Ottimizzazione dei Sistemi Complessi

G. Liuzzi¹

Giovedì 3 Maggio 2018

 $^{^{1}}$ Istituto di Analisi dei Sistemi ed Informatica IASI - CNR

Un bel passo indietro ...

Metodo del gradiente (rivisto)

Consideriamo il problema NON vincolato

min
$$f(x)$$

s.t. $x \in \mathbb{R}^n$

Disponiamo di una stima x_k della soluzione, quindi scriviamo l'app. di Taylor (troncata al I ordine) di f(x) in x_k

$$\bar{f}(x; x_k) = f(x_k) + \nabla f(x_k)^{\top} (x - x_k) = \nabla f(x_k)^{\top} d + f(x_k)$$

Vogliamo determinare una nuova stima x_{k+1} minimizzando $\bar{f}(x;x_k)$

Metodo del Gradiente

Purtroppo, il problema

$$\min \ \bar{f}(x; x_k)$$

$$s.t. \ x \in \mathbb{R}^n$$

se $\nabla f(x_k) \neq 0$, non ammette soluzione!!

Metodo del Gradiente

Sia
$$q_k(d) = f(x_k) + \nabla f(x_k)^{\top} d + ||d||^2/2$$
 e consideriamo il problema

min
$$q_k(d)$$

 $s.t. x \in \mathbb{R}^n$

La direzione $d^* = -\nabla f(x_k)$ è tale che

- $\nabla q_k(d^*) = 0$
- $\nabla^2 q_k(d^*) = \mathbb{I} \succ 0$

Metodo del Gradiente

Quindi, si definisce l'iterazione

$$x_{k+1} = x_k + d^* = x_k - \alpha_k \nabla f(x_k)$$

Un (altro) bel passo indietro ... o avanti!

Consideriamo il problema NON vincolato

min
$$f(x)$$

 $c.v. x \in \mathbb{R}^n$

Supponiamo di conoscere una soluzione x^* del problema e siano verificate le **C.S. del II ordine** in x^* :

- $\nabla f(x^*) = 0$
- $\nabla^2 f(x^*)$ definita positiva

N.B. Attenzione! Se x^* è minimo locale stretto, non è detto che $\nabla^2 f(x^*)$ sia definita positiva!

Il metodo di Newton (1)

Vogliamo costruire una approsimazione del problema in un intorno di x^*

Sviluppo in serie di Taylor troncato al secondo ordine di f(x):

$$q(x; x^{*}) = f(x^{*}) + \nabla f(x^{*})^{\top} (x - x^{*}) + \frac{1}{2} (x - x^{*})^{\top} \nabla^{2} f(x^{*}) (x - x^{*})$$

$$f(x) \simeq q(x; x^{*})$$

$$q(x^{*}; x^{*}) = f(x^{*})$$

$$\bar{q}(d) = q(x^{*} + d; x^{*}) = f(x^{*}) + \frac{1}{2} d^{\top} \nabla^{2} f(x^{*}) d$$

$$\nabla \bar{q}(d) = \nabla^{2} f(x^{*}) d$$

$$\nabla^{2} \bar{q}(d) = \nabla^{2} f(x^{*})$$

Il metodo di Newton (2)

 $q(x; x^*)$ e quindi $\bar{q}(d)$ sono una "buona" approssimazione di f in un intorno di x^* quando:

- x^* è minimo locale (oltre che di f) anche per $q(x; x^*)$ e
- $d^* = 0$ è minimo locale di $\bar{q}(d)$.

Infatti, da

$$\nabla \bar{q}(d) = \nabla^2 f(x^*) d = 0$$

$$\nabla^2 \bar{q}(d) = \nabla^2 f(x^*) d.p.$$

segue che $d^*=0$ è proprio l'**unico** minimo locale di $ar{q}(d)$

Il metodo di Newton (3)

Supponiamo ora di **non** conoscere x^* ma di disporre di una **stima** x_k di x^*

Idea

- definisco $q(x; x_k)$ e $\bar{q}_k(d)$
- minimizzo $q(x; x_k)$
- aggiorno la stima di x^* definendo x_{k+1}

Il metodo di Newton (4)

Naturalmente, risulta:

$$\bar{q}_k(d) = f(x_k) + \nabla f(x_k)^\top d + \frac{1}{2} d^\top \nabla^2 f(x_k) d$$

$$\nabla \bar{q}_k(d) = \nabla f(x_k) + \nabla^2 f(x_k) d$$

 $\nabla \bar{q}_k(d) = 0$ quando $\nabla f(x_k) + \nabla^2 f(x_k) d = 0$. Se $\nabla^2 f(x_k)$ è non singolare, allora possiamo definire:

$$d_k = -\nabla^2 f(x_k)^{-1} \nabla f(x_k)$$
 direzione di Newton
 $x_{k+1} = x_k + d_k$ iterazione di Newton

Introduzione

Consideriamo il problema

$$\min_{x} f(x)$$
 $c.v.$ $h(x) = 0$

Le condizioni di KKT per il problema danno luogo al sistema nonlineare

$$F(x,\mu) = \begin{bmatrix} \nabla f(x) + \nabla h(x)\mu \\ h(x) \end{bmatrix} = 0$$

Idea: Risolvere il sistema $F(x, \mu)$ usando il **metodo di Newton**

Metodo di Newton-Lagrange

Se vogliamo usare il metodo di Newton, la prima cosa da fare è calcolare lo Jacobiano di F

$$\left[\begin{array}{cc} \nabla_{xx}^2 L(x,\mu) & \nabla h(x) \\ \nabla h(x)^\top & 0 \end{array}\right]$$

Il metodo di Newton è definito dalla iterazione

$$\begin{pmatrix} x_{k+1} \\ \mu_{k+1} \end{pmatrix} = \begin{pmatrix} x_k \\ \mu_k \end{pmatrix} + \begin{pmatrix} \delta_k^{\mathsf{x}} \\ \delta_k^{\mathsf{\mu}} \end{pmatrix}$$

dove $(\delta_k^x, \delta_k^\mu)$ tali che

$$\begin{bmatrix} \nabla^2_{\mathsf{x}\mathsf{x}} L(\mathsf{x}_k, \mu_k) & \nabla h(\mathsf{x}_k) \\ \nabla h(\mathsf{x}_k)^\top & 0 \end{bmatrix} \begin{pmatrix} \delta_k^{\mathsf{x}} \\ \delta_k^{\mu} \end{pmatrix} = -F(\mathsf{x}_k, \mu_k)$$

Metodo di Newton-Lagrange

Il passo k è ben definito quando la matrice

$$\begin{bmatrix} \nabla_{xx}^2 L(x_k, \mu_k) & \nabla h(x_k) \\ \nabla h(x_k)^\top & 0 \end{bmatrix}$$

è non singolare. Questo accade sotto la seguente ipotesi:

Assunzione

- $rg(\nabla h(x_k)) = p$, i.e. i gradienti dei vincoli in x_k sono lin. indipendenti
- $d^{\top}\nabla^2_{xx}L(x_k,\mu_k)d>0$ per ogni $d\neq 0$ e tale che $\nabla h(x_k)^{\top}d=0$

Metodo SQP

È possibile vedere il metodo di Newton-Lagrange in maniera alternativa. A tal fine, definiamo il problema

$$\min_{d} \quad \frac{1}{2} d^{\top} \nabla_{xx}^{2} L(x_{k}, \mu_{k}) d + \nabla f(x_{k})^{\top} d$$

$$c.v. \quad \nabla h(x_{k})^{\top} d + h(x_{k}) = 0$$

Se vale l'assunzione di prima, questo problema ha una unica soluzione $(\bar{d},\bar{\mu})$ che (ovviamente) soddisfa

$$\nabla_{xx}^{2} L(x_{k}, \mu_{k}) \bar{d} + \nabla f(x_{k}) + \nabla h(x_{k}) \bar{\mu} = 0$$
$$\nabla h(x_{k})^{\top} \bar{d} + h(x_{k}) = 0$$

Metodo SQP

$$\nabla_{xx}^{2} L(x_{k}, \mu_{k}) \bar{d} + \nabla f(x_{k}) + \nabla h(x_{k}) \bar{\mu} = 0$$
$$\nabla h(x_{k})^{\top} \bar{d} + h(x_{k}) = 0$$

lo possiamo scrivere come

$$\begin{pmatrix} \nabla_{\mathsf{x}\mathsf{x}}^2 \mathsf{L}(\mathsf{x}_k, \mu_k) & \nabla h(\mathsf{x}_k) \\ \nabla h(\mathsf{x}_k)^\top & 0 \end{pmatrix} \begin{pmatrix} \bar{d} \\ \bar{\mu} \end{pmatrix} = - \begin{pmatrix} \nabla f(\mathsf{x}_k) \\ h(\mathsf{x}_k) \end{pmatrix}$$

e, sottraendo $\nabla h(x_k)\mu_k$ dalla prima eq.

$$\begin{pmatrix} \nabla_{xx}^{2} L(x_{k}, \mu_{k}) & \nabla h(x_{k}) \\ \nabla h(x_{k})^{\top} & 0 \end{pmatrix} \begin{pmatrix} \bar{d} \\ \bar{\mu} - \mu_{k} \end{pmatrix} = - \begin{pmatrix} \nabla f(x_{k}) + \nabla h(x_{k}) \mu_{k} \\ h(x_{k}) \end{pmatrix}$$

Metodo SQP

Ponendo $\bar{d}_{\mu}=\bar{\mu}-\mu_k$ otteniamo proprio l'iterazione del metodo di Newton-Lagrange

$$\left(\begin{array}{c} x_{k+1} \\ \mu_{k+1} \end{array}\right) = \left(\begin{array}{c} \bar{d} \\ \bar{d}_{\mu} \end{array}\right) + \left(\begin{array}{c} x_{k} \\ \mu_{k} \end{array}\right)$$

dove risulta $\mu_{k+1} = \bar{\mu}$

Metodo di soluzione

```
Algoritmo SQP
      Dati: (x_0, \mu_0), maxit
      for k = 0, 1, \ldots, maxit
             Calcola \bar{d}_k e \bar{\mu}_k
             Poni x_{k+1} = x_k + \bar{d}_k e \mu_{k+1} = \bar{\mu}_k
             if (x_{k+1}, \mu_{k+1}) è KKT then
                   x^* \leftarrow x_{k+1}, \ \mu^* \leftarrow \mu_{k+1} \ \text{e STOP}
             endif
      endfor
      Return: miglior coppia trovata (x^*, \mu^*)
```


Proprietà di convergenza di SQP

Proposizione

Sia (x^*, μ^*) soluzione del problema tale che siano soddisfatte

- LICQ^a
- SOSCb

Allora, se (x_0, μ_0) è suff. vicino a (x^*, μ^*) , l'algoritmo SQP è ben definito e converge alla soluzione del problema

^aLinear Independence Constraint Qualification

^bSecond Order Sufficient Condition

Come si gestiscono in questo contesto vincoli di disuguaglianza $g(x) \le 0$?

- 1) Aggiunta di variabili slack: $g_i(x) + s_i = 0$, $s_i \ge 0$ e gestione "esplicita" dei vincoli di bound sulla variabili (SNOPT, KNITRO)
- 2) Approccio SiQP SQP with inequalities
- 3) Approccio SeQP SQP with equalities (SNOPT)

Allora, data una stima corrente (x_k, μ_k, λ_k) della soluzione, definisci il problema

$$\min_{d} \quad \nabla f(x_k)^{\top} d + \frac{1}{2} d^{\top} \nabla_{xx}^2 L(x_k, \mu_k, \lambda_k) d$$

$$c.v. \quad \nabla h(x_k)^{\top} d + h(x_k) = 0$$

$$\nabla g(x_k)^{\top} d + g(x_k) \le 0$$

N.B. ogni sottoproblema ha esattamente lo stesso numero di vincoli del problema originario

$$\begin{aligned}
\min_{x} & f(x) \\
c.v & h(x) = 0 \\
g(x) \le 0
\end{aligned}$$

Immaginiamo di poter conoscere quali vincoli di disuguaglianza sono attivi in una soluzione del problema x^* .

Indichiamo I^* l'insieme degli indici dei vincoli attivi in x^*

$$I^* = \{i : g_i(x^*) = 0\}$$

Quindi, $g_i(x^*) < 0$, per ogni $i \notin I^*$

Sotto questa ipotesi, anche il problema

$$\begin{aligned}
\min_{x} & f(x) \\
c.v & h(x) = 0 \\
g_i(x) = 0, & i \in I^*
\end{aligned}$$

ammette x^* come soluzione locale.

N.B. questo problema ha (nuovamente) tutti e soli vincoli di uguaglianza. Pertanto, posso usare il metodo di soluzione che abbiamo visto per problemi con vincoli di uguaglianza

Cosa manca? Normalmente non sappiamo come è fatto I^* . Quindi:

- si dà una stima I_k di I^*
- si risolve il sotto problema
- ullet si aggiorna la stima di I^* definendo I_{k+1}

Per questo motivo questa classe di metodi è anche nota come "active-set" SQP

Problema approssimante

Data una stima dei vincoli attivi I_k ed una stima della soluzione (x_k, μ_k, λ_k) , il problema "approssimante" è

$$\begin{aligned} & \min_{d} & \nabla f(x_k)^{\top} d + \frac{1}{2} d^{\top} \nabla_{xx}^2 L(x_k, \mu_k, \lambda_k) d \\ & c.v. & \nabla h(x_k)^{\top} d + h(x_k) = 0 \\ & & \nabla g_{l_k}(x_k)^{\top} d + g_{l_k}(x_k) = 0 \end{aligned}$$

Soluzione del problema approssimante

In base a ragionamenti del tutto analoghi a quelli appena visti, bisogna risolvere il sistema lineare:

$$\begin{bmatrix} \nabla_{xx}^{2} L_{k} & \nabla h(x_{k}) & \nabla g_{I_{k}}(x_{k}) \\ \nabla h(x_{k})^{\top} & 0 & 0 \\ \nabla g_{I_{k}}(x_{k})^{\top} & 0 & 0 \end{bmatrix} \begin{bmatrix} \bar{d} \\ \bar{\mu} \\ \bar{\lambda} \end{bmatrix} = - \begin{bmatrix} \nabla f(x_{k}) \\ h(x_{k}) \\ g_{I_{k}}(x_{k}) \end{bmatrix}$$

Metodo di soluzione (vincoli di uguaglianza)

```
Algoritmo SQP
        Dati: (x_0, \mu_0, \lambda_0), maxit, \gamma > 0
        for k = 0, 1, \ldots maxit
                I_k = \{i : g_i(x_k) > -\gamma(\lambda_k)_i\}
                Calcola \bar{d}_k, \bar{\mu}_k. \bar{\lambda}_k
                Poni x_{k+1} = x_k + \bar{d}_k, \mu_{k+1} = \bar{\mu}_k,
                (\lambda_{k+1})_{l_k} = \lambda_k, (\lambda_{k+1})_i = 0, i \notin I_k
                if (x_{k+1}, \mu_{k+1}, \lambda_{k+1}) è KKT then
                        x^* \leftarrow x_{k+1}, \ \mu^* \leftarrow \mu_{k+1}, \ \lambda^* \leftarrow \lambda_{k+1} \text{ e STOP}
                endif
        endfor
```

Return: miglior punto trovato (x^*, μ^*, λ^*)

