4 −1.0403e+01

Shekel m = 10 4 -1.0536e+01

Espon. mod. 2 −1.0000e+00

Espon. mod. 4 −1.0000e+00

Cos-mix mod. 2 −2.0000e - 01

Cos-mix mod. 4 −4.0000e - 01

Hartman 3 −3.8627e+00

Hartman 6 −3.3223e+00

5n loc-min 2,5,10,20 0.0000e+00

10n loc-min 2,5,10,20 0.0000e+00

15n loc-min 2,5,10,20 0.0000e+00

Griewank mod. 2,5,10,20 0.0000e+00

Pinter 2,5,10,20 0.0000e+00

Griewrot2 2,10,30,50 −1.8000e+02

Ackley 2,10,30,50 0.0000e+00

Dixon Price 2,10,25,50 0.0000e+00

Easom 2 −1.0000e+00

Michalewicz 2 −1.8013e+00

Michalewicz 5 −4.6876e+00

Michalewicz 10 −9.6602e+00

Rastrigin 2,10,30,50 0.0000e+00

Problems from [28]

Beale 2 0.0000e+00

Bohachevsky 1 2 0.0000e+00

Bohachevsky 2 2 0.0000e+00

Bohachevsky 3 2 0.0000e+00

Booth 2 0.0000e+00

Colville 4 0.0000e+00

Perm 1 2,5 0.0000e+00

Perm 2 2,5 0.0000e+00

Powell 4,8,16,24 0.0000e+00

Powersum 4 0.0000e+00
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Table 5 continued
Problem n f ∗

Schwefel 2,5,10,20 0.0000e+00

Problems from [29]

Sphere 10 −1.4000e+03

Rot. Elliptic 10 −1.2999e+03

Rot. Discus 10 −1.2000e+03

Rot. Bent Cigar 10 −1.1000e+03

Different Powers 10 −1.0000e+03

Rot. Rosenbrock 10 −8.9997e+02

Rot. Schaffers (F7) 10 −8.0000e+02

Rot. Ackley 10 −7.0000e+02

Rot. Weierstrass 10 −6.0000e+02

Rot. Griewank 10 −4.9999e+02

Rastrigin 10 −4.0000e+02

Rot. Rastrigin 10 −3.0000e+02

Non-continuous Rot. Rastrigin 10 −2.0000e+02

Schwefel 10 −1.0000e+02

Rot. Schwefel 10 1.0000e+02

Rot. Katsuura 10 2.0000e+02

Lunacek Bi-Rastrigin 10 3.0000e+02

Rot. Lunacek Bi-Rastrigin 10 4.0000e+02

Expanded Griewank + Rosenbrock 10 5.0000e+02

Expanded Schaffer (F6) 10 6.0000e+02

Comp. Function 1 10 7.0000e+02

Comp. Function 2 10 8.0000e+02

Comp. Function 3 10 9.0000e+02

Comp. Function 4 10 1.0000e+03

Comp. Function 5 10 1.1000e+03

Comp. Function 6 10 1.2000e+03

Comp. Function 7 10 1.3000e+03

Comp. Function 8 10 1.4000e+03

In particular, the actual implementation of Algorithm DF that we use is based on
the one proposed in [23] where di = ei , i = 1, . . . , n, where ei denotes the i-th
coordinate direction in �n .

Test set description

In the following table, for each problem of our test set, we report its name, the adopted
number of variables and the value of the known global minimum point.
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