
Mathematical Programming Computation
https://doi.org/10.1007/s12532-020-00182-7

FULL LENGTH PAPER

An algorithmic framework based on primitive directions
and nonmonotone line searches for black-box optimization
problems with integer variables

Giampaolo Liuzzi1 · Stefano Lucidi2 · Francesco Rinaldi3

Received: 2 February 2018 / Accepted: 6 February 2020
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020

Abstract
In this paper, we develop a new algorithmic framework to solve black-box problems
with integer variables. The strategy included in the framework makes use of specific
search directions (so called primitive directions) and a suitably developed nonmono-
tone line search, thus guaranteeing a high level of freedom when exploring the integer
lattice. First, we describe and analyze a version of the algorithm that tackles problems
with only bound constraints on the variables. Then, we combine it with a penalty
approach in order to solve problems with simulation constraints. In both cases we
prove finite convergence to a suitably defined local minimum of the problem. We
report extensive numerical experiments based on a test bed of both bound-constrained
and generally-constrained problems. We show the effectiveness of the method when
compared to other state-of-the-art solvers for black-box integer optimization.

Keywords Derivative free optimization · Black box problems · Integer variables ·
Nonmonotone line search

Mathematics Subject Classification 90C56 · 90C10 · 90C30

B Giampaolo Liuzzi
giampaolo.liuzzi@iasi.cnr.it

Stefano Lucidi
lucidi@diag.uniroma1.it

Francesco Rinaldi
rinaldi@math.unipd.it

1 Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, Consiglio Nazionale delle Ricerche,
Via dei Taurini 19, 00185 Rome, Italy

2 Dipartimento di Ingegneria Informatica Automatica e Gestionale “A. Ruberti”, “Sapienza”
Università di Roma, Via Ariosto 25, 00185 Rome, Italy

3 Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova, Via Trieste, 63, 35121
Padua, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-020-00182-7&domain=pdf

G. Liuzzi et al.

1 Introduction

Many real-world problems coming from different fields (e.g., engineering, economics,
biology) can be modeled using black-box functions. Those functions represent the
experimentally obtained behavior of a system and in practice are given by means of
specific simulation tools. Hence no internal or analytical knowledge for the functions
is provided. Furthermore, evaluating the function at a given point is usually (or might
be) an expensive task in terms of computational resources, and only a limited budget
of evaluations is available for the optimization. On top of that, real systems are often
described by means of unrelaxable integer variables (e.g., number of nurses in a ward,
number of coils in amagnet, and so on) that need to be properly handled.When dealing
with this kind of problems, it is neither possible to cut away part of the feasible set nor to
get an optimality gap for the solutions (like the exact algorithmic frameworks in integer
programming usually do). Certifying global optimality is exceptionally difficult in the
black-box setting, even if we assume convexity for the given problem [19].

In general, when exact methods (i.e., methods that can certify global optimality)
cannot be applied, heuristic ones are considered. Explorative search methods (e.g.,
variable neighborhood search [28], iterated local search [25]), which look for a new
solution in some neighborhood of a given point and perturb the point and/or the
neighborhood when specific conditions are met. On the other hand, population based
methods (e.g., genetic algorithms [11,16]), which use a set (i.e., a population) of points
at each iteration to generate new solutions, are classic heuristic approaches for prob-
lems with integer variables (see, e.g., [8,15] for further details). However, those two
classes of approaches may not be suitable for optimization problems with computa-
tionally expensive objective and constraint functions because they often require a large
number of evaluations to find good solutions.

So, our goal is to develop a method that explores the integer lattice and reduces
as much as possible the objective function value (while satisfying the constraints)
without consuming too many function evaluations.

In the paper we then consider the following optimization problem:

min f (x)
s.t . x ∈ C ∩ Z

n,
(1)

where f : R
n → R is a black-box function (i.e., the mathematical representation

of f (x) is not available) and C ⊂ R
n is a given set (whose description usually

includes simple bound constraints on the variables and general simulation constraints).
In particular, for Problem (1), we require that

(i) the feasible set C ∩ Z
n is not empty and contains a finite number of points;

(ii) the objective function f is well-defined for every feasible point x ∈ C ∩ Z
n .

According to the taxonomy of constraints given in [21], if there are simulation con-
straints defining set C, we assume that they belong to the class QRSK, i.e., that they
are Quantifiable, Relaxable, Simulation, Known. We also assume that

– the objective function and the simulation constraints (if any) are not defined when
x /∈ Z

n , i.e., the integrality constraint is not relaxable;

123

An algorithmic framework based on primitive directions and…

– the black-box functions are computationally expensive in this framework.

Suchproblems canbe solvedbymeans of the so-called “derivative-free”methods [6,9].
Direct search methods are simple and intuitive derivative-free approaches. The

algorithms in this class suitably sample, at each iteration, the objective function over
a specific set of points belonging to the integer lattice and choose the best point (in
terms of objective function value) as the new iterate. In the sampling phase, they
can either use a stencil (i.e., a predetermined set of search directions with a com-
mon fixed stepsize, see, e.g., [1,3,5,26]) or a skewed stencil (i.e., a predetermined set
of search directions with dynamically changing stepsizes, see, e.g., [22,23]) whose
shape is modified depending on a line-search procedure. More specifically, in [5] the
authors propose a Generalized Pattern Search (GPS) algorithm for mixed variable
programming problems with bound constraints. A filter GPS approach for nonlinear
constrained problems with discrete variables is analyzed in [3]. The Mesh Adaptive
Direct Search (MADS) algorithm has been extended to handle categorical variables
in [1]. The recent paper [7] introduces a modification to the MADS algorithm for
problems with granular variables, i.e., variables with a controlled number of decimals.
This modification includes a new updating of the underlying mesh that progressively
increases the precision. An algorithmic framework combining in a suitable way a
line search with respect to the continuous variables and a simple (stencil based) local
search with respect to the discrete variables is described in [26]. In [22], a specific
line-search approach is used to handle bound-constrained problems with integer vari-
ables. In [23], the authors extend the line-search algorithm to generally-constrained
black-box problems with integer variables by means of a sequential penalty approach.

Recently, a more sophisticated way to handle integer variables in the bound-
constrained case was proposed in [34]. The algorithm therein, called BFO, implements
a mesh based direct search that combines fixed stencils with tree-based searches.

Model based methods represent another important class of derivative-free
approaches. The algorithms belonging to this class build a model of the objective
function at each iteration and select the point minimizing the model as the new iter-
ate in case a decrease of the original objective function is guaranteed. Surrogate or
quadratic models are commonly used for this class of methods (see, e.g., [10,30–33]).
In [10], the authors describe themethod implemented in the library RBFOpt. The algo-
rithm builds and iteratively refines a surrogate model (based on radial basis functions)
of the unknown objective function.

Surrogate models are also used in [30–32]. In [32], the authors define a surrogate
based algorithm, called SO-I, for solving purely integer optimization problems that
have computationally expensive black-box objective functions and thatmay have com-
putationally expensive constraints. Another model-based algorithmic framework for
mixed-integer problems is described in [31]. In [30], the authors describe MISO, an
algorithm for mixed-integer problems with bound constraints that allows the choice
of various surrogate models and sampling strategies. The use of quadratic models
in a trust region method for mixed-integer problems is analyzed in [33]. A different
model-based approach is described in [19] for the global optimization of black-box
convex integer problems. The authors consider an underestimator that does not require

123

G. Liuzzi et al.

access to (sub)gradients of the objective but, rather, uses secant linear functions that
interpolate the objective function at previously evaluated points.

If we focus on direct search methods, we can easily see that the search of points that
monotonically reduce the objective function, together with the use of a predetermined
set of directions for exploring the integer lattice can cause the algorithm to get stuck
in points that cannot be further improved (and this might happen pretty soon in the
optimization process). Even the use of a line search that dynamically changes the
skewed stencil might not be enough in order to escape those points. Indeed, it is
possible to build examples where both strategies cannot move away from the starting
point.

In this paper, we define a new algorithmic framework of the direct search type that
tries to overcome this issue. The three main features that characterize our strategy are
the following:

– a stencil enrichment by means of a suitable set of search directions (the so called
primitive directions) as soon as the algorithm gets stuck;

– a nonmonotone version of the line search defined in [22,23] for getting more
freedom when changing the shape of the stencil;

– a simple penalty approach, similar to the one described in [23], for handling the
case when set C is described by means of black-box functions.

The use of a nonmonotone acceptance rule is very important in this context since it
improves the performance of our framework. Indeed, trying to get a new point that
strictly reduces the objective function, like we do when using a monotone line search,
might either get small movements along the search direction (especially when dealing
with an objective function with steep sided valleys) or require the generation of many
primitive directions in order to escape a point (this usually happens when the objective
function is locally “flat”).

Nonmonotone acceptance rules have already been used in derivative-free continu-
ous optimization (see, e.g., [12,14,17]). Anyway, to the best of our knowledge, this is
the first time that a nonmonotone discrete line search is embedded into an algorithmic
framework that handles black-box problems with integer variables.

About the theoretical results reported in the paper, we prove finite convergence of
the algorithmic framework to a suitably defined local minimum of Problem (1) when
C is:

– a set defined by simple bounds on the variables;
– a more general set described by black-box functions (in this case, to prove conver-
gence, we need to assume that some constraint qualification condition holds for
the problem).

An extensive numerical analysis on a large testbed of both bound-constrained and
generally-constrained problems is also reported. More specifically, we first investigate
the effects of using enriched stencils and a nonmonotone acceptance rule in our algo-
rithmic framework. Then, we show the effectiveness of our integer lattice exploration
strategy when compared to the strategies embedded into three direct search methods,
namely NOMAD (v.3.8.1) [2,20], BFO [34] and DFL [22,23]. In order to understand
if our simple direct search method is competitive with algorithms that use models,

123

An algorithmic framework based on primitive directions and…

we further include in the analysis the comparison with the model-based version of
NOMAD and with MISO [30].

The paper is organized as follows. In Sect. 2, we describe the algorithmic framework
for black-box problems with bound constraints. Then, in Sect. 3, we explain how
to handle problems with general simulation constraints. We hence report numerical
experiments both for problems with bound constraints and simulation constraints,
respectively in Sects. 4 and 5. Finally, we draw some conclusions in Sect. 6.

Now, we report some definitions that will be useful in the next sections. First of all,
we introduce the important concept of stencil, a set of directions used to determine
the points where a function is sampled.

Definition 1 (Stencil)Given a point x ∈ R
n , a stepsize α > 0 and p distinct directions

di ∈ R
n , i = 1, . . . , p, a stencil is the following set of points:

S(x, α, d1, . . . , dp) = {x ± α di , i = 1, . . . , p}.

A particular stencil is, for instance, the coordinate stencil, that is

S(x, α, e1, . . . , en) = {x ± αei , i = 1, . . . , n},

where ei ∈ R
n is the i-th column of the identity matrix. Next, we introduce the

definition of skewed stencil which is obtained from Definition 1 by allowing different
stepsizes for each direction.

Definition 2 (Skewed stencil)Given a point x ∈ R
n , p stepsizes αi > 0 and p distinct

directions di ∈ R
n , i = 1, . . . , p, a skewed stencil is the following set of points:

S(x, α1, . . . , αp, d1, . . . , dp) = {x ± αi di , i = 1, . . . , p}.

Now, we formally introduce the basic concept of divisor.

Definition 3 (Divisor) Given two integers a and b, we say that a is a divisor of b, and
write a|b, if an integer c exists such that b = ca.

When a|b, we also say that a divides (or is a factor of) b, or that b is a multiple of a.
Let v ∈ Z

n . We call d ∈ Z a common divisor of v1, . . . , vn if d|vi , with i = 1, . . . , n.
Then, the greatest common divisor of v1, . . . , vn , denoted as GCD(v1, . . . , vn), is a
(positive) common divisor such that all other common divisors of v1, . . . , vn divide
d.
Now, we give a few definitions that will be useful when describing in depth our
algorithm. We start by introducing the concept of primitive vector:

Definition 4 (Primitive vector)Avectorv ∈ Z
n is calledprimitive ifGCD(v1, . . . , vn)

= 1.

Remark 1 Given any two points x, y ∈ Z
n , such that x �= y, we have x − y = αd,

with d ∈ Z
n a primitive vector and α ∈ N. Hence, starting from a point x ∈ Z

n any
other point y ∈ Z

n can be reached by choosing a suitable stepsize α ∈ N along a
specific primitive direction d ∈ Z

n . ��

123

G. Liuzzi et al.

Then, we formally define the concept of feasible primitive direction, which represents
an important feature in our framework:

Definition 5 (Feasible primitive direction) Given a point x̄ ∈ C ∩ Z
n , a primitive

direction d is feasible at x̄ for C when β ∈ N exists such that

x̄ + αd ∈ C ∩ Z
n, for all α ≤ β, α ∈ N.

We further denote with D(x̄) the set of all feasible primitive directions at a given point
x̄ .

Definition 6 (Discrete neighborhood) Given a point x̄ ∈ C ∩ Z
n and a parameter

β ∈ N, the discrete neighborhood of x̄ is

N (x̄, β) = {x ∈ C ∩ Z
n : x = x̄ + αd, with α ≤ β, α ∈ N and d ∈ D(x̄)}.

Remark 2 Note that x̄ /∈ N (x̄, β). Furthermore, recalling Remark 1, the discrete
neighborhood N (x̄, β) can coincide with (C ∩ Z

n)\{x̄}, provided that the parame-
ter β is chosen sufficiently large and that every primitive vector d is feasible at x̄ , i.e.,
d ∈ D(x̄).

An example of discrete neighborhood is given in Fig. 1. Obviously, the concept of
discrete neighborhood is only ideal. Indeed, building up such a neighborhood is an
expensive task that cannot be efficiently done in practice. This is the reason why we
need to replace D(x̄) in the definition abovewith a suitably chosen subset of directions,
thus getting the following definition.

Definition 7 (Weak discrete neighborhood) Given a point x̄ ∈ C ∩ Z
n , a parameter

β ∈ N and a subset D ⊂ D(x̄), the weak discrete neighborhood of x̄ is

Nw(x̄, β, D) = {x ∈ C ∩ Z
n : x = x̄ + αd, with α ≤ β, α ∈ N and d ∈ D}.

Now, we can formally give the definition of a local minimum for Problem (1).

Definition 8 (β-local minimum point) Given β ∈ N, a point x∗ ∈ C ∩ Z
n is a β-local

minimum of Problem (1), if

f (x∗) ≤ f (x), ∀x ∈ N (x∗, β). (2)

Following the same path as before, we get another definition that makes more sense
from a practical point of view.

Definition 9 (Weak β-local minimum point) Given β ∈ N, a point x∗ ∈ C ∩ Z
n is a

weak β-local minimum of Problem (1), if a subset D ⊂ D(x∗) exist such that

f (x∗) ≤ f (x), ∀x ∈ Nw(x∗, β, D). (3)

123

An algorithmic framework based on primitive directions and…

1 1 2 3 4 5 6

1

2

3

4

5

6

0

x̄

Fig. 1 Discrete neighborhood: example of the discrete neighborhoodN (x̄, β) with x̄ = (2, 4)�, β = 1,
C = {x ∈ R

2 : 0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 5}. N (x̄, β) consists of all the points within the red square
(boundary of C) for which there is an arrow head

2 A nonmonotone algorithm for black-box optimization problems
with bound constraints

In the first part of the paper, we focus on bound-constrained integer programming
problems of the following form:

min f (x)
s.t . li ≤ xi ≤ ui , i = 1, . . . , n

x ∈ Z
n .

(4)

Note that Problem (4) is a particularization of Problem (1), namely when we consider
C = {x ∈ R

n : li ≤ xi ≤ ui , i = 1, . . . , n}. In this case, we assume li , ui ∈ Z

and −∞ < li < ui < ∞, for all i = 1, . . . , n, so that C ∩ Z
n contains, obviously, a

limited number of points. Also note that the objective function f is defined for every
feasible point x . From now on, let us denote the set of bound constraints as follows

X = {x ∈ R
n : li ≤ xi ≤ ui , i = 1, . . . , n}.

In this section, we describe a new algorithm for black-box optimization problems
with bound constraints. It basically combines the use of primitive feasible directions
with a suitable nonmonotone line search that only explores points in the integer lattice.
The detailed scheme of the algorithm is reported below (see Algorithm 1). As we can
easily see, there are three different phases at each iteration. In the first phase (Steps
3–14), we try to improve the current iterate xk . More specifically, we consider the

123

G. Liuzzi et al.

incumbent solution y, i.e., a vector that represents the latest point accepted in Phase 1,
and set it equal to xk at Step 3. Then, we select a direction from a specific set D ⊆
D(xk) at Step 5 and explore this direction at Step 6 by means of a nonmonotone line
search in order to find a new point that both guarantees a sufficiently large movement
along the search direction and a reduction with respect to the current reference value
f re f . The reference value f re f is the maximum among the last M objective function
values accepted by the algorithm. Those values are stored in the set W which is
managed like a queue (that is according to a first-in-first-out policy). Hence, procedure
pop(W) extracts from W the oldest function value, whereas procedure push(f ,W)
inserts into W the function value f . Phase 1 ends as soon as we either find such
an improving point or D becomes the empty set (i.e., all directions in D have been
explored, but no reduction has been obtained with respect to the reference value). We
note that the iterate xk , the directions d ∈ Dk and the start stepsizes α̃

(d)
k might be

seen as a dynamically changing skewed stencil which is suitably modified at each
iteration of the algorithm depending on the outcomes of the line search. If the line
search failed (i.e., α = 0), then we suitably reduce the stepsize at Step 7. Otherwise,
the line search gets a point guaranteeing a reduction with respect to the reference
value, and the algorithm performs the following operations:

– Step 9: it updates the incumbent solution y and the start stepsize related to the last
direction explored (i.e., it enlarges the stencil with respect to the direction);

– Step 10: it updates (if necessary) the point xmin , i.e., the best point obtained so
far;

– Steps 11–12: it updates the setW (i.e., the queue needed to compute the reference
value in the next iteration) and the reference value f re f .

When Phase 1 is over, Phase 2 (Steps 15–28) starts. In Phase 2, the sets of search
directions D (those to be used in Phase 1) and Dk (those generated so far) are possibly
updated. More specifically, if Phase 1 of the algorithm succeeded in modifying the
incumbent solution y (i.e., y �= xk and condition at Step 15 is not satisfied), Dk stays
the same and D is set equal to Dk (see Step 27). Otherwise, Step 16 is executed
and the algorithm checks whether the Nonmonotone line search failed along all the
directions in Dk and if the start stepsize α̃

(d)
k is 1 for all of those directions (i.e., the

dynamically changing skewed stencil defined by directions d ∈ Dk and stepsizes α̃
(d)
k

shrank to its minimum size in Phase 1). If this is not the case, Dk stays the same and
D includes only the directions that failed with stepsize greater than one (see Step 24).
Otherwise, the algorithm tries to enrich Dk (by performing Steps 17–22). If Dk equals
the set D(xk) of primitive feasible directions in xk , then the algorithm checks whether
xk is the point with the best objective function value. If this is the case, it stops the
execution returning the point x∗, i.e., the best point found, otherwise it moves to the
best point found so far (see Step 19), thus D and Dk are set equal to D(xk). If the set
of generated search directions is still smaller than D(xk), it is enriched (Dk+1 ⊃ Dk)
and the set D includes only the new directions generated to enrich Dk (see Step 21).
Finally, in Phase 3 the new iterate xk+1 is generated.

In order to improve the performance of the algorithm, it is possible to reuse the
direction d in case a failure is obtained by the nonmonotone line search in Phase 1. In
particular, if the line search at Step 6 fails along the search direction d, we might sim-

123

An algorithmic framework based on primitive directions and…

ply consider direction d̄ = −d and perform another search along d̄ before selecting
another direction from D. We actually included this option in our practical implemen-
tation, but we decided to report the simplified version of the scheme here. This choice
allows to improve readability avoiding that the algorithm scheme becomes excessively
cumbersome.

Algorithm 1 NonMonotone Black-Box Optimization Algorithm (NM-BBOA)

1: Data. x0 ∈ X ∩ Z
n , D = D0 ⊂ D(x0) a set of initial directions, α̃

(d)
0 = 1, for each d ∈ D0. W = { f (x0)},

f re f = f̄0 = f (x0), xmin = x0, M ≥ 1, M ∈ N.

2: For k = 0, 1, . . .

PHASE 1 - Explore points around xk

3: Set y = xk

4: While D �= ∅ and y = xk do

Select and explore direction

5: Choose d ∈ D set D = D \ {d}
6: Compute α by the Nonmonotone Line Search(α̃(d)

k , xk , d, f re f ;α)

Update start stepsize, reference value and queue

7: If α = 0 then set α̃(d)
k+1 = max{1, �α̃(d)

k /2�}
8: else
9: Set y = xk + αd and α̃

(d)
k+1 = α

10: If f (y) < f (xmin) then xmin = y
11: If |W | = M then pop(W)
12: push(f (y),W), f re f = max f ∈W { f }
13: End If

14: End While

PHASE 2 - Update set of search directions

15: If y = xk then

16: If Nonmonotone Line Search failed with α̃
(d)
k = 1 for all d ∈ Dk then

17: If Dk = D(xk) then
18: If f (xk) = f (xmin) then return x∗ = xk
19: else Set y = xmin and D = Dk+1 = D(xk)
20: else
21: Generate Dk+1 ⊃ Dk , set α̃

(d)
k+1 = 1, for all d ∈ Dk+1 and D = Dk+1 \ Dk

22: End If
23: else
24: Set Dk+1 = Dk and D = {d ∈ Dk : Nonm. Line Search failed with α̃

(d)
k > 1}

25: End If
26: else
27: Set Dk+1 = Dk and D = Dk
28: End If

PHASE 3 - Update iterates

29: Set xk+1 = y, f̄k+1 = f re f

30: End For

123

G. Liuzzi et al.

The detailed scheme of the Nonmonotone Line Search procedure is reported in
Algorithm 2. This procedure is one of the novelties of the proposed approach and is
new in the context of black-box problems with integer variables. First, it calculates the
start stepsize for the search. This is chosen as the minimum between α̃

(d)
k (defining the

dynamically changing skewed stencil) and the largest stepsize ᾱ that can be taken along
the search direction d (See Initialization). If at Step 1 the start stepsize is greater than
zero and the function reduces along the search direction with respect to the reference
value f re f , the search starts expanding the stepsize and keeps doing it (by running
Steps 2–4) until either the maximum stepsize is reached or a reduction with respect to
the reference value cannot be guaranteed anymore (See Step 3). More specifically, we
set, at Step 2, the trial stepsize β equal to the minimum between ᾱ and 2α. At Step
3, we check if α is equal to the maximum stepsize ᾱ or the objective function value in
the trial point x +βd cannot guarantee a reduction with respect to the reference value
f re f . If one of these two conditions is satisfied, then we set the start stepsize α̃

(d)
k

related to the direction d equal to the stepsize α (thus modifying the skewed stencil)
and return α (see Step 5). Otherwise, we set α equal to the trial stepsize β and go
to Step 2, that is we keep expanding the trial stepsize because there is still hope to
improve the function along the search direction.

We would like to note that the line search moves along the direction by always
guaranteeing feasibility (the points chosen are on the integer lattice).

Algorithm 2 Nonmonotone Line Search

Input. α̃(d)
k , xk , d, f

re f

Initialization. Compute the largest ᾱ such that xk + ᾱd ∈ X ∩ Z
n . Set α = min{ᾱ, α̃

(d)
k }.

Step 1. If α > 0 and f (xk + αd) < f re f then go to Step 2
else Set α = 0 and go to Step 5

Step 2. Let β = min{ᾱ, 2α}
Step 3. If α = ᾱ or f (xk + βd) ≥ f re f then set α̃(d)

k+1 = α and go to Step 5
Step 4. Set α = β and go to Step 2
Step 5. Return α

In the following Theorem, we prove convergence of the method to a β-local mini-
mum with β = 1.

Theorem 1 Let {xk} and { f̄k} be the sequences of solutions and of reference values,
respectively, generated by NM-BBOA. Then, the algorithm cannot cycle and produces
a β-local minimum point with β = 1.

Proof First, we observe that the sequence { f̄k} is bounded from below, since the
number of distinct points in the feasible set is finite. Then, let us define

K = {k : xk+1 �= xk},

that is the subsequence of successful iterations given by NM-BBOA, and

H(k, k̄) = {h ∈ K : k < h ≤ k̄}, for k̄>k,

123

An algorithmic framework based on primitive directions and…

which represents the set of successful iterations in between k and k̄ (possibly including
k̄). Then, let k̄(M) be the index such that

|H(k, k̄(M))| = M .

For each k ∈ K , we have that
f (xk+1) < f̄k . (5)

Moreover, from the updating rules of f re f and the definition of f̄k , we have that

f̄k+1 ≤ f̄k . (6)

Then, remembering that |X ∩ Z
n| < ∞, we can define

0 < δ = min
x,y∈X∩Zn

{
| f (x) − f (y)| : f (x) �= f (y)

}
.

So that we have
f̄k̄(M) < f̄k − δ. (7)

We prove now that NM-BBOA does not cycle. Suppose, in order to obtain a con-
tradiction, that {xk} is an infinite sequence. If this is the case, it is easy to see that the
set K is also infinite. Since the procedure does not terminate, a point x̃ (which is not a
local minimum) is generated an infinite number of times. By (6) and (7), there exists
an iteration k̃ such that

f̄k̃ ≤ f (x̃).

Furthermore, as x̃ is generated an infinite number of times, there exists an iteration
k̂ ≥ k̃ such that

f (x̃) < f̄k̂ .

Hence, we have

f (x̃) < f̄k̂ ≤ f̄k̃ ≤ f (x̃),

which shows that the local-search procedure cannot cycle.
Finally, we prove that the point produced x∗ is a β-local minimum of the problem

(with β = 1). When NM-BBOA stops, let k̄ be the last iteration index, so that x∗ = xk̄
and xk̄ = xmin . Furthermore, Dk̄ = D(x∗) is the set of all the feasible and primitive
directions at x∗. We thus have

f (x∗) ≤ f̄k̄ (8)

and, by Step 7 of Algorithm 1 and the instructions of Algorithm 2,

f̄k̄ ≤ f (x∗ + d) ∀ d ∈ D(x∗). (9)

123

G. Liuzzi et al.

Then, combining Inequalities (8) and (9), we get that x∗ is a β-local minimum with
β = 1. ��

Obviously, it is possible to develop a procedure that explores a larger discrete
neighborhood (i.e., a neighborhood with β > 1). In order to do that, we just need
to suitably modify the way we set the start stepsize when generating a new direction
(α̃(d)

k+1 = β at Step 21) and we need to set to β the stepsizes that are equal to one when

we get a successful iteration (if α̃
(d)
k = 1 then set α̃(d)

k+1 = β at Step 27). Parameter β

should anyway be carefully chosen in order to keep the exploration computationally
cheap. It is easy to understand that such a choice becomes even more critical when
getting a small budget of evaluations.

3 Handling of general simulation constraints

We now consider the following problem

min f (x)
s.t . g(x) ≤ 0

x ∈ X ∩ Z
n,

(10)

where g : R
n → R

m corresponds to m ≥ 1 simulation constraint functions [21]. The
above problem is Problem (1) where

C = {x ∈ R
n : g(x) ≤ 0, l ≤ x ≤ u} = X ∩ F

and F = {x ∈ R
n : g(x) ≤ 0}. In order to handle the nonlinear constraints, we

use a simple penalty approach (see, e.g., [23]). Specifically, given Problem (10) and a
penalty parameter ε ∈ R+, we introduce the following penalty function:

P(x; ε) = f (x) + 1

ε
s(x),

where s(x) = ∑m
i=1max{0, gi (x)} and ε > 0. Then, we consider the following bound-

constrained problem
min P(x; ε)

s.t . x ∈ X ∩ Z
n (11)

Now,we prove the equivalence between the original Problem (10) and the penalized
Problem (11). In particular, we will prove that there exists a threshold value ε̄ for the
penalty parameter such that, for any ε ∈ (0, ε̄), anyminimumof the penalized problem
is also a minimum of the original problem and viceversa.

Theorem 2 Given Problem (10) and considering Problem (11), a threshold value
ε̄ > 0 exists such that for every ε ∈ (0, ε̄), any global minimum point x̄ of (11) is also
a global minimum of (10) and viceversa.

123

An algorithmic framework based on primitive directions and…

Proof We first prove that any minimum point x̄ of (11) is also a minimum of (10).
Let us define the following penalty parameter

ε̄ = a

b
, (12)

with
a = min{s(x): x ∈ X∩Z

n, g(x)�0} (13)

and

b = max{ f (y) − f (x): x, y ∈ X∩Z
n, g(x)�0, g(y) ≤ 0}.

By contradiction, we assume that there exists a minimum point x̄ of Problem (11),with
ε<ε̄, that is not feasible for Problem (10). For any feasible point y of Problem (10),
we have:

f (y) − f (x̄) ≤ b = 1

ε̄
a <

1

ε
s(x̄),

with ε ∈ (0, ε̄). Hence, we can write

f (y) < f (x̄) + 1

ε
s(x̄),

thus contradicting the fact that x̄ is minimum for Problem (11) with ε<ε̄.
We now prove that any minimum point x̄ of (10) is a minimum of (11) for any

ε<ε̄. For any point x ∈ X∩Z
n not feasible for Problem (10) we have

f (x̄) − f (x) ≤ b = 1

ε̄
a <

1

ε
s(x),

with ε ∈ (0, ε̄). Hence, we can write

f (x̄) < f (x) + 1

ε
s(x),

and x̄ is also minimum for Problem (11) for any ε<ε̄. ��
In order to prove that every local minimum of the penalized problem is also a local

minimum of the original problem, we introduce the following assumption.

Assumption 1 For every x ∈ X ∩ Z
n not feasible for Problem (10), i.e., g(x) � 0,

there exists a direction d̄ ∈ D(x) such that

s(x + d̄) =
m∑
i=1

max{0, gi (x + d̄)} <

m∑
i=1

max{0, gi (x)} = s(x).

123

G. Liuzzi et al.

The assumption, which will also be considered when studying the convergence
of the method, is basically a kind of Mangasarian-Fromowitz constraint qualification
condition for integer problems. The condition simply says that,whenweget a point that
is not feasible for the original problem, we can always find a primitive direction that
guarantees a reduction of the violation. This sounds pretty reasonable when dealing
with the class of problems considered in here.

Now, we can prove that there exists a threshold value ε̄ for the penalty parameter
such that, for any ε ∈ (0, ε̄), any local minimum of the penalized problem is also a
local minimum of the original problem.

Theorem 3 Let Assumption 1 hold.GivenProblem (10) and consideringProblem (11),
a threshold value ε̄ > 0 exists such that for every ε ∈ (0, ε̄), any β-local minimum
point x̄ of (11) is also a β-local minimum of (10), with β = 1.

Proof Let us define the following penalty parameter

ε̄ = a

b
, (14)

with

a = min{s(x) − s(x + d), x ∈ X , d ∈ D(x), s(x) − s(x + d) > 0}

and

b = max{ f (x + d) − f (x), x ∈ X , d ∈ D(x), f (x + d) − f (x) > 0}.

By contradiction, we assume that there exists a local minimum point x̄ of Problem (11)
that is not feasible for Problem (10). Taking into account Assumption 1, we can find
a direction d̄ ∈ D(x̄), such that:

f (x̄ + d̄) − f (x̄) ≤ b = 1

ε̄
a <

1

ε

[
s(x̄) − s(x̄ + d̄)

]
,

with ε ∈ (0, ε̄). Hence, we can write

f (x̄ + d̄) + 1

ε
s(x̄ + d̄) < f (x̄) + 1

ε
s(x̄),

thus contradicting the fact that x̄ is local minimum for Problem (11). ��
The algorithm we use in the constrained case, called NM-BBOA_CP, has the same

structure as the NM-BBOA algorithm for bound-constrained integer programs. The
detailed scheme is reported in Algorithm 3. It is easy to see that the main differences
between the two are the following:

1. the function f is replaced by the penalty function P;
2. a specific rule is used for the update of the penalty parameter ε.

123

An algorithmic framework based on primitive directions and…

As we can easily see, the algorithm checks, in Phase 2, if the update is timely. More
specifically, if Nonmonotone line search failed along all the directions in Dk and the
start stepsize is 1 for all of those directions (i.e., the dynamically changing skewed
stencil defined by directions d ∈ Dk and stepsizes α̃

(d)
k shrank to its minimum size in

Phase 1), the algorithm checks if either the violation of the constraints is larger than
a reference value μk (which goes to zero as k goes to infinity) or all of the directions
in D(xk) have been generated. If this is the case, the penalty parameter decreases,
otherwise it stays the same.

We finally prove finite convergence of the method to a local minimum. Again it is
appropriate to note that the local minimum obtained is related to a discrete neighbor-
hood with β = 1. We further point out that, in order to prove the result, Assumption 1
is used.

Theorem 4 Let Assumption 1 hold. Let {xk} and {P̄k} be the sequences of solutions
and of reference values, respectively, generated by NM-BBOA_CP.
Then, the algorithm terminates after a finite number of iterations k̄ and the produced
point xk̄ is a β-local minimum of the original Problem (10) with β = 1.

Proof We assume, by contradiction, that the sequence {xk} is infinite. Hence,
also sequence {εk} is infinite. Considering the detailed instructions of Algorithm
NM-BBOA_CP, for every iteration k, either we have εk+1 = εk or εk+1 = θεk < εk .
Thus,

lim
k→∞ εk = ε̃ ≥ 0.

Then, only two different cases can happen:

Case 1. εk = ε̃ when k sufficiently large. In this case, taking into account (13), we
have thatμk < a for k sufficiently large. Thus, the generated points are all feasible.
Hence, the proof is a verbatim repetition of the proof given for Theorem 1.
Case 2. εk → 0. We first define

K = {k : εk+1 �= εk}.

Taking into account the fact that X is compact, we can now consider a further
subsequence K1 ⊂ K such that xk = x̃ for all k ∈ K1. When k is sufficiently
large, we have Dk = D(x̃), and, from the instructions of the algorithm, we can
write

P(x̃ + d; εk) ≥ P̄k ≥ P(x̃; εk), ∀ d ∈ D(x̃). (15)

Hence, multiplying by εk and considering the limit for k → ∞, we have

m∑
i=1

max {0, gi (x̃ + d)} ≥
m∑
i=1

max {0, gi (x̃)} , ∀ d ∈ D(x̃).

123

G. Liuzzi et al.

Algorithm 3 NonMonotone Black-Box Optimization Algorithm for Constrained
Problems (NM-BBOA_CP)

1: Data. x0 ∈ X ∩ Z
n , D = D0 ⊂ D(x0) a set of initial directions, α̃

(d)
0 = 1, for each d ∈ D0. ε0 > 0, θ ∈ (0, 1) and a

sequence {μk } ↓ 0. W = {P(x0; ε0)}, Pre f = P̄0 = P(x0; ε0), xmin = x0, M ≥ 1, M ∈ N.

2: For k = 0, 1, . . .

PHASE 1 - Explore points around xk

3: Set y = xk

4: While D �= ∅ and y = xk do

Select and explore direction

5: Choose d ∈ D set D = D \ {d}
6: Compute α by the Nonmonotone Line Search(α̃(d)

k , xk , d, Pre f ;α)

Update start stepsize, reference value and queue

7: If α = 0 then set α̃(d)
k+1 = max{1, �α̃(d)

k /2�}
8: else
9: Set y = xk + αd and α̃

(d)
k+1 = α

10: If P(y; εk) < P(xmin ; εk) then xmin = y
11: If |W | = M then pop(W)
12: push(P(y; εk),W), Pre f = maxP∈W {P}
13: End If

14: End While

PHASE 2 - Update set of search directions and penalty parameter

15: If y = xk then

16: If Nonmonotone Line Search failed with α̃
(d)
k = 1 for all d ∈ Dk then

17: Set upd=FALSE

18: If Dk = D(xk) then
19: If (‖g+(xk)‖ = 0) then
20: If f (xk) = f (xmin) then return x∗ = xk
21: else Set y = xmin and D = Dk+1 = D(xk)
22: else
23: Set upd=TRUE and D = Dk+1 = D(xk)
24: End If
25: else
26: Generate Dk+1 ⊃ Dk , set α̃

(d)
k+1 = 1, for all d ∈ Dk+1 and D = Dk+1 \ Dk

27: End If

28: If (‖g+(xk)‖ > μk) or (upd) then Set εk+1 = θεk
29: else Set εk+1 = εk

30: else
31: Set εk+1 = εk

32: Set Dk+1 = Dk and D = {d ∈ Dk : Nonm. Line Search failed with α̃
(d)
k > 1}

33: End If
34: else
35: Set εk+1 = εk
36: Set Dk+1 = Dk and D = Dk
37: End If

PHASE 3 - Update iterates

38: Set xk+1 = y, P̄k+1 = Pre f

39: End For

123

An algorithmic framework based on primitive directions and…

Thus we get, by recalling Assumption 1, that x̃ is feasible and, thanks to inequal-
ity (15), it is a local minimum for Problem (10). This contradicts the fact that the
algorithm does not terminate.

Then, the theorem is proved. ��

4 Numerical experiments on bound-constrained problems

In this section we report the results of the numerical experience and comparison of
our nonmonotone algorithm (NM-BBOA) with other solvers from the literature on
problems with only bound constraints on the variables. We also report comparison
between algorithms obtained from NM-BBOA by disabling Phase 2 (thus obtain-
ing an algorithm using dynamically changing skewed stencils) or disabling both the
nonmonotone line-search procedure and Phase 2 (thus coming up with an algorithm
using fixed stencil). Furthermore, we investigate to what extent the nonmonotonicity
is useful in this context.

In order to evaluate the relative performances of the algorithms on bound-
constrained problems, we use the 61 problems listed in Table 1.

More precisely,we use 48 unconstrained problems from sections 2 and 3 of [27], i.e.,
unconstrained minimax problems and general nonsmooth unconstrained problems,
plus 13 bound-constrained mixed-integer problems from [30–32]. Then, for the 48
unconstrained problems, we add bound constraints on the variables as

�i = (x̃0)
i − 10 ≤ x̃ i ≤ (x̃0)

i + 10 = ui , i = 1, . . . , n,

where x̃0 is the provided starting point for the problem. Furthermore, given the con-
tinuous or mixed-integer bound-constrained optimization problem

min f̃ (x̃)
s.t . �i ≤ x̃ i ≤ ui , i = 1, . . . , n

x̃i ∈ Z, ∀ i ∈ Id ⊆ {1, . . . , n}
x̃ i ∈ R, ∀ i /∈ Id

we consider the discretized problem

min f (x)
s.t . �i ≤ xi ≤ ui , ∀ i ∈ Id ,

0 ≤ xi ≤ 100, ∀ i /∈ Id
x ∈ Z

n

(16)

where f (x) = f̃ (x̃) with

x̃ i =
{
xi , for all i ∈ Id ,
�i + xi (ui − �i)/100, for all i /∈ Id .

123

G. Liuzzi et al.

Table 1 Unconstrained and bound-constrained test problems collection

Problem name Source n Problem name Source n

crescent [27] 2 filter [27] 9

cb2 [27] 2 polak 2 [27] 10

cb3 [27] 2 maxquad [27] 10

dem [27] 2 gill [27] 10

wolfe [27] 2 wong2 [27] 10

lq [27] 2 polak 3 [27] 11

ql [27] 2 osborne 2 [27] 11

mifflin 1 [27] 2 steiner 2 [27] 12

mifflin 2 [27] 2 shell dual [27] 15

wf [27] 2 watson [27] 20

spiral [27] 2 wong3 [27] 20

banex [27] 2 maxl [27] 20

pbc3 [27] 3 maxq [27] 20

bard [27] 3 tr48 [27] 48

evd 52 [27] 3 mxhilb [27] 50

oet5 [27] 4 l1hilb [27] 50

oet6 [27] 4 goffin [27] 50

gamma [27] 4 SOMI prob.10 [31] 5

kowalik-osborne [27] 4 SO-I prob. 2 [32] 5

rosen-suzuki [27] 4 SO-I prob. 7 [32] 10

polak 6 [27] 4 SO-I prob. 9 [32] 12

davidon 2 [27] 4 SO-I prob.10 [32] 30

shor [27] 5 SO-I prob.13 [32] 10

colville 1 [27] 5 SO-I prob.15 [32] 12

exp [27] 5 SO-I prob.16 [32] 8

pbc1 [27] 5 MISO prob. 6 [30] 15

hs78 [27] 5 MISO prob. 7 [30] 2

evd61 [27] 6 MISO prob. 8 [30] 15

elattar [27] 6 MISO prob. 9 [30] 3

transformer [27] 6 MISO prob.10 [30] 60

wong1 [27] 7

As concerns the starting point x0 for Problem (16), we set

(x0)
i =

{ �(�i + ui)/2�, i ∈ Id ,
50, i /∈ Id ,

(17)

and note that, when i /∈ Id , (x0)i is nothing but

(x0)
i = �100((x̃0)i − �i)/(ui − �i)�,

123

An algorithmic framework based on primitive directions and…

where �·� and �·� denote, respectively, the nearest integer and the floor operators.
The code related to NM-BBOA [24] and all the problems used in the experiments

are available for download at the Derivative-Free Library homepage

http://www.iasi.cnr.it/~liuzzi/DFL/

following the links DFLINT [24] (code) and TESTINT (collection of problems).

4.1 The algorithms

In this section we briefly describe the algorithms that we used in the comparison.
Apart from our proposed solver NM-BBOA (with D0 = {e1, . . . , en} and M = 4),
we consider:

– M-BBOA, the monotone version of NM-BBOA, i.e., the one obtained by setting
M = 1 in algorithm NM-BBOA;

– NM-DCS (M-DCS), nonmonotone (respectively, monotone) dynamically chang-
ing (skewed) stencil algorithm, i.e., the nonmonotone (monotone) version of the
algorithm obtained fromNM-BBOA (M-BBOA) where Phase 2 is disabled so that
Dk+1 = Dk = D0 for all k;

– NM-FS (M-FS), nonmonotone (respectively, monotone) fixed stencil algorithm,
i.e., the algorithm obtained from NM-DCS (M-DCS) where we inhibit the step
expansion within the nonmonotone search procedure;

– Derivative Free Linesearch Algorithm for box constriants (DFL box), the line-
search based derivative-free algorithm for bound-constrained mixed-integer prob-
lems described in [22];

– Derivative Free Linesearch Algorithm for general constraints (DFL gen), the line-
search based derivative-free algorithm for inequality constrained mixed-integer
problems described in [23];

– Nonlinear Optimization by Mesh Adaptive Direct Search (NOMAD v.3.8.11), an
implementation of the mesh adaptive direct search method [2,20];

– Brute Force Optimizer (BFO), the brute force derivative-free optimizer described
in [34];

– Mixed-Integer Surrogate Optimization framework (MISO), a model-based
approach using surrogates [30].

We note that DFL box, BFO and MISO can only handle bound-constrained problems.
On the contrary, NOMAD, DFL gen and the algorithms herein proposed (i.e., BBOA,
DCS and FS) can explicitly handle problems with general simulation constraints.

All the algorithms have been run specifying a maximum of 5000 function evalua-
tions. Since the problems in our benchmark sets have at most 60 variables, this value
represents a reasonable choice in practice (see, e.g., [29]). For each of the parameters
listed below, we tried different values and used the one that resulted in the best reli-
ability (Feature (iii)). For algorithms NM-BBOA and M-BBOA we use α̃

(d)
0 = 50,

1 A new version of NOMAD with better functionalities, e.g. the Nelder Mead search and the possibility
to specify the direction type for poll intensification, was released while this paper was under review (for
further details visit the website https://www.gerad.ca/nomad/).

123

http://www.iasi.cnr.it/~liuzzi/DFL/
https://www.gerad.ca/nomad/

G. Liuzzi et al.

whereas, for algorithmsDCS and FS (bothNMandMversions) α̃(d)
0 = 1was used. As

concerns Step 21 of algorithms NM-BBOA andM-BBOA, namely the procedure that
given set Dk returns Dk+1 ⊃ Dk , it is implemented according to [4]. Specifically, the
procedure described in Algorithm 4 below is used. The algorithm generates a vector
belonging to the Halton sequence at Step 5. Then, at Step 6, a specific rounding gives
the adjusted direction with all integer components. At Step 7, the algorithm checks if
the direction is a prime vector and does not belong to Dk , and eventually updates Dk

(see Step 8).
As regards solvers DFL box [22] and DFL gen [23], we note that they have not

been developed to solve purely integer problems. For this reason, in order to use the
solvers in the numerical experiments, we had to slightly adapt them both.

NOMAD has been run by using the default parameter settings except for

initial_mesh_size = 5; direction_type = ortho 2n.

In order to better understand the effectiveness of our exploration strategy when com-
pared with the pureMADS strategy used by NOMAD for integer problems, we further
run NOMAD with the option

disable models,

and report in the comparisons both versions of NOMAD.
The solver BFO has been run using default values for its parameters.
As concerns the solver MISO, we adopted the standard sampling strategy (i.e.,

cptvl) and surrogate model radial basis function (i.e., rbf_c). Furthermore, we
provided MISO with a single initial starting point x0 as defined in (17).

Algorithm 4 Procedure to generate new set of search directions

1: Input. t > 0, η > 0, Dk

2: If η < 50
√
n/2

3: For h = 1, . . . , 1000
4: Set t ← t + 1
5: Let ut be the t-th vector in the n dimensional Halton sequence [18]
6: Compute

qt (η) =
⌊
η

2ut − e

‖2ut − e‖
⌉

∈ Z
n ∩

[
−η − 1

2
, η + 1

2

]n
.

7: If qt (η) is a prime vector and qt (η) /∈ Dk
8: Set Dk+1 = Dk ∪ {qt (η)}
9: return (success, t, η, Dk+1)

10: Endif
11: End For
12: Endif
13: return (failure, t, η, Dk)

Data and performance profiles Performance of the different codes is assessed using
data and performance profiles from [29]. Specifically, let S be a set of algorithms and
P a set of problems. For each s ∈ S and p ∈ P , let tp,s be the number of function

123

An algorithmic framework based on primitive directions and…

evaluations required by algorithm s on problem p to satisfy the condition

f (xk) ≤ fL + τ(f (x0) − fL) (18)

where 0 < τ < 1 and fL is the best objective function value achieved by any solver on
problem p. Then, performance and data profiles of solver s are the following functions

ρs(α) = 1

|P|
∣∣∣∣
{
p ∈ P : tp,s

min{tp,s′ : s′ ∈ S} ≤ α

}∣∣∣∣ ,

ds(κ) = 1

|P|
∣∣{p ∈ P : tp,s ≤ κ(n p + 1)

}∣∣

where n p is the dimension of problem p.
In [29], it is argued that performance and data profiles give insights on the relative

performances of the compared algorithms. Three features of the profiles are particu-
larly relevant, namely

(i) for performance profiles, the values ρs(0);
(ii) how steeply the curves rise;
(iii) how high the curves rise.

Wewould like to highlight that the limiting value of ρs(α) as α → ∞ is the percentage
of problems that can be solvedwith the available budget of function evaluations.Hence

ds(κ̂) = lim
α→∞ ρs(α),

where κ̂ is the maximum number of simplex gradients performed with the available
budget. This limit represents the reliability of the solver for a given tolerance τ (see [29]
for further details). Thus, Feature (ii) can be used to evaluate the efficiency of the
algorithms, and Feature (iii) to evaluate their reliability.

4.2 Results

First, we analyze our codes NM-BBOA, M-BBOA, NM-DCS, M-DCS, NM-FS, and
M-FS. Such a comparison is reported in Fig. 2 for values of the tolerance parameter
τ in {10−1, 10−3, 10−5, 10−7}. It can be noted that both NM-BBOA and M-BBOA
are quite efficient and reliable when compared with the other methods. In Fig. 3,
we hence report results related to NM-BBOA and M-BBOA against NOMAD (with
and without models), MISO, DFL box and BFO. From Fig. 3, we can conclude
that NM-BBOA, M-BBOA and MISO are the best performing solvers on this set
of problems. To better analyze the behavior of the methods on the bound-constrained
problems, in Fig. 4, we report the results obtained when only problems with n ≥ 10
variables are considered. As we can see, the profiles reported in Fig. 4 are notice-
ably different from those reported in Fig. 3. Here, we can still say that M-BBOA
and MISO are the most efficient solvers. To better understand the respective per-
formances of M-BBOA, NM-BBOA and MISO, in the following table we report

123

G. Liuzzi et al.

CPU times (in seconds) required by the methods to solve all of the problems in the
collection. It is worth noting that MISO is by far the most time consuming solver

Solver CPU time (s)

BFO 8.32
NOMAD 8.43
DFL box 9.66
NOMAD (w/mod.) 851.36
M-BBOA 676.77
NM-BBOA 658.03
MISO 93046.14

(requiring almost 25 hours to complete). Hence, we can say that the good efficiency
of MISO is (at least to some extent) due to the complicated linear algebra used by the
solver to construct and optimize the surrogate models during the optimization process.

When reliability is considered, NM-BBOA is the solver of choice if one seeks
relatively high level of precision. This can be explained by considering that the
nonmonotone algorithm might take uphill steps especially at the beginning of the
optimization process. This could in turn justify a less steeper descent of the non-
monotone algorithm with respect to the monotone one. However, the nonmonotone
algorithm should have a greater ability to escape from local minima, thus converging
to better minimum points. This is certainly the case for larger problems, see e.g. Fig. 4,
but does not seem to emerge from Fig. 3, where instead NM-BBOA and M-BBOA
appear to be almost equivalent in terms of reliability. We suspect that the considered

0 500 1000
Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1
τ=10-1

NM-BBOA
M-BBOA
NM-FS
M-FS
NM-DCS
M-DCS

0 500 1000
Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1
τ=10-3

0 500 1000
Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1
τ=10-5

0 500 1000
Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1
τ=10-7

1 2 4 8 16 32 64 128
Performance ratio, α

0

0.2

0.4

0.6

0.8

1
τ=10-1

1 2 4 8 16 32
Performance ratio, α

0

0.2

0.4

0.6

0.8

1
τ=10-3

10 20 30 40
Performance ratio, α

0

0.2

0.4

0.6

0.8

1
τ=10-5

10 20 30 40
Performance ratio, α

0

0.2

0.4

0.6

0.8

1
τ=10-7

Fig. 2 Comparison between BBOA, DCS and FS, both monotone and nonmonotone, on the 61 bound-
constrained problems

123

An algorithmic framework based on primitive directions and…

0 500 1000
Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1
τ=10 -1

NM-BBOA
M-BBOA
NOMAD
NOMAD (w/ mod.)
MISO
DFL box
BFO

0 500 1000
Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1
τ=10 -3

0 500 1000
Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1
τ=10 -5

0 500 1000
Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1
τ=10 -7

1 2 4 8 16 32 64 128
Performance ratio, α

0

0.2

0.4

0.6

0.8

1
τ=10 -1

1 2 4 8 16 32 64 128256
Performance ratio, α

0

0.2

0.4

0.6

0.8

1
τ=10 -3

50 100 150 200 250
Performance ratio, α

0

0.2

0.4

0.6

0.8

1
τ=10 -5

50 100 150 200 250
Performance ratio, α

0

0.2

0.4

0.6

0.8

1
τ=10 -7

Fig. 3 Comparison between NM-BBOA, M-BBOA, NOMAD (3.8.1) with/without models, MISO, DFL
box and BFO on the 61 bound-constrained problems

0 100 200
Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1
τ=10 -1

NM-BBOA
M-BBOA
NOMAD
NOMAD (w/ mod.)
MISO
DFL box
BFO

0 100 200 300
Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1
τ=10 -3

0 200 400
Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1
τ=10 -5

0 200 400
Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1
τ=10 -7

1 2 4 8 16 32 64 128
Performance ratio, α

0

0.2

0.4

0.6

0.8

1
τ=10 -1

1 2 4 8 16 32 64 128256
Performance ratio, α

0

0.2

0.4

0.6

0.8

1
τ=10 -3

50 100 150 200 250
Performance ratio, α

0

0.2

0.4

0.6

0.8

1
τ=10 -5

50 100 150 200 250
Performance ratio, α

0

0.2

0.4

0.6

0.8

1
τ=10 -7

Fig. 4 Comparison between NM-BBOA, M-BBOA, NOMAD (3.8.1) with/without models, MISO, DFL
box and BFO on the bound-constrained problems with n ≥ 10

set of problems is not adequate for the advantages of the nonmonotonicity to clearly
emerge. Hence, we better investigate this aspect in the next subsection where a class
of hard global optimization problems is considered.

By focusing again on the data profiles reported in Figs. 3 and 4, we can finally
remark that the only methods making a noticeable progress when the number of

123

G. Liuzzi et al.

Table 2 Effect of varying
parameter β in algorithms
M-BBOA and NM-BBOA on
the ability to find the global
minimizers for the hard
bound-constrained problems

β M-BBOA NM-BBOA

succ. CPU time # succ. CPU time

1 45 1290.01 57 1320.25

2 62 1426.37 61 1286.93

5 68 1688.40 70 1335.70

10 70 1452.64 72 1384.21

20 71 1441.81 74 1447.48

30 68 1445.79 75 1404.10

50 67 1599.75 80 1416.26

simplex gradients significantly increases are MISO, NM-BBOA and M-BBOA. This
implies that all of the othermethods in some cases settle on aworse local/mesh-isolated
solution than these solvers do.

4.3 Results on a class of hard global optimization problems

In this section we study the impact of a parameter β ≥ 1 on the ability of the proposed
algorithm to find the global minimum of Problem (4). To this aim, we define a class
of hard bound-constrained problems. More specifically, we consider problem

min ϕ(x)
s.t . 0 ≤ xi ≤ 100, i = 1, 2

x ∈ Z
2

(19)

where

ϕ(x) = min
j=1,...,20

ln
(‖c j − x‖ + σ j

)

with c j , j ∈ {1, . . . , 20}, random feasible points for Problem (19), σ j = 10−2,
j ∈ {1, . . . , 20}\ J̄ , and σ j = 10−6, j ∈ J̄ , where J̄ is a random subset of {1, . . . , 20}
with | J̄ | = 3. Note that, by definition of ϕ(x), it results

ϕ(c j) =
{
ln(10−6) j ∈ J̄ ,

ln(10−2) j /∈ J̄ .

As a first step, we investigate the effect of varying parameter β (both in M-BBOA
and NM-BBOA) on the ability of the algorithm to find the global minimizers. For the
sake of clarity, we denote M-BBOA(β) and NM-BBOA(β), respectively, M-BBOA
and NM-BBOA when parameter β > 1 is used. Note that M-BBOA and NM-BBOA
use a value β = 1. All the algorithms have been run on a set of 100 randomly generated
problems of the form (19), allowing a maximum of 5000 function evaluations.

123

An algorithmic framework based on primitive directions and…

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of function evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s

NM-BBOA (β=50)
M-BBOA (β=50)
NM-BBOA (β=1)
M-BBOA (β=1)

Fig. 5 Comparison between NM-BBOA (using β = 1), M-BBOA (using β = 1), modified NM-BBOA
(using β = 50), and modified M-BBOA (using β = 50) on hard global optimization problems

Results of such experimentation are reported in Table 2. For β = 1, 2, 5, 10, 20, 30
and 50, we report the number of times the algorithm found the global minimum out
of the 100 runs, and the CPU time required to solve all the 100 problems.

Aswe can see, both the codes performbetter (in terms of number of times they found
the global minimum point) when β = 50. We can also note, from the reported CPU
times, that NM-BBOA(β = 50) is only 10% slower than NM-BBOA(β = 2) to solve
all of the 100 problems. As concerns M-BBOA, we can see that M-BBOA(β = 50)
is 24% slower than M-BBOA(β = 1).

Now, we compare the performance of M-BBOA and NM-BBOAwith their respec-
tive modified versions, i.e., those that explore larger neighborhoods. Taking into
account Remark 2, the comments at the end of Sect. 2, and the considerations in the
above paragraph, we used β = 50 in the modified version of the algorithms. In Fig. 5,
we plot the percentage of problems solved to global optimality (y axis) with the given
number of function evaluations (x axis). As we can easily see, NM-BBOA(β = 50),
when the number of evaluations is large enough (i.e., larger than 1500), is able to find
a global minimum with higher probability. Furthermore, if we allow a sufficient num-
ber of function evaluations (say 2000), a ranking between the algorithms can be done.
Precisely and as expected, NM-BBOA(β = 50) is the best method. The second best
method is M-BBOA(β = 50), third best is NM-BBOA, and M-BBOA is the worst
one on this set of problems. These results seem to indicate that, on problems with
many local minima if we are interested in finding good points, we can suitably modify
the proposed algorithm into two different ways. First, we can increase parameter M
that determines the amount of non-monotonicity of the algorithm which can help to
escape from (useless) local minima. Second, we can operate on the parameter β thus
allowing the algorithm to explore larger neighborhoods, which again can help escape
from local minima.

123

G. Liuzzi et al.

5 Numerical experiments on problems with general simulation
constraints

This section is devoted to the analysis of the results obtainedby theproposed algorithms
on generally-constrained test problems. Furthermore, comparison with NOMAD (ver-
sion 3.8.1) [2,20] is reported.

We defined a collection of constrained problems by adding to every bound-
constrained problem (among the 48 problems from [27] described in Table 1) the
following families of nonlinear constraints.

g̃ j (x̃) = (3 − 2x j+1)x j+1 − x j − 2x j+2 + 1 ≤ 0, j = 1, . . . , n − 2 (n ≥ 3);
g̃ j (x̃) = (3 − 2x j+1)x j+1 − x j − 2x j+2 + 2.5 ≤ 0, j = 1, . . . , n − 2 (n ≥ 3);
g̃ j (x̃) = x2j + x2j+1 + x j x j+1 − 2x j − 2x j+1 + 1 ≤ 0, j = 1, . . . , n − 1 (n ≥ 2);
g̃ j (x̃) = x2j + x2j+1 + x j x j+1 − 1 ≤ 0, j = 1, . . . , n − 1, (n ≥ 2);
g̃ j (x̃) = (3 − 0.5x j+1)x j+1 − x j − 2x j+2 + 1 ≤ 0, j = 1, . . . , n − 2 (n ≥ 3);
g̃1(x̃) =

n−2∑
j=1

((3 − 0.5x j+1)x j+1 − x j − 2x j+2 + 1) ≤ 0, (n > 3).

This way we obtain a set of 240 test problems with n ∈ [2, 50] and m ∈ [1, 49].
Note that, as already discussed, given the continuous constraint function g̃ j (x̃), j =
1, . . . ,m, we consider the discretized constraint function g j (x) such that g j (x) =
g̃ j (y) with yi = �i + xi (ui − �i)/100, i = 1, . . . , n.

We would like to note that parameter μk needs to be properly set and updated in
NM-BBOA. In practice, we initialize μ0 = 1 and use the following updating rule

μk+1 = max{ε, 0.5μk},

with ε > 0 a reasonably small feasibility tolerance, e.g., ε = 10−8.

5.1 Results

When constraints are present in the definition of the problem, performance and data
profiles as proposed in [29] cannot be directly used. We adapt the procedure to con-
struct performance and data profiles as proposed in [13]. Specifically, we consider the
convergence test

f̂0 − f (x) ≥ (1 − τ)(f̂0 − fL),

where f̂0 is the objective function value of the worst feasible point determined by all
the solvers (note that in the bound-constrained case, f̂0 = f (x0)), and fL is computed
for each problem as the smallest value of f (at a feasible point) obtained by any solver
within 5000 function evaluations. Note that when a point is not feasible (i.e., g(x) � 0)
we set f (x) = +∞.

In Fig. 6, we report the comparison between algorithms NM-BBOA_CP, NOMAD
(3.8.1) where use of models is, respectively, allowed and inhibited through the option

123

An algorithmic framework based on primitive directions and…

0 200 400

Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s,

 ρ
τ=10 -1

NM-BBOA
NOMAD (w/ mod.)
NOMAD (w/o mod.)
DFL gen

0 100 200 300

Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1
τ=10 -3

0 200 400

Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1
τ=10 -5

0 500 1000

Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1
τ=10 -7

1 2 4 8 16 32

Performance ratio, α

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s,

 ρ

τ=10 -1

1 2 4 8 16 32 64

Performance ratio, α

0

0.2

0.4

0.6

0.8

1
τ=10 -3

10 20 30

Performance ratio, α

0

0.2

0.4

0.6

0.8

1
τ=10 -5

20 40 60 80

Performance ratio, α

0

0.2

0.4

0.6

0.8

1
τ=10 -7

Fig. 6 Comparison between NM-BBOA_CP, NOMAD (3.8.1) with and without models on the 240
generally-constrained problems

0 50 100 150

Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s,

 ρ

τ=10 -1

NM-BBOA
NOMAD (w/ mod.)
NOMAD (w/o mod.)
DFL gen

0 100 200 300

Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1
τ=10 -3

0 200 400

Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1
τ=10 -5

0 200 400

Number of simplex gradients, κ

0

0.2

0.4

0.6

0.8

1
τ=10 -7

1 2 4 8 16 32

Performance ratio, α

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s,

 ρ

τ=10 -1

1 2 4 8 16 32

Performance ratio, α

0

0.2

0.4

0.6

0.8

1
τ=10 -3

10 20 30

Performance ratio, α

0

0.2

0.4

0.6

0.8

1
τ=10 -5

10 20 30

Performance ratio, α

0

0.2

0.4

0.6

0.8

1
τ=10 -7

Fig. 7 Comparison between NM-BBOA_CP and NOMAD (3.8.1) without models on the 96 generally-
constrained problems with n ≥ 10

disable models, and DFL gen. As we can see, NOMAD using models is (obvi-
ously) better than the version of NOMAD without models. We can also see that
NOMAD with models is slightly more efficient than NM-BBOA_CP but consider-
ably less reliable. Also, note that NM-BBOA_CP is (almost) as efficient as NOMAD
without models but, again, considerably more reliable. Finally, note that DFL gen is

123

G. Liuzzi et al.

less efficient with respect to the other solvers. This is mainly due to the lattice explo-
ration strategy performed by DFL gen, which either is not able to obtain feasibility
or recovers feasible points with high objective function value. To better investigate
the situation, we repeat the same comparisons but on a restricted test set obtained by
selecting problems with n ≥ 10 among the 240 constrained problems, thus obtaining
a subset of 96 problems. Such a comparison is reported in Fig. 7. As it can be noted,
NM-BBOA_CP is now both more efficient and more reliable than NOMAD without
models. Again, when we allow the use of models within NOMAD, the gap in terms
of efficiency is considerably reduced but NM-BBOA_CP is still more reliable than
NOMAD. Again, we note that DFL gen is less efficient on this set of problems.

6 Conclusions

In this paper, we developed a tailored strategy for solving black-box problems with
integer variables. The use of primitive directions combined with a suitably developed
nonmonotone line search gives a high level of freedom when exploring the integer
lattice and further guarantees a high level of reliability.We first described and analyzed
in depth a version of the algorithm that handles bound-constrained problems. Then,
we tackled the generally-constrained case by embedding a penalty approach in the
algorithmic framework.

We also included an extensive numerical analysis on a large testbed of both bound-
constrained and generally-constrained problems. As a first step, we both studied the
effects of using enriched stencils and comparedmonotone vs nonmonotone acceptance
rules in our algorithmic framework. The results showed that

– sampling the function by such a dynamically changing set of search directions can
significantly improve the performance of the algorithm;

– the use of a nonmonotone line search can get better results in terms of reliability
especially when dealing with noisy problems.

A comparison with NOMAD (with and without models), BFO and MISO was carried
out on bound-constrained problems. The results we reported allow us to conclude
that our strategy gives good performances both in terms of efficiency and reliability,
and the gap between our algorithm and the others becomes noticeable as we focus
on problem with a number of variables greater or equal than 10 and ask for higher
precisions.

The results on problemswith simulation constraints showed that our strategy clearly
outperforms DFL gen and is very competitive with the version of NOMAD that does
not embed models. When compared to NOMAD with models, our method can only
guarantee better performances in terms of reliability. The results change if we focus
on instances with a number of variables larger or equal than 10. Indeed, in this case,
our algorithm outperforms NOMAD both in terms of efficiency and reliability when
precision is sufficiently high (and the gap between the two increases as we ask for
higher precisions).

Some preliminary results on a class of hard global optimization problems (with
bound constraints) further highlighted potential of the algorithm in finding global

123

An algorithmic framework based on primitive directions and…

minima when larger neighborhoods are explored (i.e., when a β > 1 is properly
chosen in the algorithm).

Future research might follow two different lines:

– Development of an extension that can handle mixed-integer problems. This chal-
lenging task deserves an in depth computational and theoretical analysis. Indeed, it
is not clear how to embed continuous line searches in the framework and integrate
them with the discrete ones in order to both guarantee convergence and have good
performances in practice.

– Inclusion of models in the algorithmic framework (i.e., understanding how those
models should interact with the existing strategies). It is important to notice that
the use of models would imply heavy changes in the structure of the framework
and would also require a fresh new analysis of the convergence properties.

References

1. Abramson, M.A., Audet, C., Chrissis, J.W., Walston, J.C.: Mesh adaptive direct search algorithms for
mixed variable optimization. Optim. Lett. 3(1), 35–47 (2009)

2. Abramson, M.A., Audet, C., Couture, G., Dennis Jr., J.E., Le Digabel, S.: The NOMAD project. http://
www.gerad.ca/nomad

3. Abramson, M.A., Audet, C., Dennis Jr., J.E.: Filter pattern search algorithms for mixed variable con-
strained optimization problems. Pac. J. Optim. 3(3), 477–500 (2007)

4. Abramson, M.A., Audet, C., Dennis Jr., J.E., Le Digabel, S.: OrthoMADS: a deterministic MADS
instance with orthogonal directions. SIAM J. Optim. 20(2), 948–966 (2009)

5. Audet, C., Dennis Jr., J.E.: Pattern search algorithms for mixed variable programming. SIAM J. Optim.
11(3), 573–594 (2001)

6. Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer Series in Operations
Research and Financial Engineering. Springer, Berlin (2017)

7. Audet, C., Le Digabel, S., Tribes, C.: The mesh adaptive direct search algorithm for granular and
discrete variables. SIAM J. Optim. 29(2), 1164–1189 (2019)

8. Blum,C.,Roli,A.:Metaheuristics in combinatorial optimization: overviewand conceptual comparison.
ACM Comput. Surv. CSUR 35(3), 268–308 (2003)

9. Conn, A., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization, vol. 8. SIAM,
Philadelphia (2009)

10. Costa, A., Nannicini, G.: RBFOpt: an open-source library for black-box optimization with costly func-
tion evaluations. Math. Program. Comput. 10(4), 597–629 (2018). https://doi.org/10.1007/s12532-
018-0144-7

11. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)
12. Diniz-Ehrhardt, M., Martínez, J., Raydán, M.: A derivative-free nonmonotone line-search technique

for unconstrained optimization. J. Comput. Appl. Math. 219(2), 383–397 (2008)
13. Fasano, G., Liuzzi, G., Lucidi, S., Rinaldi, F.: A linesearch-based derivative-free approach for nons-

mooth constrained optimization. SIAM J. Optim. 24(3), 959–992 (2014)
14. García-Palomares, U.M., Rodríguez, J.F.: New sequential and parallel derivative-free algorithms for

unconstrained minimization. SIAM J. Optim. 13(1), 79–96 (2002)
15. Gendreau, M., Potvin, J.Y.: Handbook of Metaheuristics, vol. 2. Springer, Berlin (2010)
16. Goldberg, D.E.: Genetic Algorithms in Search, Optimization andMachine Learning, 1st edn. Addison-

Wesley Longman Publishing Co. Inc, Boston, MA (1989)
17. Grippo, L., Rinaldi, F.: A class of derivative-free nonmonotone optimization algorithms employing

coordinate rotations and gradient approximations. Comput. Optim. Appl. 60(1), 1–33 (2015)
18. Halton, J.: On the efficiency of certain quasi-random sequences of points in evaluating multi-

dimensional integrals. Numer. Math. 2, 84–90 (1960)
19. Larson, J., Leyffer, S., Palkar, P., Wild, S.M.: A method for convex black-box integer global optimiza-

tion. arXiv preprint arXiv:1903.11366 (2019)

123

http://www.gerad.ca/nomad
http://www.gerad.ca/nomad
https://doi.org/10.1007/s12532-018-0144-7
https://doi.org/10.1007/s12532-018-0144-7
http://arxiv.org/abs/1903.11366

G. Liuzzi et al.

20. Le Digabel, S.: Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM
Trans. Math. Softw. 37(4), 44:1–44:15 (2011)

21. LeDigabel, S.,Wild, S.M.: A taxonomy of constraints in simulation-based optimization. arXiv preprint
arXiv:1505.07881 (2015)

22. Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free methods for bound constrained mixed-integer opti-
mization. Comput. Optim. Appl. 53(2), 505–526 (2012)

23. Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free methods for mixed-integer constrained optimization
problems. J. Optim. Theory Appl. 164(3), 933–965 (2015)

24. Liuzzi, G., Lucidi, S., Rinaldi, F.: DFLINT—an algorithm for black-box inequality and box con-
strained integer nonlinear programming problems (2020). https://doi.org/10.5281/zenodo.3653742.
http://www.iasi.cnr.it/~liuzzi/DFL

25. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G.A.
(eds.) Handbook of Metaheuristics, pp. 320–353. Springer, Boston, MA (2003). https://doi.org/10.
1007/0-306-48056-5_11

26. Lucidi, S., Piccialli, V., Sciandrone, M.: An algorithm model for mixed variable programming. SIAM
J. Optim. 15(4), 1057–1084 (2005)

27. Lukšan, V., Vlček, J.: Test problems for nonsmooth unconstrained and linearly constrained optimiza-
tion. Technical report VT798-00, Institute of Computer Science, Academy of Sciences of the Czech
Republic (2000)

28. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100
(1997)

29. Moré, J., Wild, S.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1),
172–191 (2009)

30. Müller, J.:MISO:mixed-integer surrogate optimization framework.Optim.Eng.17(1), 177–203 (2016)
31. Müller, J., Shoemaker, C.A., Piché, R.: SO-MI: a surrogate model algorithm for computationally

expensive nonlinearmixed-integer black-box global optimization problems. Comput. Oper. Res. 40(5),
1383–1400 (2013)

32. Müller, J., Shoemaker, C.A., Piché, R.: SO-I: a surrogate model algorithm for expensive nonlinear
integer programming problems including global optimization applications. J. Glob. Optim. 59(4),
865–889 (2014)

33. Newby, E., Ali, M.M.: A trust-region-based derivative free algorithm for mixed integer programming.
Comput. Optim. Appl. 60(1), 199–229 (2015)

34. Porcelli, M., Toint, P.L.: BFO, a trainable derivative-free brute force optimizer for nonlinear bound-
constrained optimization and equilibrium computations with continuous and discrete variables. ACM
Trans. Math. Softw. 44(1), 1–25 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1505.07881
https://doi.org/10.5281/zenodo.3653742
http://www.iasi.cnr.it/~liuzzi/DFL
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1007/0-306-48056-5_11

	An algorithmic framework based on primitive directions and nonmonotone line searches for black-box optimization problems with integer variables
	Abstract
	1 Introduction
	2 A nonmonotone algorithm for black-box optimization problems with bound constraints
	3 Handling of general simulation constraints
	4 Numerical experiments on bound-constrained problems
	4.1 The algorithms
	4.2 Results
	4.3 Results on a class of hard global optimization problems

	5 Numerical experiments on problems with general simulation constraints
	5.1 Results

	6 Conclusions
	References

