
Specialization with Clause Splitting for Deriving
Deterministic Constraint Logic Programs

Fabio Fioravanti1, Alberto Pettorossi2, Maurizio Proietti1
(1) IASI-CNR, Viale Manzoni 30, I-00185 Roma, Italy

(2) DISP, University of Roma Tor Vergata, I-00133 Roma, Italy

{fioravanti,adp,proietti}@iasi.rm.cnr.it

Abstract— The reduction of nondeterminism can
increase efficiency when specializing programs. We
consider constraint logic programs and we propose a
technique which by making use of a new transforma-
tion rule, called clause splitting, allows us to generate
efficient, specialized programs which are determinis-
tic. We have applied our technique to the specializa-
tion of pattern matching programs.

Keywords— Program Specialization, Program
Transformation, Constraint Logic Programming,
Pattern Matching.

I. Introduction

Programs are often written in a parametric form so that
one can reuse them in different contexts. When one
reuses parametric programs, one may want to trans-
form those programs for taking advantage of the con-
texts of use and, indeed, by doing so, often program
efficiency is improved. This program transformation is
usually called program specialization [15] and it can be
performed by using well established techniques such as
partial evaluation [4], [10], [15], [16], [18].

Various program specialization methods have been
proposed in the literature for different programming lan-
guages. In this paper we consider a program specializa-
tion method for constraint logic programming (CLP)
and we use the rules + strategies transformation ap-
proach. This approach was first suggested by Burstall-
Darlington for functional languages [3] and later applied
to logic languages by Tamaki-Sato [21]. We will present
a program transformation technique which allows us
to increase program efficiency by deriving determinis-
tic, specialized programs starting from nondeterminis-
tic, general programs.

The paper is structured as follows. We first present
the rules for transforming constraint logic programs.
These rules are an extension of the ones presented in [7],
[19]. They include extensions of the familiar unfolding
and folding rules, and an extra rule, called clause split-
ting, which generalizes the case splitting rule presented
in [19]. Given a clause H ← Body and a constraint c,
by the clause splitting rule we can generate the clauses:
H ← c∧Body and H ← ¬c∧Body . Since these clauses
have mutual exclusive bodies, we are able to derive effi-
cient programs with reduced nondeterminism. The cor-
rectness of the derived programs follows from the fact
that the transformation rules preserve the least model
semantics [14].

In: Proceedings of the IEEE International Conference on Sys-
tems, Man, and Cybernetics (SMC’02), 6 - 9 October, 2002,
Hammamet, Tunisia, IEEE Computer Society Press, 2002.

We also present an automatic specialization strategy
for guiding the application of the transformation rules.
This strategy is an enhancement of the strategy pre-
sented in [19] and includes a specific treatment of con-
straints. It consists of the following steps: (i) the intro-
duction of an initial definition, corresponding to the goal
w.r.t. which we want to specialize the initial program,
(ii) the execution of some unfolding steps and constraint
manipulations, and (iii) the execution of some folding
steps. If these folding steps require the introduction of
new definitions, we introduce them, and we continue the
specialization process by executing unfolding, constraint
manipulations, and folding steps starting from each of
these new definitions. On the contrary, if the folding
steps do not require the introduction of new definitions,
we terminate the specialization process.

II. An Introductory Example:
Specialization of Constrained Matching

We present an example of program specialization us-
ing the rules+ strategies approach. Starting from a non-
deterministic, general program which specifies a pattern
matcher on strings, we derive a deterministic, special-
ized pattern matcher for a given pattern. In this ex-
ample we define a more general matching relation be-
tween strings which is expressed as a constraint logic
program. Our derivation generalizes the derivations of
the Knuth-Morris-Pratt matcher which were presented,
among others, in [8], [9], [10], [13], [19], [20]. As in the
case of that matcher, we derive a program which is a de-
terministic finite automaton with transitions labelled by
constraints, rather than symbols of the strings. We im-
prove over the derivations of specialized pattern match-
ers presented in [8], [9], [10], [13], [20] because we start
from a nondeterministic specification of the matcher,
while in those papers the initial programs are determin-
istic. As already mentioned, the improvement over [19]
is that we now deal with a general pattern matcher pre-
sented as a constraint logic program.

In our example we define a matching relation m(P, S)
between a pattern P =[p1, . . . , pn] and a string S, which
holds iff in S there exists a substring Q=[q1, . . . , qn] and
for all i=1, . . . , n, we have that pi ≤ qi. The following
CLP program can be taken as the specification of the
general pattern matching problem:

1. m(P ,S) ← a(B ,C ,S)∧ a(A,Q ,B)∧ le(P ,Q)
2. a([],Ys,Ys) ←
3. a([X |Xs],Ys, [X |Zs]) ← a(Xs,Ys,Zs)
4. le([], []) ←
5. le([X |Xs], [Y |Ys]) ← X ≤Y ∧ le(Xs,Ys)

where a denotes the list concatenation. Now let us sup-
pose that we want to specialize this general program
w.r.t. the pattern P =[1, 0, 2]. We start off by introduc-
ing the following definition:

6. msp(S) ← m([1, 0, 2], S)

Clauses 1–6 constitute the initial program P0 from
which we begin our program specialization process. We
generate a sequence of programs, each of which is de-
rived from the previous one by applying a transforma-
tion rule (Section IV) according to the Determinization
Strategy (Section V). As indicated in Section V, we will
get the following final program:

9. msp(S) ← new1(S)
16. new1([X|Xs]) ← 1≤X ∧new2(Xs)
17. new1([X|Xs]) ← 1>X ∧new1(Xs)
18. new2([X|Xs]) ← 1≤X ∧new3(Xs)
19. new2([X|Xs]) ← 0≤X ∧ 1>X ∧new4(Xs)
20. new2([X|Xs]) ← 0>X ∧new1(Xs)
21. new3([X|Xs]) ← 2≤X
22. new3([X|Xs]) ← 1≤X ∧ 2>X ∧new3(Xs)
23. new3([X|Xs]) ← 0≤X ∧ 1>X ∧new4(Xs)
24. new3([X|Xs]) ← 0>X ∧new1(Xs)
25. new4([X|Xs]) ← 2≤X
26. new4([X|Xs]) ← 1≤X ∧ 2>X ∧new2(Xs)
27. new4([X|Xs]) ← 1>X ∧new1(Xs)

This final program is deterministic in the sense that at
most one clause can be applied during the evaluation of
every ground goal.

III. Preliminaries

In this section we recall some basic notions of con-
straint logic programming. For notions not defined here
the reader may refer to [1], [14], [17].

A. Syntax of Constraint Logic Programs

We consider a first order language L generated by an
infinite set Vars of variables, a set Funct of function
symbols with arity, and a set Pred of predicate symbols
with arity. We assume that Pred is the union of two
disjoint sets: (i) the set Predc of constraint predicate
symbols, including true, false, and the equality symbol
=, and (ii) the set Predu of user defined predicate sym-
bols. Terms and formulas of L are constructed from the
element of Vars, Funct, and Pred, by means of connec-
tives (¬, ∧ , ∨) and quantifiers (∀, ∃), as usually done in
first order logic.

Given a sequence of terms or formulas e1, . . . , en (for
n > 0), the set of variables occurring in that sequence
is denoted by vars(e1, . . . , en). Given a formula ϕ, the
set of the free variables in ϕ is denoted by FV (ϕ). A
term or a formula is ground iff it contains no variable.
Given a set X ={X1, . . . , Xn} of variables, by ∀X ϕ we
denote the formula ∀X1 . . . ∀Xn ϕ. By ∀(ϕ) we denote
the universal closure of ϕ, that is, the formula ∀X ϕ,
where FV (ϕ)=X. Analogously, by ∃(ϕ) we denote the
existential closure of ϕ.

A primitive constraint is an atomic formula
p(t1, . . . , tn) where p is a predicate symbol in Predc and
t1, . . . , tn are terms. The set C of constraints, ranged
over by c, d, . . ., is the smallest set of formulas of L

which contains all primitive constraints and it is closed
w.r.t. all connectives and quantifiers.

An atom A is an atomic formula p(t1, . . . , tn) where p
is an element of Predu and t1, . . . , tn are terms. A goal G
is the conjunction of m (≥ 0) atoms. A constrained goal
c∧G is the conjunction of a constraint and a goal. The
empty conjunction of constraints or atoms is identified
with true.

A clause γ is a formula of the form H ← c∧G, where:
(i) H is an atom, called the head of γ, and (ii) c∧G is
a constrained goal, called the body of γ. Clauses of the
form H ← c are called constrained facts. Clauses of the
form H ← true are also written as H ←.

A constraint logic program (or program, for short) is
a finite set of clauses. (Here we do not allow for negated
atoms in the bodies of clauses.)

Given a program P , we say that a predicate p depends
on a predicate q iff either there exists in P a clause
whose head predicate is p and whose body contains an
occurrence of q or there exists a predicate r such that p
depends on r and r depends on q.

Given two atoms p(t1, . . . , tn) and p(u1, . . . , un), we
denote by p(t1, . . . , tn) = p(u1, . . . , un) the conjunction
of the constraints: t1 =u1 ∧ . . . ∧ tn =un.

A variable renaming is a bijective mapping from Vars
to Vars. The application of a variable renaming ρ to a
formula ϕ returns the formula ρ(ϕ), called a variant of
ϕ, obtained by replacing each (bound or free) occurrence
of X in ϕ by the variable ρ(X). A renamed apart clause
is a variant of a clause such that all its (bound or free)
variables of do not occur elsewhere.

We will feel free to apply to clauses the following two
transformations which, as the reader may verify, pre-
serve program semantics (see below): (1) application of
variable renamings, and (2) replacement of a clause of
the form H ←X= t∧ c∧G, where X 6∈ vars(t), by the
clause (H←c∧G){X/t}, and vice versa.

B. Least D-model Semantics

We assume that we are given an interpretation D for
the constraints in C. Let D be the carrier of D. D
assigns a subset of Dn to each n-ary constraint predicate
symbol in Predc. In particular, D assigns the whole
carrier D to true, the empty set to false, and the identity
over D to the equality symbol =.

A D-interpretation is an interpretation for the formu-
las of L which extends the interpretation D. In partic-
ular, a D-interpretation assigns a subset of Dn to each
n-ary user defined predicate symbol in Predu. Thus, a
D-interpretation is isomorphic to a subset of the follow-
ing set BD:

BD = {p(d1, . . . , dn) | p is a predicate symbol in Predu

and (d1, . . . , dn) ∈ Dn}
A D-model of a program P is a D-interpretation I such
that I |= ∀(P). It can be shown that for every CLP
program P there exists a least D-model (w.r.t. set in-
clusion), denoted by lm(P,D) [14].

C. Operational Semantics

In order to define the operational semantics of con-
straint logic programs, we assume that there is a com-
putable total function solve: C×Pfin(Vars)→C, where
Pfin(Vars) is the set of all finite subsets of Vars, by
which we can simplify the constraints in C. We assume
that solve is sound w.r.t. constraint equivalence, that
is, for every constraint c1 and for every finite set X of
variables, if solve(c1, X) = c2 then D |= ∀X((∃Y c1) ↔
(∃Z c2)), where Y = FV (c1)−X and Z = FV (c2)−X.

We also assume that solve is complete w.r.t. satisfia-
bility, in the sense that, for any constraint c,
(i) solve(c, ∅)= true iff c is satisfiable, i.e., D|=∃(c), and
(ii)solve(c, ∅)= false iff c is unsatisfiable, i.e., D|=¬∃(c).
The totality and the soundness of the solve function
guarantee the correctness of the transformation strat-
egy (see Section V). The assumption that solve is com-
plete w.r.t. satisfiability guarantees that constraint sat-
isfiability tests, which are required in our transforma-
tion method, are decidable. Moreover, the completeness
w.r.t. satisfiability guarantees that for any constraints c1

and c2, by evaluating solve(∀(c1 → c2), ∅) we can check
whether or not D |= ∀(c1 → c2) holds.

Now we define the operational semantics of a CLP
program P by introducing a derivability relation 7→P

between constrained goals as follows.

c∧A∧G 7→P c∧A=H1 ∧ c1 ∧G1 ∧G
iff H1 ← c1 ∧G1 is a renamed apart clause of P

and c∧A=H1 ∧ c1 is satisfiable.

The relation 7→∗
P is the reflexive and transitive closure

of 7→P . We say that the constrained goal c∧G succeeds
in P iff c∧G 7→∗

P d for some satisfiable constraint d.

IV. Rules for Transforming CLP Programs

The process of transforming a given program P
whereby deriving a program Q, can be formalized as
a sequence P0, . . . ,Pn of programs, called a transforma-
tion sequence, where P0 =P, Pn =Q and, for k =0, . . . ,
n−1, program Pk+1 is obtained from program Pk by
applying one of the transformation rules listed below.

R1. Definition. We introduce a set of clauses

δ1 : newp(X1, . . . , Xh) ← c1 ∧G1

· · ·
δm : newp(X1, . . . , Xh) ← cm ∧Gm

where: (i) newp is a predicate symbol not occurring in
P0, . . .,Pk, (ii) {X1, . . ., Xh}⊆FV (c1∧G1, . . ., cm∧Gm),
and (iii) the predicates occurring in G1, . . . , Gm occur
also in P0.
We derive the new program Pk+1 = Pk ∪ {δ1, . . . , δm}.
For i ≥ 0, Defsi is the set of clauses introduced by
the definition rule during the transformation sequence
P0, . . . , Pi. In particular, Defs0 =∅.
R2. Unfolding. Let γ : H ← c∧G′ ∧A∧G′′ be a
renamed apart clause of Pk. By unfolding γ w.r.t. A we
derive the set of clauses

Γ : {H ← c∧A=H1 ∧ c1 ∧G′ ∧G1 ∧G′′ |
H1 ← c1 ∧G1 is a clause in Pk and

c∧A=H1 ∧ c1 is satisfiable}

and the new program Pk+1 = (Pk − {γ}) ∪ Γ.

R3. Folding. Let

γ1 : H ← c∧ c1ϑ∧G′ ∧G1ϑ∧G′′

· · ·
γm : H ← c∧ cmϑ∧G′ ∧Gmϑ∧G′′

be m (> 0) clauses in Pk and let newp be a predicate
such that

δ1 : newp(X1, . . . , Xh) ← c1 ∧G1

· · ·
δm : newp(X1, . . . , Xh) ← cm ∧Gm

are the clauses in Defsk which have newp as head pred-
icate. Suppose that, for i=1, . . . , m and for every vari-
able X ∈ (FV (ci ∧Gi)−{X1, . . . , Xh}), we have that:
(i) Xϑ is a variable not occurring in (H, c, G′, G′′), and
(ii) for every variable Y ∈ (FV (ci ∧Gi)) − {X}), Xϑ
does not occur in Y ϑ. By folding γ1, . . . , γm using
δ1, . . . , δm we derive the clause

η : H ← c∧G′ ∧newp(X1, . . . , Xh)ϑ∧G′′

and the new program Pk+1 = (Pk−{γ1, . . . , γm})∪{η}.
R4. Clause Removal. Let γ be a clause in Pk. We
derive the new program Pk+1 = Pk − {γ} if one of the
following cases occurs:

(Unsatisfiable Constraint) γ is the clause H ← c∧G
and c is unsatisfiable, that is, D |= ¬∃(c);
(Subsumed Clause) γ is the clause (H ← c1 ∧G1)ϑ and
there exists a clause in Pk−{γ} of the form H ← c2 ∧G2

such that D |= ∀(c1 → ∃Xc2), where X = FV (c2) −
vars(H, G2) and G2 is a subconjunction of G1.

R5. Constraint Replacement. Let γ1 : H ← c1 ∧G
be a clause in Pk. Suppose that for some constraint c2,
we have that: D |= ∀ (∃Y c1 ↔ ∃Z c2) where: (i) Y =
FV (c1)−vars(H, G), and (ii) Z = FV (c2)−vars(H, G).
In particular, we may take c2 = solve(c1, vars(H, G)).
Then we derive the clause

γ2 : H ← c2 ∧G

and the new program Pk+1 = (Pk − {γ1}) ∪ {γ2}.
R6. Clause Fusion. Let

γ1 : H ← c∧G γ2 : H ← d∧G

be clauses in Pk. Then we derive the clause

γ : H ← (c ∨ d)∧G

and the new program Pk+1 = (Pk − {γ1, γ2}) ∪ {γ}.
R7. Clause Splitting. Let

γ : H ← (c ∨ d)∧G

be a clause in Pk. Then we derive the clauses
γ1 : H ← c∧G γ2 : H ← d∧G

and the new program Pk+1 = (Pk − {γ}) ∪ {γ1, γ2}.
The following result ensures the correctness of the

transformation rules w.r.t. the least model semantics.

Theorem 1: Let P0, . . . , Pn be a transformation se-
quence. Suppose that, for every k ∈ {0, . . . , n−1} such
that Pk+1 is derived by folding clauses γ1, . . . , γm in Pk

using clauses δ1, . . . , δm in Defsk , one of the following
conditions holds:

(1) for i = 1, . . . , m, clause δi is unfolded during the
construction of P0, . . . , Pn; or (2) the head predicate of
δ1, . . . , δm does not depend on itself in Pn.
Then lm(P0 ∪Defsn ,D) = lm(Pn,D).

The rules listed above are an extension of the rules for
transforming logic programs and constraint logic pro-
grams presented in [2], [6], [7], [12], [19], [21]. In par-
ticular, the folding rules considered in [2], [6], [7], [21]
allow us to fold only one clause at a time, while by using
our rule R3 we can fold m (≥1) clauses simultaneously.
Our rule R3 is an adaptation to the case of CLP pro-
grams of the folding rules considered in [12], [19]. Our
clause splitting rule R7 generalizes to constraint logic
programs the case splitting rule for logic programs pre-
sented in [19]. The folding and clause splitting rule play
a crucial role in the strategy for deriving deterministic
programs presented in the next section.

V. A Strategy for Deriving Deterministic
Specialized Programs

In this section we present the Determinization Strat-
egy for guiding the application of the transformation
rules. By applying this strategy we can derive deter-
ministic, specialized programs starting from nondeter-
ministic, general ones.

A. Determinism and Modes

We say that a program P is deterministic w.r.t. a
constrained atom c0 ∧A0 iff for all constrained goals
c∧A∧G such that c0 ∧A0 7→∗

P c∧A∧G, there exists
at most one clause γ in P with a renamed apart variant
H1 ← c1 ∧G1 such that the constraint c∧A=H1 ∧ c1 is
satisfiable.

Given a constrained atom, the determinism of a pro-
gram may depend on whether or not the variables in the
atom are grounded by the constraint [14]. Recall that
a variable X is said to be grounded by a constraint c iff
D |= ∃Y ∀Z (c → X =Y), where Y is a new variable and
Z = FV (c)∪{X} (i.e., there is at most one value for X
which makes c satisfiable). For instance, the following
program over integers:

p(X, Y) ← X =0∧Y =0
p(X, Y) ← X >0∧Y =1

is deterministic w.r.t. the constrained atom X = 1 ∧
p(X, Y) (where X is grounded by X = 1), while it is
not deterministic w.r.t. the constrained atom X ≤ 1∧
p(X, Y) (where X is not grounded by X ≤ 1). For this
reason we now introduce the notion of mode which pro-
vides information about the groundness of the variables
occurring in constrained atoms.

A mode M is a set of expressions of the form
p(m1, . . . , mh), called a mode for the predicate p, such
that: (i) p is a user defined predicate, (ii) for each p
there exists at most one expression p(m1, . . . , mh), and
(iii) for i=1, . . . , h, mi is either + (meaning that every
variable in the i-th argument of p is grounded by some
constraint) or ? (meaning that the i-th argument of p
is any term). A mode M is a mode for a program P iff
there exists in M a mode for each user defined predicate
occurring in P .

Given an atom p(t1, . . . , th) and a mode M with the
element p(m1, . . . , mh), (1) for i = 1, . . . , h, the term ti

is said to be an input argument of p (relative to M) iff
mi is +, and (2) a variable of p(t1, . . . , th) which occurs
in an input argument of p, is said to be an input variable
of p(t1, . . . , th).

Definition 1: Let P be a program and M be a mode
for P . We say that a constrained atom c∧ p(t1, . . . , th)
satisfies M iff p(m1, . . . , mh) ∈ M and for i = 1, . . . ,h,
if mi is + then every variable in ti is grounded by c.
We say that P satisfies M iff for each constrained atom
c0 ∧A0 which satisfies M , and for each constrained goal
c∧A∧G such that c0 ∧A0 7→∗

P c∧A∧G, we have that
c∧A satisfies M .

Often the property that a program satisfies a mode
can be automatically verified by abstract interpretation
methods [11].

We say that a program P is deterministic w.r.t. a
mode M iff P is deterministic w.r.t. every constrained
atom c0 ∧A0 which satisfies M . Now we give a sufficient
condition which ensures that a program is deterministic
w.r.t. a mode. We need the following definition.

Definition 2: Let us consider the following two
clauses without variables in common:

γ1 : p(t1, . . . , th, u1, . . . , uk) ← c1 ∧G1

γ2 : p(v1, . . . , vh, w1, . . . , wk) ← c2 ∧G2

where p is a k-ary predicate whose first h arguments
are input arguments relative to a given mode M . We
say that γ1 and γ2 are mutually exclusive w.r.t. M iff
D|=¬∃(t1 =v1 ∧ . . .∧ th =vh ∧ c1 ∧ c2).

Proposition 1: Let P be a program and M be a mode
for P . If P satisfies M and the clauses of P are pair-
wise mutually exclusive w.r.t. M , then P is determinis-
tic w.r.t. M .

B. The Determinization Strategy

Our Determinization Strategy is based upon the fol-
lowing three subsidiary strategies: (i) Unfold-Simplify,
which uses the unfolding, clause removal, and con-
straint replacement rules, (ii) Partition, which uses the
clause removal, constraint replacement, clause fusion,
and clause splitting rules, and (iii) Define-Fold, which
uses the definition and folding rules.

Let us consider an initial program P , a mode M
for P , and a constrained atom c∧ p(t1, . . . , th), with
FV (c) ⊆ vars(t1, . . . , th). In order to specialize P
w.r.t. c∧ p(t1, . . . , th), we introduce, by the definition
rule, the clause

δsp : psp(X1, . . . , Xr) ← c∧ p(t1, . . . , th)

where X1, . . . , Xr are the distinct variables occurring in
p(t1, . . . , th). The mode psp(m1, . . . , mr) for the pred-
icate psp is the following: for j = 1, . . . , r, mj is + iff
Xj is an input variable of p(t1, . . . , th) relative to M .
We assume that P satisfies M and thus, the program
P ∪ {δsp} satisfies M ∪ {psp(m1, . . . , mr)}.

Our Determinization Strategy is an iterative proce-
dure that at each iteration manipulates the following
three sets of clauses: (1) Defs, which is the set of clauses
introduced so far by the definition rule, (2) Cls, which is

the set of clauses to be transformed during the current
iteration, and (3) Psp , which is the specialized program
derived so far. Initially, both Defs and Cls consist of the
single clause δsp . From the set Cls a new set of determin-
istic clauses is derived by applying the transformation
rules according to the Unfold-Simplify, Partition, and
Define-Fold subsidiary strategies. This new set of deter-
ministic clauses is added to Psp . During each iteration,
in order to derive deterministic clauses, we may need
to introduce new predicates, whose defining clauses are
stored in the set NewDefs. At the end of each iteration
NewDefs is added to Defs, and the value of the set Cls is
updated to NewDefs. The transformation strategy ter-
minates when Cls =∅, that is, when no new predicate is
introduced during the current iteration.

The following definition is needed for presenting the
Unfold-Simplify subsidiary strategy.

Definition 3: Let H ← c∧G′ ∧A∧G′′ be a clause in
a program P and let M be a mode for P . We say that
A is a consumer atom iff for every clause H1 ← c1 ∧G1

in P , we have that one of the following conditions holds:

(i) G1 is the empty conjunction; or

(ii) c∧A=H1 ∧ c1 is unsatisfiable; or

(iii) D |= ∀(c→∃Y (A = H1)) where Y = {X ∈ FV (A =
H1) | X is not an input variable of A relative to M}.

During the Unfold-Simplify subsidiary strategy we un-
fold w.r.t. consumer atoms. In particular, when Condi-
tion (iii) of Definition 3 holds, we unfold w.r.t. atoms
whose input arguments are instances of the correspond-
ing arguments in the heads of the clauses of P .

Determinization Strategy
Input: A program P , a mode M for P such that P
satisfies M , and a clause

δsp : psp(X1, . . . , Xr) ← c∧ p(t1, . . . , th)

Output: A specialized program Psp and a mode Msp

for Psp .

Initialize: Defs := {δsp}; Cls := {δsp}; Psp := ∅;
Msp := {psp(m1, . . . , mr)};
while Cls 6= ∅ do

(1) Unfold-Simplify:
UnfCls := {η | η is a constrained fact in Cls or it is
derived by unfolding a clause in Cls w.r.t. the leftmost
atom in its body};
while there exists γ in UnfCls with a leftmost consumer
atom A in the body of γ do
UnfCls := (UnfCls−{γ})∪{η | η is derived by unfolding
γ w.r.t. A};
UnfCls := {H ← c̃∧G | there exists H ← c∧G in
UnfCls such that: (i) c̃ = solve(c, vars(H, G)), (ii) c is
satisfiable, and (iii) H ← c∧G is not subsumed by any
other clause in UnfCls}.
(2) Partition: We apply the clause removal, constraint
replacement, clause fusion, and clause splitting rules,
and from UnfCls we derive a set PartCls of clauses
which is the union of disjoint subsets, called packets,
such that the following two properties hold.
(i) Each packet is a set of clauses of the form:

H ← c∧ d1 ∧G1

· · ·
H ← c∧ dm ∧Gm

In particular, if for i=1, . . . , m, Gi is the empty conjunc-
tion, then by clause fusion we derive a packet consisting
of one constrained fact only.
(ii) Any two clauses belonging to different packets are
mutually exclusive w.r.t. mode Msp .

(3) Define-Fold: Let CFacts be the union of the pack-
ets in PartCls consisting of constrained facts only, and
let NonCFacts be the union of all other packets. Let
NewDefs be a (possibly empty) set of new clauses in-
troduced by the definition rule such that each packet
in NonCFacts can be folded by using clauses in Defs ∪
NewDefs of the form:

newp(X1, . . . , Xr) ← d1 ∧G1

· · ·
newp(X1, . . . , Xr) ← dm ∧Gm

whereby deriving a single clause of the form:

H ← c∧newp(X1, . . . , Xr)

When we introduce NewDefs and perform folding, we
also make sure that Condition (1) or (2) of Theorem 1
holds.
For each new predicate newp in NewDefs, we add to
Msp the mode newp(m1, . . . , mr) defined as follows: for
i = . . . r, mi = + iff Xi is either an input variable of H
or an input variable of the leftmost atom of one of the
goals G1, . . . , Gm.
Let FldCls be the set of clauses derived by folding the
packets in NonCFacts.

(4) Defs := Defs ∪NewDefs; Cls := NewDefs;
Psp := Psp ∪ CFacts ∪ FldCls

end-while

Now we see the Determinization Strategy in action on
the matching example of Section II. This will explain
how the specialized program (clauses 9, 16–27) has been
automatically derived.

We are given the clauses 1–5, the mode M ={m(+,+),
a(?,?,+), le(+,+)}, and δsp = clause 6. Thus, initially,
Defs = Cls = {clause 6} and Msp = {msp(+)}. Since
Cls 6= ∅, we execute the body of the while-loop and we
unfold clause 6 w.r.t. m([1, 0, 2], S) and we get:

7. msp(S) ← a(B, C, S)∧ a(A, Q, B)∧ le([1, 0, 2], Q)

Clause 7 is a packet in itself and in order to fold it, we
introduce the following definition:

8. new1(S) ← a(B, C, S)∧ a(A, Q, B)∧ le([1, 0, 2], Q)

and then we fold clause 7, whereby getting:

9. msp(S) ← new1(S)

Now Defs = {clause 6, clause 8}, Cls = {clause 8}, and
Msp = {msp(+),new1(+)}. Since Cls 6= ∅, we execute
once more the body of the while-loop and we unfold
clause 8 w.r.t. the atoms a and le. We get:

10. new1([X|Xs])← 1≤X ∧ a(Q, C,Xs)∧ le([0, 2], Q)
11. new1([X|Xs])← a(B, C,Xs)∧ a(A, Q, B)∧

le([1, 0, 2], Q)

Since clause 10 and 11 are not mutually exclusive w.r.t.
Msp , we apply the clause splitting rule to clause 11,
whereby getting:

12. new1([X|Xs]) ← 1≤X ∧ a(B, C,Xs)∧
a(A, Q, B)∧ le([1, 0, 2], Q)

13. new1([X|Xs]) ← 1>X ∧ a(B, C,Xs)∧
a(A, Q, B)∧ le([1, 0, 2], Q)

We have two packets: (i) {clause 10, clause 12} and
(ii) {clause 13}. In order to fold the first packet we
introduce the following definition:

14. new2(Xs) ← a(Q, C,Xs)∧ le([0, 2], Q)
15. new2(Xs) ← a(B, C,Xs)∧ a(A, Q, B)∧

le([1, 0, 2], Q)

We fold clauses 10 and 12 by using clauses 14 and 15,
and we fold clause 13 by using clause 8. We get the
following mutually exclusive clauses:

16. new1([X|Xs]) ← 1≤X ∧new2(Xs)
17. new1([X|Xs]) ← 1>X ∧new1(Xs)

Now Defs = {clause 6, clause 8, clause 14, clause 15},
Cls = {clause 14, clause 15}, and Msp = {msp(+),
new1(+), new2(+)}. Since Cls 6=∅, the derivation con-
tinues by executing again the body of the while-loop.
Thus, we unfold the clauses 14 and 15. We will not give
all the details of the derivation here. We eventually get
the specialized, deterministic program of Section II.

The termination of our Determinization Strategy de-
pends on the finiteness of (i) the unfolding subsidiary
strategy and (ii) the set of definitions which are intro-
duced for performing folding steps. In particular, for
ensuring termination it may be necessary to consider
suitable generalizations of the bodies of the clauses to
be folded (see, for instance, [5], [7], [10], [15], [16], [22]).

As a consequence of Theorem 1, if the Determiniza-
tion Strategy terminates, then the specialized program
Psp is equivalent to the initial program P in the follow-
ing sense: for every constraint d,

lm(P,D) |= ∃(d∧ c∧ p(t1, . . . , th)) iff
lm(Psp ,D) |= ∃(d∧ psp(X1, . . . , Xr)).

Moreover, by construction, Psp satisfies Msp and its
clauses are pairwise mutually exclusive w.r.t. Msp .
Thus, by Proposition 1, Psp is deterministic w.r.t.
Msp . In particular, for every constraint d such that
d∧ c∧ p(t1, . . . , th) satisfies Msp , we have that Psp is de-
terministic w.r.t. d∧ psp(X1, . . . , Xr).

VI. Conclusions

We have introduced a new transformation rule, called
clause splitting, which can be used for reducing the non-
determinism when specializing constrained logic pro-
grams. This rule allows us to reason by cases as often
done in various specialization techniques (see, for in-
stance, [9], [13], [22]). Clause splitting, together with
the other familiar unfolding and folding rules, is applied
according to the Determinization Strategy which is an
enhancement of conjunctive partial deduction [5]. In-
deed, we allow new predicates to be defined in terms
of disjunctions of conjunctions of constrained atoms.
The Determinization Strategy is an extension to con-
straint logic programs of the strategy presented in [19].
We have used our strategy for specializing constrained
matching algorithms and we have derived efficient pro-
grams which correspond to deterministic finite au-
tomata with transitions labelled by constraints.

References

[1] K. R. Apt. Introduction to logic programming. In J. van
Leeuwen, ed., Handbook of Theoretical Computer Sci-
ence, 493–576. Elsevier, 1990.

[2] N. Bensaou and I. Guessarian. Transforming constraint
logic programs. Theor. Comp. Sci., 206:81–125, 1998.

[3] R. M. Burstall and J. Darlington. A transformation
system for developing recursive programs. J. ACM,
24(1):44–67, January 1977.

[4] O. Danvy, R. Glück, and P. Thiemann, eds. Partial
Evaluation, LNCS 1110. Springer, 1996.

[5] D. De Schreye, R. Glück, J. Jørgensen, M. Leuschel,
B. Martens, and M. H. Sørensen. Conjunctive partial
deduction: Foundations, control, algorithms, and exper-
iments. J. Logic Programming, 41(2–3):231–277, 1999.

[6] S. Etalle and M. Gabbrielli. Transformations of CLP
modules. Theor. Comp. Sci., 166:101–146, 1996.

[7] F. Fioravanti, A. Pettorossi, and M. Proietti. Auto-
mated strategies for specializing constraint logic pro-
grams. LOPSTR 2000, LNCS 2042, 125–146. Springer,
2001.

[8] H. Fujita. An algorithm for partial evaluation with con-
straints. Tech. Memo. 0367, ICOT, Tokyo, Japan, 1987.

[9] Y. Futamura, K. Nogi, and A. Takano. Essence of gen-
eralized partial computation. Theor. Comp. Sci., 90:61–
79, 1991.

[10] J. P. Gallagher. Tutorial on specialisation of logic pro-
grams. PEPM ’93, Copenhagen, Denmark, 88–98. ACM
Press, 1993.

[11] M. Garcia de la Banda, M. Hermenegildo,
M. Bruynooghe, V. Dumortier, G. Janssens, and
W. Simoens. Global analysis of constraint logic
programs. ACM Toplas, 18(5):564–614, 1996.

[12] M. Gergatsoulis and M. Katzouraki. Unfold/fold trans-
formations for definite clause programs. PLILP ’94,
LNCS 844, 340–354. Springer, 1994.

[13] R. Glück and A.V. Klimov. Occam’s razor in metacom-
putation: the notion of a perfect process tree. WSA ’93,
LNCS 724, 112–123. Springer, 1993.

[14] J. Jaffar and M. Maher. Constraint logic programming:
A survey. J. Logic Programming, 19/20:503–581, 1994.

[15] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial
Evaluation and Automatic Program Generation. Pren-
tice Hall, 1993.

[16] M. Leuschel, B. Martens, and D. De Schreye. Control-
ling generalization and polyvariance in partial deduction
of normal logic programs. ACM Toplas, 20(1):208–258,
1998.

[17] J. W. Lloyd. Foundations of Logic Programming.
Springer, 1987. Second Edition.

[18] J. W. Lloyd and J. C. Shepherdson. Partial evaluation
in logic programming. J. Logic Programming, 11:217–
242, 1991.

[19] A. Pettorossi, M. Proietti, and S. Renault. Reduc-
ing nondeterminism while specializing logic programs.
POPL ’97, Paris, France, 414–427. ACM Press, 1997.

[20] D. A. Smith. Partial evaluation of pattern matching
in constraint logic programming languages. PEPM ’91,
SIGPLAN Notices, 26, 9, 62–71. ACM Press, 1991.

[21] H. Tamaki and T. Sato. Unfold/fold transformation of
logic programs. ICLP ’84, 127–138. Uppsala, Sweden,
1984.

[22] V. F. Turchin. The concept of a supercompiler. ACM
Toplas, 8(3):292–325, 1986.

