Ottimizzazione dei Sistemi Complessi

G. Liuzzi¹

Giovedì 5 Aprile 2018

 $^{^{1}}$ Istituto di Analisi dei Sistemi ed Informatica IASI - CNR

Preliminari

Definizione (Direzione di discesa)

 $d \neq 0$ è una direzione di discesa per f in x quando $\exists \ \bar{\alpha} > 0$ tale che

$$f(x + \alpha d) < f(x)$$
, per ogni $\alpha \in (0, \bar{\alpha}]$

Definizione (Direzione ammissibile)

 $d \neq 0$ è una direzione ammissibile per ${\cal F}$ in $x \in {\cal F}$ quando $\exists \ \bar{\alpha} > 0$ tale che

$$x + \alpha d \in \mathcal{F}$$
, per ogni $\alpha \in (0, \bar{\alpha}]$

Supponiamo di conoscere un punto di **minimo locale** x^* del problema (P)

$$F(x^*) = \{d \in \mathbb{R}^n : d \text{ è di discesa per } f \text{ in } x^*\}$$

 $G(x^*) = \{d \in \mathbb{R}^n : d \text{ è ammissibile per } \mathcal{F} \text{ in } x^*\}$

Proposizione (C.N. di ottimo)

$$F(x^*) \cap G(x^*) = \emptyset$$

Supponiamo di conoscere un punto di **minimo locale** x^* del problema (P)

$$F(x^*) = \{d \in \mathbb{R}^n : d \text{ è di discesa per } f \text{ in } x^*\}$$

 $G(x^*) = \{d \in \mathbb{R}^n : d \text{ è ammissibile per } \mathcal{F} \text{ in } x^*\}$

Proposizione (C.N. di ottimo)

$$F(x^*) \cap G(x^*) = \emptyset$$

Supponiamo di conoscere un punto di **minimo locale** x^* del problema (P)

$$F(x^*) = \{d \in \mathbb{R}^n : d \text{ è di discesa per } f \text{ in } x^*\}$$

 $G(x^*) = \{d \in \mathbb{R}^n : d \text{ è ammissibile per } \mathcal{F} \text{ in } x^*\}$

Proposizione (C.N. di ottimo)

$$F(x^*) \cap G(x^*) = \emptyset$$

Se f,g sono continuamente differenziabili, possiamo definire

$$F_0(x^*) = \{ d \in \mathbb{R}^n : \nabla f(x^*)^\top d < 0 \}$$

$$G_0(x^*) = \{ d \in \mathbb{R}^n : \nabla g_i(x^*)^\top d < 0, i \in I_0(x^*) \}$$

per cui risulta: $F_0(x^*) \subseteq F(x^*)$ e $G_0(x^*) \subseteq G(x^*)$ e quindi

Proposizione (C.N. di ottimo)

$$F_0(x^*) \cap G_0(x^*) = \emptyset$$

cioè è inammissibile il sistema lineare di disequazioni

$$\nabla f(x^*)^\top d < 0$$

$$\nabla g_i(x^*)^\top d < 0, \quad i \in I_0(x^*)$$

Se f, g sono continuamente differenziabili, possiamo definire

$$F_0(x^*) = \{ d \in \mathbb{R}^n : \nabla f(x^*)^\top d < 0 \}$$

$$G_0(x^*) = \{ d \in \mathbb{R}^n : \nabla g_i(x^*)^\top d < 0, i \in I_0(x^*) \}$$

per cui risulta: $F_0(x^*) \subseteq F(x^*)$ e $G_0(x^*) \subseteq G(x^*)$ e quindi

Proposizione (C.N. di ottimo)

$$F_0(x^*) \cap G_0(x^*) = \emptyset$$

cioè è inammissibile il sistema lineare di disequazioni

$$abla f(x^*)^{\top} d < 0$$

 $abla g_i(x^*)^{\top} d < 0, \quad i \in I_0(x^*)$

Allora

Teorema (Fritz-John, 1948)

Esiste un numero $\lambda_0^* \geq 0$ e dei moltiplicatori $\lambda_1^*, \ldots, \lambda_m^* \geq 0$, non tutti nulli, tali che: $\lambda_i^* g_i(x^*) = 0$, per ogni $i = 1, \ldots, m$ e

$$\lambda_0^* \nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) = 0,$$

Definizione

Un punto $\bar{x} \in \mathcal{F}$ è un punto di FJ quando in \bar{x} risulta $F_0(\bar{x}) \cap G_0(\bar{x}) = \emptyset$.

N.B. sono punti di FJ tutti i vettori $x \in \mathcal{F}$ per cui risulta $G_0(x) = \emptyset$.

Allora

Teorema (Fritz-John, 1948),

Esiste un numero $\lambda_0^* \geq 0$ e dei moltiplicatori $\lambda_1^*, \ldots, \lambda_m^* \geq 0$, non tutti nulli, tali che: $\lambda_i^* g_i(x^*) = 0$, per ogni $i = 1, \ldots, m$ e

$$\lambda_0^* \nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) = 0,$$

Definizione

Un punto $\bar{x} \in \mathcal{F}$ è un punto di FJ quando in \bar{x} risulta $F_0(\bar{x}) \cap G_0(\bar{x}) = \emptyset$.

N.B. sono punti di FJ tutti i vettori $x \in \mathcal{F}$ per cui risulta $G_0(x) = \emptyset$.

Condizioni di regolarità

Definizione

Un punto $x \in \mathcal{F}$ è **regolare** se $G_0(x) \neq \emptyset$

Vale la seguente condizione sufficiente di regolarità.

Proposizione

Condizione sufficiente affinché nel punto $x \in \mathcal{F}$ risulti $G_0(x) \neq \emptyset$ è che sia linearmente indipendente l'insieme $\{\nabla g_i(x), i \in I_0(x)\}$

Supponiamo:

- f, g continuamente differenziabili
- di conoscere un punto di **minimo locale** x^* del problema (P)
- che x* sia regolare

e.g.
$$\left\{ \nabla g_i(x^*), \ i \in I_0(x^*) \right\}$$
 lin. indip

Allora

Teorema (Kaursh, 1939, Kuhn-Tucker, 1951

Esistono dei moltiplicatori $\lambda_1^*, \ldots, \lambda_m^* \geq 0$ tali che

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) = 0,$$

$$\lambda_i^* g_i(x^*) = 0$$
, per ogni $i = 1, \dots, m$.

Supponiamo:

- f, g continuamente differenziabili
- di conoscere un punto di **minimo locale** x^* del problema (P)
- che x* sia regolare

e.g.
$$\left\{ \nabla g_i(x^*), \ i \in \mathit{I}_0(x^*) \right\}$$
 lin. indip.

Allora

Teorema (Kaursh, 1939, Kuhn-Tucker, 1951

Esistono dei moltiplicatori $\lambda_1^*, \ldots, \lambda_m^* \geq 0$ tali che

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) = 0,$$

$$\lambda_i^* g_i(x^*) = 0$$
, per ogni $i = 1, \dots, m$.

Supponiamo:

- f, g continuamente differenziabili
- di conoscere un punto di **minimo locale** x^* del problema (P)
- che x* sia regolare

e.g.
$$\left\{ \nabla g_i(x^*), \ i \in \mathit{I}_0(x^*) \right\}$$
 lin. indip.

Allora

Teorema (Kaursh, 1939, Kuhn-Tucker, 1951)

Esistono dei moltiplicatori $\lambda_1^*, \ldots, \lambda_m^* \geq 0$ tali che:

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) = 0,$$

$$\lambda_i^* g_i(x^*) = 0$$
, per ogni $i = 1, \dots, m$.

supponiamo:

- $h: \mathbb{R}^n \to \mathbb{R}$ (un solo vincolo di uguaglianza)
- f, h continuamente differenziabili
- x^* minimo locale di (P) tale che $\nabla h(x^*) \neq \mathbf{0}$

Facciamo vedere che allora $\nabla f(x^*)$ e $\nabla h(x^*)$ devono essere collineari cioè, deve esistere $\sigma \in \mathbb{R}$ tale che

$$\nabla f(x^*) = \sigma \nabla h(x^*)$$

È banale se $\nabla f(x^*) = \mathbf{0}$, quindi supponiamo $\nabla f^* \neq \mathbf{0}$

Perchè $\nabla h(x^*) \neq \mathbf{0}$?

Consideriamo in \mathbb{R}^2 la curva definita da

$$h(x,y) = y^2 - x^3$$

ed il punto $\bar{P} = (1, 1)^{\top}$. Risulta

$$h(\bar{P}) = 0$$
 e $\nabla h(\bar{P})^{\top} = (-3, 2)$

Se vogliamo determinare quali vettori $d \in \mathbb{R}^2$ sono tangenti alla curva in \bar{P} , dobbiamo risolvere l'equazione

$$\nabla h(\bar{P})^{\top} d = -3d_{\mathsf{x}} + 2d_{\mathsf{y}} = 0$$

Tutti i vettori sulla retta di equazione -3x + 2y = 0 sono tangenti (quindi la retta è la tangente alla curva in \bar{P})

Perchè $\nabla h(x^*) \neq \mathbf{0}$?

Cosa succede se al posto di \bar{P} considerassimo il punto $\hat{P}=(0,\ 0)^{\top}$?

Dalla definizione di minimo locale segue che esiste $\epsilon>0$ tale che

$$f(x) \geq f(x^*),$$

per ogni $x \in \mathcal{B}(x^*; \epsilon) = \mathcal{B}$ e tale che h(x) = 0

La curva di livello $f(x) = f(x^*) = c$ ci permette di partzionare ${\mathcal B}$ in

$$\mathcal{B}^{+} \equiv \{x \in \mathcal{B} : f(x) > c\}$$

$$\mathcal{B}^{-} \equiv \{x \in \mathcal{B} : f(x) < c\}$$

Se ∇f^* e ∇h^* (non nulli) non fossero collineari, allora la curva h(x)=0 intersecherebbe la curva f(x)=c in x^* .

Quindi esisterebbero punti x tali che $x \in \mathcal{B}^-$ e h(x) = 0. Per tali punti risulterebbe $f(x) < c = f(x^*)$ contraddicendo l'ipotesi che x^* è minimo locale di (P).

Dalla definizione di minimo locale segue che esiste $\epsilon>0$ tale che

$$f(x) \geq f(x^*),$$

per ogni $x \in \mathcal{B}(x^*; \epsilon) = \mathcal{B}$ e tale che h(x) = 0La curva di livello $f(x) = f(x^*) = c$ ci permette di partzionare \mathcal{B} in

$$\mathcal{B}^+ \equiv \{x \in \mathcal{B} : f(x) > c\}$$

$$\mathcal{B}^- \equiv \{x \in \mathcal{B} : f(x) < c\}$$

Se ∇f^* e ∇h^* (non nulli) non fossero collineari, allora la curva h(x) = 0 intersecherebbe la curva f(x) = c in x^* .

Quindi esisterebbero punti x tali che $x \in \mathcal{B}^-$ e h(x) = 0. Per tali punti risulterebbe $f(x) < c = f(x^*)$ contraddicendo l'ipotesi che x^* è minimo locale di (P).

Dalla definizione di minimo locale segue che esiste $\epsilon>0$ tale che

$$f(x) \geq f(x^*),$$

per ogni $x \in \mathcal{B}(x^*; \epsilon) = \mathcal{B}$ e tale che h(x) = 0La curva di livello $f(x) = f(x^*) = c$ ci permette di partzionare \mathcal{B} in

$$\mathcal{B}^{+} \equiv \{x \in \mathcal{B} : f(x) > c\}$$

$$\mathcal{B}^{-} \equiv \{x \in \mathcal{B} : f(x) < c\}$$

Se ∇f^* e ∇h^* (non nulli) non fossero collineari, allora la curva h(x) = 0 intersecherebbe la curva f(x) = c in x^* .

Quindi esisterebbero punti x tali che $x \in \mathcal{B}^-$ e h(x) = 0. Per tali punti risulterebbe $f(x) < c = f(x^*)$ contraddicendo l'ipotesi che x^* è minimo locale di (P).

 x^* minimo locale t.c. $\nabla h(x^*) \neq 0$, allora:

Teorema (Kaursh, 1939, Kuhn-Tucker, 1951)

Esiste un moltiplicatore μ^* tale che:

$$\nabla f(x^*) + \mu^* \nabla h(x^*) = 0,$$

x* minimo locale, allora:

Teorema (Fritz-John, 1948)

Esistono moltiplicatori $\lambda_0^* \geq 0$ e μ^* (non entrambi nulli) tale che.

$$\lambda_0^* \nabla f(x^*) + \mu^* \nabla h(x^*) = 0$$

 x^* minimo locale t.c. $\nabla h(x^*) \neq 0$, allora:

Teorema (Kaursh, 1939, Kuhn-Tucker, 1951)

Esiste un moltiplicatore μ^* tale che:

$$\nabla f(x^*) + \mu^* \nabla h(x^*) = 0,$$

 x^* minimo locale, allora:

Teorema (Fritz-John, 1948)

Esistono moltiplicatori $\lambda_0^* \ge 0$ e μ^* (non entrambi nulli) tale che:

$$\lambda_0^* \nabla f(x^*) + \mu^* \nabla h(x^*) = 0,$$

supponiamo:

- $h: \mathbb{R}^n \to \mathbb{R}^p \ (1 \le p < n)$
- f, h continuamente differenziabili
- x^* minimo locale di (P) tale che $\{\nabla h_i(x^*), i = 1, ..., p\}$ lin.indipendenti

Facciamo vedere che allora $\nabla f(x^*)$ è combinazione lineare di $\nabla h_i(x^*)$, $i=1,\ldots,p$.

Il caso $\nabla f(x^*) = 0$ è banale, quindi supponiamo $\nabla f(x^*) \neq 0$

Teorema (T1)

Teorema (M.R.Hestenes, 1975)

Siano \bar{x} e d tali che

- $h(\bar{x}) = 0$;
- $\nabla h_i(\bar{x})$, i = 1, ..., p lin. indipendenti;

Allora, è possibile definire una curva $x(t) \in C^1$, $-\delta \le t \le \delta$, tale che

- h(x(t)) = 0;
- $x(0) = \bar{x}$;
- $\dot{x}(0) = d$.

Per il fatto che p < n, segue che il sistema omogeneo

$$\nabla h_i(x^*)^{\top} d = 0, \ i = 1, \dots, p$$

(è sottodimensionato e) ammette (infinite) soluzioni $d \neq 0$.

Tali soluzioni sono i vettori "tangenti" alla superficie h(x)=0 in x^* . Il Teorema (T1), comunque scelta una soluzione d (tangente), esiste una curva $x(t) \in C^1$, $-\delta < t < \delta$ sulla superficie tale che

$$h(x(t)) = 0.$$
 $x(0) = x^*, \dot{x}(0) = d$

$$\psi(t) = f(x(t))$$

con
$$\psi(0) = f(x^*) \in \psi'(0) = \nabla f(x^*)^{\top} \dot{x}(0) = \nabla f(x^*)^{\top} d.$$

Per il fatto che p < n, segue che il sistema omogeneo

$$\nabla h_i(x^*)^\top d = 0, \ i = 1, \dots, p$$

(è sottodimensionato e) ammette (infinite) soluzioni $d \neq 0$. Tali soluzioni sono i vettori "tangenti" alla superficie h(x) = 0 in x^* .

Il Teorema (T1), comunque scelta una soluzione d (tangente), esiste una curva $x(t) \in C^1$, $-\delta < t < \delta$ sulla superficie tale che

$$h(x(t)) = 0.$$
 $x(0) = x^*,$ $\dot{x}(0) = d$

$$\psi(t) = f(x(t))$$

con
$$\psi(0) = f(x^*) \in \psi'(0) = \nabla f(x^*)^\top \dot{x}(0) = \nabla f(x^*)^\top d$$
.

Per il fatto che p < n, segue che il sistema omogeneo

$$\nabla h_i(x^*)^\top d = 0, \ i = 1, \dots, p$$

(è sottodimensionato e) ammette (infinite) soluzioni $d \neq 0$. Tali soluzioni sono i vettori "tangenti" alla superficie h(x) = 0 in x^* . Il Teorema (T1), comunque scelta una soluzione d (tangente), esiste una curva $x(t) \in C^1$, $-\delta < t < \delta$ sulla superficie tale che

$$h(x(t)) = 0$$
. $x(0) = x^*$, $\dot{x}(0) = d$

$$\psi(t) = f(x(t))$$

con
$$\psi(0) = f(x^*) \in \psi'(0) = \nabla f(x^*)^\top \dot{x}(0) = \nabla f(x^*)^\top d$$
.

Per il fatto che p < n, segue che il sistema omogeneo

$$\nabla h_i(x^*)^\top d = 0, \ i = 1, \dots, p$$

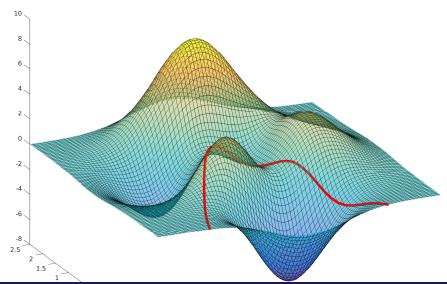
(è sottodimensionato e) ammette (infinite) soluzioni $d \neq 0$. Tali soluzioni sono i vettori "tangenti" alla superficie h(x) = 0 in x^* . Il Teorema (T1), comunque scelta una soluzione d (tangente), esiste una curva $x(t) \in C^1$, $-\delta < t < \delta$ sulla superficie tale che

$$h(x(t)) = 0$$
. $x(0) = x^*$, $\dot{x}(0) = d$

$$\psi(t) = f(x(t))$$

con
$$\psi(0) = f(x^*) \in \psi'(0) = \nabla f(x^*)^\top \dot{x}(0) = \nabla f(x^*)^\top d$$
.

Figura



Dato che x^* è minimo locale, la funzione $\psi(t)$ deve anch'essa avere un minimo locale in t=0 e quindi $\psi'(0)=0$

$$\psi'(0) = \nabla f(x^*)^\top d = 0$$

Questo vuol dire che tutti i vettori d tangenti alla superficie h(x)=0 in x^* sono anche ortogonali al gradiente di f in x^*

Quindi i due sistemi di equazioni lineari omogenei

$$\nabla h_i(x^*)^{\top} d = 0, \quad i = 1, ..., p \quad e \quad \frac{\nabla h_i(x^*)^{\top} d = 0}{\nabla f(x^*)^{\top} d = 0}, \quad i = 1, ..., p$$

devono avere lo stesso insieme di soluzioni. In altri termini, l'equazione $\nabla f(x^*)^{\top} d$ deve essere ridondante, cioè devono esistere numeri σ_i , $i=1,\ldots,p$ tali che

$$\nabla f(x^*) = \sum_{i=1}^p \sigma_i \nabla h_i(x^*).$$

Dato che x^* è minimo locale, la funzione $\psi(t)$ deve anch'essa avere un minimo locale in t=0 e quindi $\psi'(0)=0$

$$\psi'(0) = \nabla f(x^*)^\top d = 0$$

Questo vuol dire che tutti i vettori d tangenti alla superficie h(x) = 0 in x^* sono anche ortogonali al gradiente di f in x^*

Quindi i due sistemi di equazioni lineari omogenei

$$\nabla h_i(x^*)^{\top} d = 0, \quad i = 1, ..., p \quad e \quad \frac{\nabla h_i(x^*)^{\top} d = 0}{\nabla f(x^*)^{\top} d = 0}, \quad i = 1, ..., p$$

devono avere lo stesso insieme di soluzioni. In altri termini, l'equazione $\nabla f(x^*)^{\top} d$ deve essere ridondante, cioè devono esistere numeri σ_i , $i=1,\ldots,p$ tali che

$$\nabla f(x^*) = \sum_{i=1}^p \sigma_i \nabla h_i(x^*).$$

Dato che x^* è minimo locale, la funzione $\psi(t)$ deve anch'essa avere un minimo locale in t=0 e quindi $\psi'(0)=0$

$$\psi'(0) = \nabla f(x^*)^\top d = 0$$

Questo vuol dire che tutti i vettori d tangenti alla superficie h(x) = 0 in x^* sono anche ortogonali al gradiente di f in x^*

Quindi i due sistemi di equazioni lineari omogenei

$$abla h_i(x^*)^{\top} d = 0, \quad i = 1, \dots, p \quad \text{e} \quad \frac{\nabla h_i(x^*)^{\top} d = 0}{\nabla f(x^*)^{\top} d = 0}, \quad i = 1, \dots, p$$

devono avere lo stesso insieme di soluzioni. In altri termini, l'equazione $\nabla f(x^*)^{\top} d$ deve essere ridondante, cioè devono esistere numeri σ_i , $i=1,\ldots,p$ tali che

$$\nabla f(x^*) = \sum_{i=1}^p \sigma_i \nabla h_i(x^*).$$

 x^* minimo locale t.c. $\nabla h_i(x^*)$ lin. indipendenti, allora:

Teorema (Kaursh, 1939, Kuhn-Tucker, 1951)

Esistono moltiplicatori μ_i^* tali che:

$$\nabla f(x^*) + \sum_{i=1}^p \mu_i^* \nabla h_i(x^*) = 0,$$

x* minimo locale, allora:

Teorema (Fritz-John, 1948)

Esistono moltiplicatori $\lambda_0^* \geq 0$ e μ_i^* (non tutti nulli) tali che

$$\lambda_0^* \nabla f(x^*) + \sum_{i=1}^{\rho} \mu_i^* \nabla h_i(x^*) = 0$$

 x^* minimo locale t.c. $\nabla h_i(x^*)$ lin. indipendenti, allora:

Teorema (Kaursh, 1939, Kuhn-Tucker, 1951)

Esistono moltiplicatori μ_i^* tali che:

$$\nabla f(x^*) + \sum_{i=1}^p \mu_i^* \nabla h_i(x^*) = 0,$$

 x^* minimo locale, allora:

Teorema (Fritz-John, 1948)

Esistono moltiplicatori $\lambda_0^* \ge 0$ e μ_i^* (non tutti nulli) tali che:

$$\lambda_0^* \nabla f(x^*) + \sum_{i=1}^p \mu_i^* \nabla h_i(x^*) = 0,$$

Supponiamo:

- f, g, h continuamente differenziabili
- di conoscere un punto di **minimo locale** x^* del problema (P_0)
- che in x^* i vincoli siano **regolari**

e.g.
$$\left\{ \nabla h_j(x^*), \ j=1,\ldots,p, \ \nabla g_i(x^*), \ i \in I_0(x^*) \right\}$$
 lin. indip.

Allora

Teorema (Kaursh, 1939, Kuhn-Tucker, 1951

Esistono dei moltiplicatori $\lambda_1^*, \ldots, \lambda_m^* \geq 0, \ \mu_1^*, \ldots, \mu_p^*$ tali che:

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) + \sum_{j=1}^r \mu_j^* \nabla h_j(x^*) = 0,$$

$$\lambda_i^* g_i(x^*) = 0$$
, per ogni $i = 1, \dots, m$.

Supponiamo:

- f, g, h continuamente differenziabili
- di conoscere un punto di **minimo locale** x^* del problema (P_0)
- che in x^* i vincoli siano **regolari**

e.g.
$$\left\{ \nabla h_j(x^*), \ j=1,\ldots,p, \ \nabla g_i(x^*), \ i \in I_0(x^*) \right\}$$
 lin. indip.

Allora

Teorema (Kaursh, 1939, Kuhn-Tucker, 1951

Esistono dei moltiplicatori $\lambda_1^*, \ldots, \lambda_m^* \geq 0, \ \mu_1^*, \ldots, \mu_p^*$ tali che:

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) + \sum_{j=1}^r \mu_j^* \nabla h_j(x^*) = 0,$$

$$\lambda_i^* g_i(x^*) = 0$$
, per ogni $i = 1, \dots, m$.

Supponiamo:

- f,g,h continuamente differenziabili
- di conoscere un punto di **minimo locale** x^* del problema (P_0)
- che in x* i vincoli siano regolari

e.g.
$$\left\{ \nabla h_j(x^*), \ j=1,\ldots,p, \ \nabla g_i(x^*), \ i \in I_0(x^*) \right\}$$
 lin. indip.

Allora

Teorema (Kaursh, 1939, Kuhn-Tucker, 1951)

Esistono dei moltiplicatori $\lambda_1^*,\ldots,\lambda_m^*\geq 0$, μ_1^*,\ldots,μ_p^* tali che:

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) + \sum_{j=1}^r \mu_j^* \nabla h_j(x^*) = 0,$$

$$\lambda_i^* g_i(x^*) = 0$$
, per ogni $i = 1, \dots, m$.

$$\begin{aligned} & \underset{x}{\min} & x_1 + x_2 \\ & c.v & x_1^2 + x_2^2 - 2 = 0 \end{aligned}$$

$$\begin{aligned} & \underset{x}{\min} & x_1 + x_2 \\ & c.v & x_1^2 + x_2^2 - 2 \le 0 \end{aligned}$$

$$\begin{aligned} & \underset{x}{\min} & x_1 + x_2 \\ & c.v & x_1^2 + x_2^2 - 2 \le 0, \ x_2 \ge 0 \end{aligned}$$

$$\begin{aligned} & \underset{x}{\min} & x_1 + x_2 \\ & c.v & x_1^2 + x_2^2 - 2 \le 0, \ x_2 \ge 0 \end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned} & \underset{x}{\min} & x_1 + x_2 \\ & c.v & x_2 - x_1^3 \le 0, \ x_2 \ge 0 \end{aligned}$$