
Fundamenta Informaticae Submitted (2015) 1–26 1

IOS Press

A Rule-based Verification Strategy for
Array Manipulating Programs

Emanuele De Angelis
University of Chieti-Pescara, Pescara, Italy, emanuele.deangelis@unich.it

Fabio Fioravanti
University of Chieti-Pescara, Pescara, Italy, fioravanti@unich.it

Alberto Pettorossi
University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy, pettorossi@disp.uniroma2.it

Maurizio Proietti
IASI-CNR, Viale Manzoni 30, 00185 Rome, Italy, maurizio.proietti@iasi.cnr.it

Abstract. We present a method for verifying properties of imperative programs that manipulate
integer arrays. Imperative programs and their properties are represented by using Constraint Logic
Programs (CLP) over integer arrays. Our method is refutational. Given a Hoare triple {ϕ} prog {ψ}
that defines a partial correctness property of an imperative program prog, we encode the negation
of the property as a predicate incorrect defined by a CLP program P , and we show that the
property holds by proving that incorrect is not a consequence of P . Program verification is
performed by applying a sequence of semantics preserving transformation rules and deriving a new
CLP program T such that incorrect is a consequence of P iff it is a consequence of T . The
rules are applied according to an automatic strategy whose objective is to derive a program T that
satisfies one of the following properties: either (i) T is the empty set of clauses, hence proving that
incorrect does not hold and prog is correct, or (ii) T contains the fact incorrect, hence proving
that prog is incorrect. Our transformation strategy makes use of an axiomatization of the theory
of arrays for the manipulation of array constraints, and also applies the widening and convex hull
operators for the generalization of linear integer constraints. The strategy has been implemented in
the VeriMAP transformation system and it has been shown to be quite effective and efficient on a set
of benchmark array programs taken from the literature.

1. Introduction

Many methods have been proposed in the literature for verifying and proving properties of C-like, im-
perative programs using the formalism of Constraint Logic Programming (CLP).

Some of those methods follow the approach initially presented in [44], which is based on program
specialization and abstract interpretation [7]. The first step of that approach consists in encoding as a
CLP program the interpreter of the imperative language in which programs are written, and then, in the
second step, this CLP program is specialized with respect to the imperative program under investigation,

2 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs

thereby deriving a new CLP program. Finally, in the third step, this new CLP program is analyzed by
computing an overapproximation of its least model by a bottom-up evaluation of an abstraction of the
program [1, 27, 41], and that analysis is used to prove (or disprove) the property of interest.

Other program verification methods start off from a partial correctness triple of the form {ϕ}prog{ψ}
and from that triple they generate a CLP program, called the verification conditions for prog [5, 50] and
here denoted by VC, by using ad hoc algorithms which take into account the semantics of the imperative
language in which prog is written. The CLP program VC does not contain any explicit reference to the
imperative program prog. Then, from VC one can infer the validity of the given triple by using goal
directed, symbolic evaluation together with other techniques such as interpolation [14, 18, 30, 31].

In order to infer the validity of a given triple, various other reasoning techniques can be applied to
the CLP program VC. In particular, the techniques presented in [4, 23, 46, 48] (where CLP programs
are also called constrained Horn clauses), make use of CounterExample-Guided Abstraction Refinement
(CEGAR) and Satisfiability Modulo Theories (SMT).

In this paper we follow the verification approach for imperative programs based on transformations
of CLP programs which has been presented in [10, 12]. Given a partial correctness property expressed by
the triple {ϕ} prog {ψ}, we first encode the negation of that property as a predicate incorrect defined
by a CLP program P . Then, similarly to [44], we specialize the CLP program P with respect to the CLP
representation of the imperative program prog and we generate a new CLP program VC representing the
verification conditions for prog. At this point our verification method departs from the one presented
in [44] and all other verification methods mentioned above. Indeed, the final step of our verification
method consists in the application to VC of a sequence of equivalence preserving transformations with
the objective of deriving a CLP program T such that either (i) T is the empty set of clauses, hence proving
that incorrect does not hold and prog is correct, or (ii) T contains the fact incorrect, hence proving
that prog is incorrect.

Due to the undecidability of the partial correctness problem, it may be the case that from the pro-
gram VC, using our verification method, we derive a CLP program containing one or more clauses of
the form incorrect :- G, where G is a non-empty conjunction, and we can conclude neither that prog
is correct nor that prog is incorrect. However, despite the possibility for these inconclusive answers, our
verification method performs well in practice, as experimentally shown in Section 6.

The main contributions of this paper are the following.
(1) We provide a method that given any partial correctness triple {ϕ}prog{ψ}, where prog is an impera-
tive program that manipulates integers and integer arrays, generates the verification conditions for prog.
In those verification conditions the read and write operations on arrays are represented as constraints.
(2) We show how the verification conditions can be manipulated by using the familiar unfold/fold trans-
formation rules for CLP programs [15]. The transformation rules include a constraint replacement rule
which is used for manipulating the read and write constraints on arrays.
(3) We propose a transformation strategy for guiding the application of the transformation rules, with
the objective of transforming verification conditions and proving the validity of the given triple. In par-
ticular, we design a novel generalization strategy for array constraints for the introduction, during the
transformation of the CLP programs, of the new predicate definitions required for the verification of the
properties of interest. These new predicate definitions correspond to the invariants holding throughout
the execution of the imperative programs. Our generalization strategy makes use of operators, such as
the widening and convex hull operators, that have been introduced in the field of abstract interpreta-
tion [9] and extends to CLP(Array) programs the generalization strategies considered in [16, 17] for CLP

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs 3

programs over the integers.
(4) Finally, through an experimental evaluation based on a prototype implementation that uses the
VeriMAP transformation system [11], we demonstrate that our verification method performs well on
a set of benchmark programs taken from the literature.

The paper is structured as follows. In Section 2 we introduce the class of CLP(Array) programs,
that is, logic programs with constraints over the integers and integer arrays. In Section 3 we present
the unfolding/folding rules including the constraint replacement rule for manipulating constraints over
integer arrays [6, 20, 39]. Then, in Section 4 we show how to generate the verification conditions via the
specialization of CLP(Array) programs. In Section 5 we present an automatic strategy for guiding the
application of the transformation rules with the objective of proving (or disproving) a given property of
interest. Finally, in Section 6 we present various experimental results obtained by using our VeriMAP
verification system [11].

This paper is an improved, extended version of [10]. Here we present formal soundness, termination,
and confluence results, and a more extensive experimental comparison with related techniques.

2. CLP(Array): Constraint Logic Programs on Arrays
In this section we recall some basic notions concerning Constraint Logic Programming (CLP), and we
introduce the set, called CLP(Array), of CLP programs with constraints over the integers and the integer
arrays. Other notions concerning CLP can be found in [29]. For reasons of simplicity, in this paper
we will consider one-dimensional arrays only. We leave it for future investigation the case of multi-
dimensional arrays.

Atomic integer constraints are formulas of the form: p1= p2, or p1> p2, or p1> p2, where p1 and p2
are linear polynomials with integer variables and coefficients. When writing polynomials, the symbols +
and * denote sum and multiplication, respectively. An integer constraint is a conjunctions of atomic
integer constraints. Atomic array constraints are constraints of the form: dim(A, N), denoting that the
array A has dimension N, or read(A, I, V), denoting that the I-th element of the array A is the value V,
or write(A, I, V, B), denoting that the array B is equal to the array A, except that its I-th element is the
value V. We assume that indexes of arrays and elements of arrays are integers. An array constraint is a
conjunctions of atomic array constraints. A constraint is either true, or false, or an integer constraint,
or an array constraint, or a conjunction of constraints.

An atom is an atomic formula of the form: q(t1,...,tm), where q is a predicate symbol not in
{=, >, >, dim, read, write}, and t1, . . . , tm are terms constructed out of variables, constants, and func-
tion symbols different from + and *. A CLP(Array) program is a finite set of clauses of the form
A :- c, B, where A is an atom, c is a constraint, and B is a (possibly empty) conjunction of atoms.
Given a clause A :- c, B, the atom A and the conjunction c, B are called the head and the body of the
clause, respectively. Without loss of generality, we assume that in every clause head, all occurrences of
integer terms are distinct variables. For instance, the clause p(X,X+1) :- X>0, q(X) will be written as
p(X,Y) :- Y=X+1, X>0, q(X). A clause A :- c is called a constrained fact. If c is true, then it is omitted
and the constrained fact is called a fact. A CLP(Array) program is said to be linear if all its clauses are
of the form A :- c, B, where B consists of at most one atom.

We say that a predicate p depends on a predicate q in a program P if either in P there is a clause
of the form p(...) :- c, B such that q occurs in B, or there exists a predicate r such that p depends on r

in P and r depends on q in P . By vars(ϕ) we denote the set of all free variables of the formula ϕ.

4 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs

Now we define the semantics of CLP(Array) programs. An A-interpretation I is an interpretation
such that:
(i) the carrier of I is the Herbrand universe [38] constructed out of the set Z of the integers, the finite

sequences of integers (which provide the interpretation for arrays), the constants, and the function
symbols different from + and *,

(ii) I assigns to the symbols +, *, =, >, > the usual meaning in Z,
(iii) for all sequences a0 . . . an−1 of integers, for all integers d, dim(a0 . . . an−1, d) is true in I iff d=n,
(iv) for all sequences a0 . . . an−1 and b0 . . . bm−1 of integers, for all integers i and v,

read(a0 . . . an−1, i, v) is true in I iff 0≤i≤n−1 and v=ai, and
write(a0 . . . an−1, i, v, b0 . . . bm−1) is true in I iff

0≤i≤n−1, n=m, bi=v, and for j=0, . . . , n−1, if j 6=i then aj=bj,
(v) I is an Herbrand interpretation [38] for function and predicate symbols different from +, *, =, >, >,

dim, read, and write.
We can identify an A-interpretation I with the set of all ground atoms that are true in I , and hence
A-interpretations are partially ordered by set inclusion. If a formula ϕ is true in every A-interpretation
we writeA |= ϕ, and we say that ϕ is true inA. A constraint c is satisfiable ifA |= ∃(c), where for every
formula ϕ, ∃(ϕ) denotes the existential closure of ϕ. Likewise, ∀(ϕ) denotes the universal closure of ϕ.
A constraint is unsatisfiable if it is not satisfiable. A constraint c entails a constraint d, denoted c v d, if
A |= ∀(c→d). Given any two integer constraints i1 and i2, we will feel free to write Z |= ∀(i1↔i2),
instead of A |= ∀(i1 ↔ i2). Given a constraint c, we write c↓Z to denote the conjunction of all the
integer constraints occurring in c.

The semantics of a CLP(Array) program P is defined to be the least A-model of P , denoted M(P),
that is, the least A-interpretation I such that every clause of P is true in I .

3. Transformation Rules for CLP(Array) Programs
Our verification method is based on the application of some transformation rules that preserve the least
A-model semantics of CLP(Array) programs. In particular, we apply the following transformation rules,
collectively called unfold/fold rules: (i) Definition, (ii) Unfolding, (iii) Constraint Replacement, and
(iv) Folding. These rules are an adaptation to CLP(Array) programs of the unfold/fold rules for a generic
CLP language (see, for instance, [15]). The soundness of the rules we consider is proved in [15].

Let P be any given CLP(Array) program.

(i) Definition Rule. By the definition rule we introduce a clause of the form newp(X) :- c,A, where newp
is a new predicate symbol (occurring neither in P nor in a clause previously introduced by the definition
rule), X is the tuple of variables occurring in the atom A, and c is a constraint.

(ii) Unfolding Rule. Let us consider a clause C of the form H :- c,L,A,R, where H and A are atoms,
c is a constraint, and L and R are (possibly empty) conjunctions of atoms. Let us also consider the set
{Ki :- ci,Bi | i=1, . . . ,m} of the (renamed apart) clauses of P such that, for i=1, . . . ,m, A is unifiable
with Ki via the most general unifier ϑi and (c,ci)ϑi is satisfiable. By unfolding C w.r.t. A using P , we
derive the set {(H :- c,ci,L,Bi,R)ϑi | i = 1, . . . ,m} of clauses.

(iii) Constraint Replacement Rule. Let us consider a clause C of the form: H :- c0, B, and some con-
straints c1, . . . , cn such that
A |= ∀ ((∃X0 c0)↔(∃X1 c1 ∨∨ . . . ∨∨∃Xn cn))

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs 5

where, for i=0, . . . , n, Xi = vars(ci)−vars(H, B). Then, by constraint replacement from clause C we
derive n clauses C1, . . . , Cn obtained by replacing in the body of C the constraint c0 by the n constraints
c1, . . . , cn, respectively.

The equivalences, also called the Laws of Arrays, needed for applying the constraint replacement rule
can be shown to be true inA by using (a relational version of) the theory of arrays with dimension [6, 20].
This theory includes the following axioms, where all variables are universally quantified at the front:
(A1) I=J, read(A, I, U), read(A, J, V) → U=V

(A2) I=J, write(A, I, U, B), read(B, J, V) → U=V

(A3) I 6=J, write(A, I, U, B), read(B, J, V) → read(A, J, V)

Axiom (A1) is often called array congruence, and Axioms (A2) and (A3) are collectively called read-
over-write. We do not list here the obvious axioms that state that the array indexes of the read and write
operations are within the bounds specified by the predicate dim.

(iv) Folding Rule. Given a clause E: H :- e, L, A, R and a clause D: K :- d, D introduced by the defi-
nition rule. Suppose that, for some substitution ϑ, (i) A = Dϑ, and (ii) ∀ (e→ dϑ). Then by folding E
using D we derive H :- e, L, Kϑ, R.

From P we can derive a new program TransfP by: (i) selecting a clause C in P , (ii) deriving a new
set TransfC of clauses by applying one or more transformation rules, and (iii) replacing C by TransfC
in P . Clearly, we can apply a new sequence of transformation rules starting from TransfP and iterate this
process at will.

The following theorem is an immediate consequence of the soundness results for the unfold/fold
transformation rules of CLP programs [15].

Theorem 3.1. (Soundness of the Transformation Rules) Let the CLP(Array) program TransfP be derived
from P by a sequence of applications of the transformation rules. Suppose that every clause introduced
by the definition rule is unfolded at least once in this sequence. Then, for every ground atom A in the
language of P , A∈M(P) iff A∈M(TransfP).

The assumption that the unfolding rule should be applied at least once, is required for technical
reasons [15]. Informally, that assumption forbids the replacement of a definition clause of the form
A:-B by the clause A:-A that is obtained by folding clause A:-B using A:-B itself. Indeed, a similar
replacement in general does not preserve the least A-model semantics.

4. Generating Verification Conditions via Specialization
We consider a C-like imperative programming language with integer and array variables, assignments (=),
sequential compositions (;), conditionals (if-else), while-loops (while), and jumps (goto). A pro-
gram is a sequence of (labeled) commands. We assume that in each program there is a unique initial
command with label `0 and a unique halt command with label `h which, when executed, causes the
program to terminate.

The semantics of the imperative language considered here is defined by means of a transition rela-
tion, denoted =⇒, between configurations. Each configuration is a pair 〈〈c, δ〉〉 of a command c and an
environment δ. An environment δ is a function that maps: (i) every integer variable identifier x to its
value v, and (ii) every integer array identifier a to a finite sequence a0 . . . an−1 of integers, where n is
the dimension of the array a. The definition of the relation =⇒ is similar to the ‘small step’ operational

6 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs

semantics given in [47] and is omitted. We say that a configuration 〈〈c, δ〉〉 satisfies a property ϕ whose
free variables are z1, . . . , zr iff ϕ(δ(z1), ..., δ(zr)) is true in A.

We find it convenient to define the partial correctness of a program by considering the negation
of the postcondition of the program. We say that the Hoare triple {ϕinit} prog {¬ϕerror} is valid,
meaning that prog is partially correct (or, simply, correct) with respect to the given precondition and
postcondition, if for all terminating executions of prog starting from an input satisfying ϕinit , the output
satisfies ¬ϕerror . In other words, prog is incorrect if there exists an execution of prog that leads from
a configuration satisfying the property ϕinit and whose command is the initial command (also called an
initial configuration), to a configuration whose command is halt and whose environment satisfies the
property ϕerror (also called an error configuration). In this paper we assume that ϕinit and ϕerror are
formulas of the form: ∃x1 . . . ∃xn.c, where c is a constraint and the free variables of ∃x1 . . . ∃xn.c are
global variables occurring in prog.

Obviously, when writing a Hoare triple we may use a less restrictive syntax, as long as the triple can
be translated into one or more triples of the form specified above. For example, in Section 6 we wrote
the triple for the copy program as: {true} copy {∀i. (0≤ i ∧ i < n) → a[i] = b[i]} and this is a legal
triples because it can be translated into the conjunction of the following two triples:
(1) {true} copy {¬∃i. 0≤ i ∧ i<n ∧ a[i]>b[i]} (2) {true} copy {¬∃i. 0≤ i ∧ i<n ∧ a[i]<b[i]}
It follows directly from the definitions that the problem of checking whether or not prog is incorrect can
be encoded as the problem of checking whether or not the nullary predicate incorrect is a consequence
of the CLP(Array) program P made out of the following clauses:

incorrect :- errorConf(X), reach(X).

reach(Y) :- tr(X, Y), reach(X).

reach(Y) :- initConf(Y).

together with the clauses for the predicates (i) initConf(X), (ii) errorConf(X), and (iii) tr(X, Y).
These three predicates encode an initial configuration, an error configuration, and the transition relation
=⇒ between configurations, respectively. The predicate reach(Y) holds if a configuration Y can be
reached from an initial configuration. Note that the existential quantifiers possibly occurring in the two
formulas ϕinit and ϕerror are dropped when these formulas are used in the body of the definition of
initConf(X) and errorConf(X), respectively, thereby obtaining CLP(Array) clauses.

As an example of the clauses defining the predicate tr, let us present the following clause encoding
the transition relation for the labeled command ` : a[ie]= e that assigns the value of e to the element of
index ie of the array a (here a configuration of the form 〈〈` : c, δ〉〉, where c is a command with label `
and δ is an environment, is denoted by the term cf(cmd(L, C), D)):

tr(cf(cmd(L, asgn(arrayelem(A, IE), E)), D), cf(cmd(L1, C), D1)) :-

eval(IE, D, I), eval(E, D, V), lookup(D, A, FA), write(FA, I, V, FA1),

update(D, A, FA1, D1), nextlab(L, L1), at(L1, C).

In this clause: (i) arrayelem(A, IE) is a term representing the expression a[ie], (ii) eval(IE, D, I) holds
iff I is the the value of the index expression IE in the environment D, (iii) eval(E, D, V) holds iff V
is the value of the expression E in the environment D, (iv) lookup(D, A, FA) holds iff FA is the value
of the array A in the environment D, (v) update(D, A, FA1, D1) holds iff D1 is the environment D after
the assignment to array A producing the new array FA1, (vi) nextlab(L, L1) holds iff L1 is the label
of the command following the command with label L in the encoding of the given program prog, and
(vii) at(L1, C) holds iff C is the command with label L1 in that encoding. As shown in [12], simi-

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs 7

lar clauses for the predicate tr can be defined for the other commands of the imperative language we
consider.

The Hoare triple {ϕinit} prog {¬ϕerror} is valid iff incorrect 6∈M(P), where M(P) is the least
A-model of program P (see Section 2).

Our verification method consists of the following two steps, each of which is performed by a se-
quence of applications of the unfold/fold transformation rules presented in Section 3, starting from pro-
gram P :
(i) the Generation of Verification Conditions (VCGen), outlined below, and
(ii) the Transformation of Verification Conditions (VCTransf), which will be presented in the next section.
Since the rules preserve the least A-model (see Theorem 3.1), we will have that incorrect∈M(P) iff
incorrect∈M(T), where T is the CLP program derived after applying VCGen and VCTransf.

During VCGen, program P is specialized with respect to the predicate definitions of tr (which
depends on prog), initConf, and errorConf, thereby deriving a new program, called the verification
conditions for prog and denoted by VC , which does not contain any occurrence of those predicates and
has no reference to the commands of the imperative program prog. For this reason, program VC is said
to be derived by applying the removal of the interpreter (see, for instance, [12]).

We say that program VC is satisfiable iff incorrect 6∈ M(VC). Thus, the satisfiability of the
verification conditions for prog guarantees that the Hoare triple {ϕinit} prog {¬ϕerror} is valid.

In our verification method, the specialization of P is done by applying a variant of the removal of
the interpreter strategy presented in [12]. The main difference with respect to [12] is that the CLP pro-
grams we consider here may contain read, write, and dim predicates. The read and write predicates
are never unfolded during the specialization and they occur in the residual CLP(Array) program VC .
Moreover all occurrences of the dim predicate are eliminated by replacing them by suitable integer con-
straints on indexes. We do not show here the VCGen step, and we refer to [12] for a detailed presentation
in the case of programs without array operations. Here we only show an example of generation of the
verification conditions.

Let us consider the following program SeqInit which initializes a given array a of n integers by the
sequence: a[0], a[0]+1, . . . , a[0]+n−1:

SeqInit: `0 : i = 1;

`1 : while (i<n) { a[i] = a[i−1] + 1; i = i+ 1; };
`h : halt

We consider the Hoare triple {ϕinit(i, n, a)} SeqInit {¬ϕerror (n, a)}, where:
(i) ϕinit(i, n, a) is i≥0 ∧∧ n=dim(a) ∧∧ n≥1, and
(ii) ϕerror (n, a) is ∃j. j≥0 ∧∧ j≤n−2 ∧∧ a[j]≥a[j+1].

First, the above triple is translated into a CLP(Array) program P . In particular, the properties ϕinit and
ϕerror are defined by the following clauses, respectively:

1. phiInit(I, N, A) :- I≥0, dim(A, N), N≥1.
2. phiError(N, A) :- K=J+1, J≥0, J≤N−2, U≥V, read(A, J, U), read(A, K, V).
The clauses defining the predicates initConf and errorConf which specify the initial and the error
configurations, respectively, are as follows:

3. initConf(cf(cmd(l0,Cmd), [(i, I), (n, N), (a, A)])) :- at(l0,Cmd), phiInit(I, N, A).
4. errorConf(cf(cmd(lh,Cmd), [(i, I), (n, N), (a, A)])) :- at(lh,Cmd), phiError(N, A).

8 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs

where the environment is a finite function encoded as a list of (identifier, value) pairs. (In particular, I
and N range over integers, and A ranges over sequences of integers.)

In order to encode the program SeqInit , we first replace the while-loop command by a conditional
and a jump command, and then we introduce the following facts defining the predicate at:

at(l0, asgn(i, 1)). at(l1, ite(less(i, n), l2, lh)).

at(l2, asgn(arrayelem(a, i), plus(arrayelem(a, minus(i, 1)), 1))).

at(l3, asgn(i, plus(i, 1))). at(l4, goto(l1)). at(lh, halt).

Now we perform the VCGen step and from program P we obtain the following program VC :

5. incorrect :- K=J+1, J≥0, J≤N−2, U≥V, N≤I, read(A, J, U), read(A, K, V), p(I, N, A).
6. p(I, N, A) :- 1≤H, H≤N−1, G=H−1, I=H+1, Z=W+1, read(B,G,W), write(B,H,Z,A), p(H,N,B).

7. p(I, N, A) :- I=1, N≥1.

which represents the verification conditions for SeqInit.
The following Theorem 4.1 is a straightforward extension to the case of CLP(Array) programs of the

results shown in [12].

Theorem 4.1. (Termination and Soundness of the VCGen Transformation) Let P be the CLP(Array)
program defining the predicate incorrect which holds iff the triple {ϕinit} prog {¬ϕerror} is not valid.
The VCGen transformation terminates on the input P , and derives a CLP(Array) program VC such that
incorrect∈M(P) iff incorrect∈M(VC). Moreover, VC is a linear CLP(Array) program.

5. A Strategy for Transforming the Verification Conditions

In order to check whether or not incorrect ∈ M(VC), the standard evaluation methods are often
inadequate, because the least A-model M(VC) may be infinite and both the bottom-up and the top-
down evaluation of the predicate incorrect may not terminate (indeed, this is the case in our SeqInit
program above).

In this section, we present the VCTransf transformation step, which propagates the constraints oc-
curring in ϕinit and ϕerror with the objective of deriving from program VC a new program T where
the predicate incorrect is defined by either (i) the fact incorrect (in which case the verification con-
ditions are unsatisfiable, that is, incorrect ∈M(VC), and prog is incorrect), or (ii) the empty set of
clauses (in which case the verification conditions are satisfiable, that is, incorrect 6∈M(VC), and prog
is correct). In the case where neither (i) nor (ii) holds, we cannot conclude anything about the correctness
of prog. However, similarly to what has been proposed in [10], we can iterate a few times the VCTransf
step in the hope of deriving a program where either (i) or (ii) holds. Obviously, due to undecidability
limitations, it may be the case that we never get a program where either (i) or (ii) holds.

VCTransf is performed by applying the unfold/fold transformation rules according to the strategy
shown in Figure 1. VCTransf can be viewed as a backward propagation of the constraints in ϕerror .
The forward propagation of the constraints in ϕinit can be obtained by combining VCTransf with the
Reversal transformation described in [10].

Let us describe in more detail the UNFOLDING, CONSTRAINT REPLACEMENT, and DEFINITION &
FOLDING phases of the VCTransf strategy.

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs 9

Input: A linear CLP(Array) program VC .
Output: Program T such that incorrect∈M(VC) iff incorrect∈M(T).

INITIALIZATION: Let InDefs be the set of all clauses of VC whose head is the atom incorrect;
T :=∅ ; Defs := InDefs ;
while in InDefs there is a clause C do

UNFOLDING: Unfold C w.r.t. the single atom in its body by using VC , and derive a set U(C) of
clauses;

CONSTRAINT REPLACEMENT: Apply a sequence of constraint replacements based on the Laws of
Arrays, and derive from U(C) a set R(C) of clauses;

CLAUSE REMOVAL: Remove from R(C) all clauses whose body has an unsatisfiable constraint;
DEFINITION & FOLDING: Introduce a (possibly empty) set of new predicate definitions and add

them to Defs and to InDefs;
Fold the clauses inR(C) different from constrained facts by using the clauses in Defs, and derive
a set F(C) of clauses;

InDefs := InDefs− {C}; T := T ∪ F(C);
end-while;
REMOVAL OF USELESS CLAUSES: Remove from program T all clauses with head predicate p, if in T
there is no constrained fact q(. . .) :- c where q is either p or a predicate on which p depends.

Figure 1. The VCTransf transformation strategy.

5.1. Unfolding

The UNFOLDING phase corresponds to one inference step, in a backward way, starting from the error
configuration. For instance, let us consider again the SeqInit program of Section 4, and let VC be the
CLP program made out of clauses 5, 6, and 7. The VCTransf strategy starts off by unfolding clause 5
w.r.t. the atom p(I, N, A). We get the clause:

8. incorrect :- K=J+1, J≥0, J≤N−2, U≥V, N≤I, 1≤H, H≤N−1, G=H−1, I=H+1, Z=W+1,

read(A, J, U), read(A, K, V), read(B, G, W), write(B, H, Z, A), p(H, N, B).

where B denotes the array from which the output array A computed by the SeqInit program is derived.
Basically, the body of clause 8 represents the set of configurations from which the error configuration
is reachable. Note that the unfolding rule derives one clause only, because the conjunction of the con-
straint c1 occurring in clause 5 and the constraint c2 occurring in clause 7 is unsatisfiable (that is, the
initial configuration is not backward reachable in one step from the error configuration).

5.2. Constraint Replacement

The CONSTRAINT REPLACEMENT transformation phase applies the Laws of Arrays and infers new
constraints on the variables of the single atom that occurs in the body of each clause derived at the
end of the UNFOLDING phase. The objective of CONSTRAINT REPLACEMENT is to simplify the array
constraints and, in particular, to replace read constraints in favor of integer constraints (see rules RR1
and WR1). CONSTRAINT REPLACEMENT also performs, whenever possible, case reasoning on the array
indexes (see clauses (α) and (β) of rule WR3).

This transformation phase works as follows. We select a clause in the set U(C) of the clauses

10 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs

obtained by unfolding, and we replace it by the clause(s) obtained by applying as long as possible the
following rules RR1–WR3, which are based on axioms A1–A3 of Section 3.

Let H :- k, G be a clause where k ≡ (c, read(A, I, U), read(A, J, V)), c is a constraint, and G is a con-
junction of atoms.
(RR1) If k↓Z v (I=J) then replace k by (c, U=V, read(A, I, U)).
(RR2) If k↓Z 6v (I 6=J) and k↓Z v (U 6=V) then add to k the constraint I 6=J.

Let H :- k, G be a clause where k ≡ (c, write(A, I, U, B), read(B, J, V)), c is a constraint, and G is a
conjunction of atoms.
(WR1) If k↓Z v (I=J) then replace k by (c, U=V, write(A, I, U, B)).
(WR2) If k↓Z v (I 6=J) then replace k by (c, write(A, I, U, B), read(A, J, V)).
(WR3) If k↓Z 6v I=J and k↓Z 6v I 6=J then replace H :- k, G by the two clauses:

(α) H :- c, I=J, U=V, write(A, I, U, B), G

and (β) H :- c, I 6=J, write(A, I, U, B), read(A, J, V), G

The replacement process, which in general is nondeterministic, is confluent and terminating, as stated in
the following theorem.

Theorem 5.1. (Soundness, Termination, and Confluence of Constraint Replacement)
(1. Soundness) Each rule among RR1, RR2, WR1, WR2, and WR3 is a sound application of the con-
straint replacement rule. Indeed,
(i) if H :- c0, G is replaced by H :- c1, G, by using a rule among RR1, RR2, WR1, WR2, then
A |= ∀(c0 ↔ c1), and

(ii) if H :- c0, G is replaced by H :- c1, G and H :- c2, G, by using WR3, then A |= ∀(c0 ↔ c1 ∨∨ c2).
(2. Termination) Let D be a clause obtained after the UNFOLDING phase of the VCTransf strategy.
Then, the execution of the CONSTRAINT REPLACEMENT phase on D terminates.
(3. Confluence) The rules RR1, RR2, WR1, WR2, and WR3 are confluent, modulo equivalence of
integer constraints.

Proof:
(1. Soundness) (i). The proof proceeds by cases on the rule used. Suppose that H :- k, G is replaced by
H :- k1, G by using RR1, where k is of the form (c, read(A, I, U), read(A, J, V)), k↓Z v (I=J) holds,
and k1 is of the form (c, U = V, read(A, J, V)). From axiom A1 of Section 3, we derive:
A |= ∀(c, read(A, I, U), read(A, J, V)↔ c, U = V, read(A, J, V)).

Similarly, the soundness of the application of rules RR2, WR1, and WR3 is derived by using (the con-
trapositive of) axiom A1, axiom A2, and axiom A3, respectively.
(1. Soundness) (ii). Suppose that H :- k,G is replaced by H :- k1,G and H :- k2,G, by using WR3. Then k

is the constraint (c, write(A,I,U,B), read(B,J,V)), k1 is the constraint (c, I=J, U=V, write(A,I,U,B)),
and k2 is the constraint (c, I 6=J, write(A, I, U, B), read(A, J, V)). By case split, we get:
A |= ∀((c, write(A, I, U, B), read(B, J, V))↔ ((c, I=J, write(A, I, U, B), read(B, J, V))

∨∨ (c, I 6=J, write(A, I, U, B), read(B, J, V))).
By using A3, we get:
A |= ∀((c, write(A, I, U, B), read(B, J, V))↔ ((c, I=J, U=V, write(A, I, U, B), read(B, J, V))

∨∨ (c, I 6=J, write(A, I, U, B), read(B, J, V), read(A, J, V))).

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs 11

Since we have that A |= ∀(I=J, U=V, write(A, I, U, B)→ read(B, J, V)), and we also have that
A |= ∀(I 6=J, write(A, I, U, B), read(A, J, V)→ read(B, J, V)), we get:
A |= ∀((c, write(A, I, U, B), read(B, J, V))↔ ((c, I=J, U=V, write(A, I, U, B))

∨∨ (c, I 6=J, write(A, I, U, B), read(A, J, V))).
(2. Termination) Let us define a relation, denoted ≺, on the set vars(D) of the variables occurring in
clauseD as follows: A≺B iff the constraint write(A, I, U, B) occurs inD. The constraint write(A, I, U, B)
denotes that the result of a write operation on array A is a new array B, and hence B is a variable not oc-
curring as the fourth argument of any other write constraint. Thus, the transitive closure ≺+ of ≺
is irreflexive, and since vars(D) is a finite set, ≺+ is a well-founded ordering on vars(D). Note also
that for every clause D′ derived from D during the CONSTRAINT REPLACEMENT phase, we have that
vars(D′)=vars(D).

Let us introduce the following measures for every clause E in the set S of clauses with variables
in vars(D):
(1) µn(E), which is the number of read constraints in the body of E,
(2) µr(E), which is the sum, for all constraints of the form read(B, _, _) in the body of E, of the number

of variables A in vars(D) such that A≺+B,
(3) µp(E), which is the number of pairs (I, J) of integer variables in vars(D) such that c 6v(I 6=J),

where c is the constraint in the body of E, and
(4) τ(E) =def 〈µn(E), µr(E), µp(E) 〉.
Now the termination of the CONSTRAINT REPLACEMENT phase is a consequence of the fact that if
clause E is obtained from clause F by applying any of the rules in {RR1, RR2, WR1, WR2, WR3}, then
τ(E)<lex τ(F), where <lex is the lexicographic ordering on triples of natural numbers (recall that <lex

is a well-founded ordering). Indeed, the following facts hold:
(i) when applying rules RR1, WR1, and WR3(α), the measure µn decreases and no other rule application
increases it,
(ii) when applying rule WR2, the measure µr decreases and no other rule application increases it (indeed,
if clause E1 is derived from clause E2 by replacing a constraint read(B, J, V) by the new constraint
read(A, J, V) with A≺+B, then µr(E1)<µr(E2)), and
(iii) when applying rules RR2 and WR3(β), the measure µp decreases and no other rule application
increases it.
(3. Confluence) In order to prove the confluence of the rewriting rules RR1, RR2, WR1, WR2, and
WR3, since the constraint replacement is terminating (see Point 2), by the Newman Theorem [28] it is
enough to prove local confluence, that is, it is enough to prove the following property: for all clauses C
and all sets S1 and S2 of clauses, if {C} can be rewritten in one step into the set S1 and also in one
step into the set S2, then (i) S1 can be rewritten, in zero or more steps, into a set, say {C11, . . . , C1n},
of clauses, (ii) S2 can be rewritten, in zero or more steps, into a set, say {C21, . . . , C2n}, of clauses,
and (iii) for k = 1, . . . , n, clauses C1k and C2k, after variable renaming, are of the form H :- i1, c, G
and H :- i2, c, G, respectively, where: i1 and i2 are integer constraints, c is an array constraint, G is a
conjunction of atoms, and Z |= i1↔ i2.

Now we consider the various cases for the one step rewritings. In what follows, for reason of concise-
ness we will write the prefix ‘1-’, instead of ‘one step’, and when writing constraints, we allow ourselves
to silently apply equivalences that hold in Z.
• (Case RR1-RR1). Let us consider the constraint k ≡ (c, read(A, I, U), read(A, J, V), read(A, K, W))
such that k↓Z v(I=J) and k↓Z v(J=K).

12 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs

The constraint k 1-rewrites by RR1 into k1 ≡ (c, U=V, read(A, I, U), read(A, K, W)), and k also
1-rewrites by RR1 into k2 ≡ (c, V=W, read(A, I, U), read(A, J, V)).

Now we have that k1 can be 1-rewritten by RR1 into k1′ ≡ (c, U=V, U=W, read(A, I, U)), and k2

can be 1-rewritten by RR1 into k2′ ≡ (c, U=V, V=W, read(A, I, U)).
Since Z |= (U=V, U=W)↔ (U=V, V=W), we get local confluence.

• (Case RR1-RR2). Let us consider the constraint k ≡ (c, read(A, I, U), read(A, J, V)), such that
k↓Zv(I=J) and k↓Z 6v(I 6=J) and k↓Zv(U 6=V). Thus, in particular, c↓Zv(I=J) and c↓Zv(U 6=V).

The constraint k 1-rewrites by RR1 into k1 ≡ (c, U=V, read(A, I, U)), and k also 1-rewrites by RR2
into k2 ≡ (c, I 6=J, read(A, I, U), read(A, J, V)). Now, since c↓Z v (I=J), k2 1-rewrites by RR1 into
k2′ ≡ (c, I 6=J, U=V, read(A, I, U)). Moreover, since c↓Z v (U 6=V) and c↓Z v (I=J), we have that
Z |= (c↓Z, U=V)↔ false, and Z |= (c↓Z, I 6=J, U=V)↔ false. Thus, we get local confluence.
• (Case RR1-WR1). Let us consider the constraint k≡(c, read(A,I,U), read(A,J,V), write(A0,I,U,A)),
such that k↓Z v (I=J).

The constraint k 1-rewrites by RR1 into k11 ≡ (c, U=V, read(A, I, U), write(A0, I, U, A)), and k

also 1-rewrites by WR1 into k21 ≡ (c, U=V, read(A, I, U), write(A0, I, U, A)). Since k11 and k21 are
syntactically equal, we get local confluence.

The constraint k may also 1-rewrite by WR1 into k22 ≡ (c, read(A, J, V), write(A0, I, U, A)). Now,
k11 is 1-rewritten by WR1 into (c, U=V, write(A0, I, U, A)) and k22 is 1-rewritten by WR1 into the
same constraint (c, U=V, write(A0, I, U, A)), and thus we get local confluence also in this case.

The constraint k also 1-rewrites by RR1 into k12 ≡ (c, U=V, read(A, J, V), write(A0, I, U, A)).
Now, since the constraints k12, k21, and k22 can all be 1-rewritten by RW1 into a constraint of the form
(c, U=V, write(A0, I, U, A)), we get local confluence.
• (Case RR1-WR2) and (Case RR1-WR3). These cases are impossible because: (i) it is not the case that
k↓Z v(I=J) and k↓Z v(I 6=J) hold, and (ii) it is not the case that k↓Z v(I=J) and k↓Z 6v(I=J) hold.

Now we have to consider all other cases of the 1-rewritings when the first rule is not RR1. The proofs of
all these cases are similar to ones shown above, and we leave them to the reader.

Here we only show the following cases.
• (Case RR2-WR1). Let us consider the constraint k ≡(d, read(A,I,U), read(A,J,V), write(A0,I,U,A)),
where d↓Z 6v (I 6=J) and d↓Z v (U 6=V) and d↓Z v (I=J).

The constraint k 1-rewrites by RR2 into k1 ≡ (k, I 6=J). The constraint k also 1-rewrites by WR1
into k21 ≡ (d, U=V, read(A, I, U), write(A0, I, U, A)). Now, since d↓Z v (I=J), k1 1-rewrites by
RR1 into k1′ ≡ (d, I 6=J, U=V, read(A, I, U), write(A0, I, U, A)). Moreover, since d↓Z v (I=J) and
d↓Z v (U 6=V), we have that Z |= (d↓Z, I 6=J, U=V)↔ false, and Z |= (d↓Z, U=V)↔ false. Thus,
we get local confluence.

The constraint k also 1-rewrites by WR1 into k22 ≡ (d, U=U, read(A, J, V), write(A0, I, U, A)).
This constraint by WR1 is 1-rewritten into (d, U=V, U=U, write(A0, I, U, A)). Now k1′ is 1-rewritten
by WR1 into (d, I 6=J, U=V, U=U, write(A0, I, U, A)). Since d↓Z v (U 6=V) and d↓Z v (I=J), we
have that Z |= (d↓Z, U=V, U=U)↔ false and Z |= (d↓Z, I 6=J, U=V, U=U)↔ false. Thus, we get
local confluence.
• (Case WR1-WR1). (Case of overlapping redexes on write). Let us consider the constraint k ≡
(c, write(A, I, U, B), read(B, J, V), read(B, K, W)), where c↓Z v (I=J) and c↓Z v (I=K).

The constraint k 1-rewrites by WR1 into k1 ≡ (c, U=V, write(A, I, U, B), read(B, K, W)). Also the
constraint k also 1-rewrites by WR1 into k2 ≡ (c, U=W, write(A, I, U, B), read(B, J, V)).

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs 13

Now k1 can be 1-rewritten by WR1 into k1′ ≡ (c, U=V, U=W, write(A, I, U, B)) and k2 can be
1-rewritten by WR1 into k2′ ≡ (c, U=W, U=V, write(A, I, U, B)). By commutativity of constraints in Z,
we get local confluence.
• (Case WR1-WR1). (Case of overlapping redexes on read). Let us consider the constraint k ≡
(c, write(A, I, U, B), read(B, J, V), write(A, K, W, B)), where c↓Z v (I=J) and c↓Z v (K=J). This
case is impossible because there are two write(A,K,W,B) constraints with the same fourth argument.
• (Case WR3-WR3). (Case of overlapping redexes on write). Let us consider the constraint k ≡
(c, write(A,I,U,B), read(B,J,V), read(B,K,W)), where c↓Z 6v(I=J) and c↓Z 6v(I6=J) and c↓Z 6v(I=K)
and c↓Z 6v(I6=K).

By considering the constraint (c, write(A, I, U, B), read(B, J, V)), k 1-rewrites by WR3 into the two
constraints:

k1α ≡ (c, I=J, U=V, write(A, I, U, B), read(B, K, W))

k1β ≡ (c, I 6=J, write(A, I, U, B), read(A, J, V), read(B, K, W)).
By considering the constraint (c, write(A, I, U, B), read(B, K, W)), k also 1-rewrites by WR3 into the
two constraints:

k2α ≡ (c, I=K, U=W, write(A, I, U, B), read(B, J, V))

k2β ≡ (c, I 6=K, write(A, I, U, B), read(A, K, W), read(B, J, V)).
From k1α and k1β , since c↓Z 6v (I=K) and c↓Z 6v (I 6=K), we get by 1-rewritings by WR3 the follow-
ing constraints:

k1αα ≡ (c, I=J, I=K, U=V, U=W, write(A, I, U, B))

k1αβ ≡ (c, I=J, I 6=K, U=V, write(A, I, U, B), read(A, K, W))

k1βα ≡ (c, I 6=J, I=K, U=W, write(A, I, U, B), read(A, J, V))

k1ββ ≡ (c, I 6=J, I 6=K, write(A, I, U, B), read(A, J, V), read(A, K, W)).
From k2α and k2β , since c↓Z 6v (I=J) and c↓Z 6v (I 6=J), we get by 1-rewritings by WR3 the follow-
ing constraints:

k2αα ≡ (c, I=K, I=J, U=W, U=V, write(A, I, U, B))

k2αβ ≡ (c, I=K, I 6=J, U=W, write(A, I, U, B), read(A, J, V))

k2βα ≡ (c, I 6=K, I=J, U=V, write(A, I, U, B), read(A, K, W))

k2ββ ≡ (c, I 6=K, I 6=J, write(A, I, U, B), read(A, K, W), read(A, J, V)).
Now let us consider the pair (k1αα, k2αα) of constraints. We have that: Z |= k1αα ↓Z ↔ k2αα ↓Z.
Actually, k1αα and k2αα are syntactically equal, modulo commutativity of conjunction. The same holds
for the other pairs of constraints: (k1αβ, k2βα), (k1βα, k2αβ), and (k1ββ , k2ββ). Thus, we get local
confluence.
(Case WR3-WR3). (Case of overlapping redexes on read). As for the case WR1-WR1, this case is
impossible. ut

Let us continue our verification of the SeqInit program by performing the CONSTRAINT REPLACE-
MENT transformation phase. First, we simplify clause 8 by replacing the integer constraint in its body
with an equivalent one. We get:

8r. incorrect :- K=J+1, J≥0, K≤H, G=H−1, N=H+1, Z=W+1, U≥V,
read(A, J, U), read(A, K, V), read(B, G, W), write(B, H, Z, A), p(H, N, B).

Since J 6=H is entailed by the constraint in clause 8r, we apply rule WR2 and we replace ‘read(A, J, U),
write(B, H, Z, A)’ by ‘read(B, J, U), write(B, H, Z, A)’. We get:

14 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs

8r.1 incorrect :- K=J+1, J≥0, K≤H, G=H−1, N=H+1, Z=W+1, U≥V,
read(B, J, U), read(A, K, V), read(B, G, W), write(B, H, Z, A), p(H, N, B).

Then, since neither K=H nor K 6=H is entailed by the constraint in clause 8r.1, we apply rule WR3 and
we obtain the following two clauses (we have underlined the constraints involved in this replacement):

8r.2 incorrect :- K=J+1, J≥0, K≤H, G=H−1, N=H+1, Z=W+1, U≥V,
K=H, Z=V, read(B, J, U), read(B, G, W), write(B, H, Z, A), p(H, N, B).

8r.3 incorrect :- K=J+1, J≥0, K≤H, G=H−1, N=H+1, Z=W+1, U≥V,
K 6=H, read(B, J, U), read(B, K, V), read(B, G, W), write(B, H, Z, A), p(H, N, B).

Finally, since J=G is entailed by the constraint in clause 8r.2 (indeed, K=J+1, G=H−1, K=H), we
apply rule RR1 to clause 8r.2 and we replace the constraint read(B, G, W) by the constraint W=U, thereby
deriving the unsatisfiable constraint ‘W=U, Z=W+1, Z=V, U≥V’. Thus, clause 8r.2 is removed by the
subsequent CLAUSE REMOVAL phase. From clause 8r.3, by rewriting ‘K≤H, K 6= H’ as ‘K≤H−1’, we
get:

9. incorrect :- K=J+1, J≥0, K≤H−1, G=H−1, N=H+1, Z=W+1, U≥V,
read(B, J, U), read(B, K, V), read(B, G, W), write(B, H, Z, A), p(H, N, B).

5.3. Definition and Folding

The DEFINITION & FOLDING phase introduces new predicate definitions by suitable generalizations of
the constraints. Generalization guarantees the termination of VCTransf. In particular, by using the Gen-
eralization Algorithm presented in Figure 2, we enforce the introduction of a finite set Defs of new
predicate definitions such that all clauses derived by applying unfolding, constraint replacement, and
clause removal to the clauses in Defs can be folded by using clauses in the set Defs itself.

Unfortunately, in some cases our generalization technique may introduce an overly general new
predicate definition whose unfolding may generate constrained facts, thereby preventing us to prove that
incorrect 6∈M(P), even if the given array manipulating program is correct. Informally, this case may
happen when the new predicate provides a too coarse overapproximation of the set of configurations that
are reachable in a backward way from the error configurations. Indeed, this overapproximation includes
initial configurations (because the predicate has constrained facts), which are not actually reachable from
the error configurations (because the program is correct). Clearly, due to the undecidability of program
correctness, no generalization technique can guarantee termination and, at the same time, the derivation
of a program without constrained facts whenever incorrect 6∈M(P).

The DEFINITION & FOLDING phase works as follows. Let C1 in R(C) be a clause of the form
H :- c, p(X). In order to reason about the predicate definitions introduced in previous steps of VCTransf,
we structure the set Defs as a tree of clauses, where clause A is the parent of clause B if B has been
introduced for folding a clause inR(A). If in Defs there is (a variant of) a clauseD: newp(X) :- d, p(X)
such that vars(d) ⊆ vars(c) and c v d, then we fold C1 using D. Otherwise, we introduce a clause
of the form newp(X) :- gen, p(X) where: (i) newp is a predicate symbol occurring neither in the initial
program nor in Defs, and (ii) gen is a constraint such that vars(gen) ⊆ vars(c) and c v gen. The
constraint gen is called a generalization of the constraint c.

Many different generalizations of constraints can be defined. In Figure 2, we propose a Generaliza-
tion Algorithm for computing one such generalization. This algorithm is parametric with respect to the
operator 	 that is used for generalizing linear constraints. 	 is a binary operator such that, for any two

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs 15

integer constraints i1 and i2, we have vars(i1	i2) ⊆ vars(i2) and i2 v i1	i2. We refer to [9, 17, 43]
for the definition of generalization operators for linear constraints based on widening and convex hull.

Input: (i) A clause C, (ii) a clause in R(C) of the form H :- c, p(X), and (iii) a tree Defs of predicate
definitions.
Output: A constraint gen which is a generalization of the constraint c.

Let c be of the form i1, rw1, where i1 is an integer constraint and rw1 is a conjunction of read and write
constraints. Without loss of generality, we assume that all occurrences of integers in read constraints
of c are distinct variables not occurring in X (this condition can always be fulfilled by adding extra integer
equalities).
1. Delete all write constraints from rw1, hence deriving r1.
2. Compute the projection i2 (in the rationals Q) of the constraint i1 onto vars(r1) ∪ {X}. (Recall that

the projection in Q of a constraint c(Y, Z) onto the tuple Y of variables is a constraint cp(Y) such that
Q |= ∀ Y(cp(Y)↔ ∃ Z c(Y, Z)).)

3. Delete from r1 all read(A, I, V) constraints such that either (i) A does not occur in X, or (ii) V does
not occur in i2, thereby deriving a new value for r1. If at least one read has been deleted during this
step, then go to Step 2.

4. Let i2, r2 be the constraint obtained after the possibly repeated executions of Steps 2–3.
If in Defs there is an ancestor (defined as the reflexive, transitive closure of the parent relation) of C

of the form H0 :- i0, r0, p(X) such that r0, p(X) is a subconjunction of r2, p(X),
then let g be i0 	 i2. Define the constraint gen as g, r0;
else define the constraint gen as i2, r2.

Figure 2. The Generalization Algorithm.

Let us make some remarks on the Generalization Algorithm. Step 1 is justified by the fact that write
constraints are redundant after the application of the read-over-write constraint replacements RW1–RW3.
After Step 1 we have vars(i1, r1) ⊆ vars(c) and i1, rw1 v i1, r1.

At Step 2 we compute the projection i2 of i1 in the rationals Q (and hence i1 v i2 holds in the
domain of the integers), because linear constraints are not closed under projection in the domain of the
integers. We have that vars(i2, r1) ⊆ vars(i1, r1) and i1, r1 v i2, r1.

At Step 3 the deletion of constraints of the form read(A, I, V), where A does not occur in X, is
motivated by the fact that A can be treated as an existentially quantified variable, and ∃A. read(A, I, V)
holds for all I and V. The deletion of constraints of the form read(A, I, V), where V does not occur
in i2, is motivated by the fact that V can be treated as an existentially quantified variable and, since by
construction i2 ensures that the index I is within bounds, we have that ∃V. read(A, I, V) holds for all A
and I. Thus, at the end of Steps 2–3, vars(i2, r2) ⊆ vars(i2, r1) and i2, r1 v i2, r2.

Step 4 computes a generalization g of the integer constraint i2 if an ancestor clause in Defs contains
a subconjunction r0 of the read constraint r2. We will show in the next section that this condition
guarantees the termination of the VCTransf strategy. If the condition of the If-then-else holds, then
vars(gen) = vars(g, r0) ⊆ vars(i2, r2) and i2, r2 v g, r0 = gen. If the condition of the If-then-else
does not hold, then gen is i2, r2, and hence vars(gen) = vars(i2, r2). Thus, after Step 4, vars(gen) ⊆
vars(c) and c v gen.

16 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs

All generalization operators 	 used at Step 4 guarantee the termination and soundness of VCTransf,
but they may have an influence on the number of transformation steps needed to terminate, and also
on the success of the verification (recall that VCTransf may terminate without proving or disproving
correctness). The comparison among the various generalization operators we have considered, has been
done on an experimental basis and the results of that comparison are reported in Section 6.

Let us continue our program verification example by performing, starting from clause 9, the DEFI-
NITION & FOLDING phase of the VCTransf strategy. In order to fold clause 9, we will introduce a new
predicate definition by applying the Generalization Algorithm. We start off by renaming the variables
occurring in clause 9. This renaming has the objective of simplifying the matching process of Step 4 of
the Generalization Algorithm. We get the following clause:

9r. incorrect :- K=J+1, J≥0, K≤I−1, G=I−1, N=I+1, Z=W+1, U≥V,
read(A, J, U), read(A, K, V), read(A, G, W), write(A, I, Z, A1), p(I, N, A).

Now, we delete the write constraint (Step 1) and we project the integer constraints (Step 2), thereby
deleting Z=W+1. We get a constraint where the variable W occurs in read(A, G, W) only. Thus, after
deleting the constraint read(A, G, W) (Step 3) and by applying projection again (this step results in the
deletion of G=I−1), we derive the constraint:

K=J+1, J≥0, K≤I−1, N=I+1, U≥V, read(A, J, U), read(A, K, V).
Finally, we apply Step 4 of the Generalization Algorithm and, by using the convex hull operator, we com-
pute a generalization of the integer constraint K=J+1, J≥0, J≤N−2, N≤I, U≥V occurring in the
body of clause 5, and the constraint K=J+1, J≥0, K≤I−1, N=I+1, U≥V obtained after Steps 1–3.
We get the following new predicate definition:

10. new1(I, N, A) :- K=J+1, J≥0, J≤N−2, J≤I−2, N≤I+1, U≥V,
read(A, J, U), read(A, K, V), p(I, N, A).

By folding clause 9r using clause 10, we get:

11. incorrect :- K=J+1, J≥0, K≤I−1, G=I−1, N=I+1, Z=W+1, U≥V,
read(A, J, U), read(A, K, V), read(A, G, W), write(A, I, Z, A1), new1(I, N, A).

5.4. Termination and Soundness of the VCTransf Transformation Strategy

The following theorem, together with Theorem 4.1, ensures that our verification method, consisting of
two steps VCGen and VCTransf, terminates and is sound.

Theorem 5.2. (Termination and Soundness of VCTransf) (i) The VCTransf strategy terminates.
(ii) Let program T be the output of the VCTransf strategy applied on the input program VC . Then,
incorrect∈M(VC) iff incorrect∈M(T).

Proof:
(i) The VCTransf strategy is parametric with respect to the generalization operator 	 on integer con-
straints used in the Generalization Algorithm. We assume that 	 has a property ensuring that only finite
chains of generalizations of any given integer constraint can be generated by applying the operator. This
assumption is formalized by the following property:
(F) if 〈g0, g1, . . .〉 is an infinite sequence of integer constraints and, for all m>0, there exist an index

j<m and an integer constraint i such that gm = gj 	 i,
then there exist k, n such that k<n and gn v gk.

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs 17

The already mentioned generalization operators presented in [9, 17, 43] satisfy property (F).
Let us first note that the UNFOLDING, CONSTRAINT REPLACEMENT, CLAUSE REMOVAL, and DEF-

INITION & FOLDING phases terminate. In particular, constraint satisfiability and entailment are decid-
able for the class of quantifier-free array constraints we are considering, and hence can be checked by
a terminating solver (note that completeness of the solver is not necessary for the termination of the
VCTransf strategy), and each sequence of constraint replacements terminates (see Theorem 5.1).

Next we note that the while-loop of the VCTransf strategy terminates if and only if the set of new
predicate definitions that, during the execution of the strategy, is introduced by executions of the DEFINI-
TION & FOLDING phase is finite. Indeed, each new predicate definition is added to InDefs and processed
in one execution of the body of the while-loop.

Let us now prove that the set of new predicate definitions is finite.
By construction, each predicate definition is of the form newp(X) :- i, r, p(X), where: (1) i is an integer
constraint, (2) r is a conjunction of array constraints of the form read(A, I, V), where A is a variable in
X and the variables I and V occur in i only (see Step 1 of the Generalization Algorithm), and (3) p(X) is
a predicate occurring in VC .

The proof proceeds by contradiction. Let assume that the set of new predicate definitions is infinite, and
hence there exists an infinite sequence 〈D0, D1, . . .〉 of clauses in Defs such that, for i≥0,Di is the parent
of Di+1. Since the else branch of the If-then-else of Step 4 of the Generalization Algorithm can only be
applied a finite number of consecutive times during the construction of the sequence 〈D0, D1, . . .〉, we
can extract from that sequence an infinite subsequence of clauses of the form:
〈 newp0(X) :- g0, r0, p(X), newp1(X) :- g1, r0, p(X), newp2(X) :- g2, r0, p(X), . . . 〉

where, for m=1, 2, . . . , gm=gj 	 i, for some j<m and integer constraint i. By Property (F) we get that
there exist k, n such that k<n and gn v gk. Thus, we have reached a contradiction. Indeed, according
to the DEFINITION & FOLDING phase, the clause Dn: newpn(X) :- gn, r0, p(X) should have not been
introduced because in Defs there is a clause Dk: newpk(X) :- gk, r0, p(X) such that gn v gk, and any
clause that can be folded using Dn could have been folded using Dk.

Thus, the set of new predicate definitions is finite and the VCTransf strategy terminates.
(ii) Each transformation step in the VCTransf strategy is a sound application of the rules presented in
Section 3. In particular, by Theorem 5.1, each constraint replacement in the CONSTRAINT REPLACE-
MENT phase is a sound application of the constraint replacement rule. Moreover, every clause defining
a new predicate introduced during the DEFINITION & FOLDING phase is unfolded once during the exe-
cution of the strategy. Thus, the soundness of the strategy with respect to the least A-model semantics
follows from Theorem 3.1. ut

Let us now conclude the verification of the SeqInit program. The VCTransf strategy proceeds by
performing a second iteration of the body of the while-loop because InDefs is not empty (indeed, at this
point clause 10 belongs to InDefs).

UNFOLDING. By unfolding clause 10 we get the following clause:

12. new1(I, N, A) :- K=J+1, J≥0, J≤N−2, J≤I−2, N≤I+1, U≥V,
1≤H, H≤N−1, G=H−1, I=H+1, Z=W+1,

read(A, J, U), read(A, K, V), read(B, G, W), write(B, H, Z, A), p(H, N, B).

CONSTRAINT REPLACEMENT. Then, by simplifying the integer constraints and applying rules RR1,
WR2, and WR3, from clause 12 we get the following clause:

18 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs

13. new1(I, N, A) :- K=J+1, I=H+1, Z=W+1, G=H−1, N≤H+2,

K≤H−1, K≥1, N≥H+1, U≥V,
read(B, J, U), read(B, K, V), read(B, G, W), write(B, H, Z, A), p(H, N, B).

DEFINITION & FOLDING. In order to fold clause 13 we introduce the following clause, whose body is
derived by computing the widening [7, 9] of the integer constraints in the ancestor clause 10 with respect
to the integer constraints in (a renamed version of) clause 13 (recall that the widening of a constraint c
with respect to a constraint d is the conjunction of all atomic constraints of c that are entailed by d):

14. new2(I, N, A) :- K=J+1, J≥0, J≤I−2, J≤N−2, U≥V,
read(A, J, U), read(A, K, V), p(I, N, A).

By folding clause 13 using clause 14, we get:

15. new1(I, N, A) :- K=J+1, I=H+1, Z=W+1, G=H−1, N≤H+2, K≤H−1, K≥1, N≥H+1, U≥V,
read(B, J, U), read(B, K, V), read(B, G, W), write(B, H, Z, A), new2(H, N, B).

Now we perform the third iteration of the body of the while-loop of the strategy starting from the newly
introduced definition, that is, clause 14. After some executions of the UNFOLDING and CONSTRAINT

REPLACEMENT phases, followed by a final FOLDING phase, from clause 14 we get:

16. new2(I, N, A) :- K=J+1, I=H+1, Z=W+1, G=H−1, K≤H−1, K≥1, N≥H+1, U≥V,
read(B, J, U), read(B, K, V), read(B, G, W), write(B, H, Z, A), new2(H, N, B).

The transformed program is made out of clauses 11, 15, and 16. Since this program has no constrained
facts, by executing the REMOVAL OF USELESS CLAUSES phase, we derive the empty program T , and
we conclude that incorrect 6∈M(T) and the Hoare triple {ϕinit} SeqInit {¬ϕerror} is valid.

6. Experimental Evaluation
We have performed an experimental evaluation of our method on a benchmark set consisting of programs
manipulating arrays. In order to evaluate our method, we have implemented the transformation strategies
VCGen and VCTransf of Sections 4 and 5, respectively, as modules of the VeriMAP software model
checker [11]. The VeriMAP tool consists of: (i) a front-end module, based on a custom implementation
of the C Intermediate Language (CIL) visitor pattern [42], which translates a C program, together with its
precondition and postcondition, into a set of CLP(Array) facts, and (ii) a back-end module, implemented
in Prolog, for CLP(Array) program transformation that generates the verification conditions and applies
the VCTransf strategy. The back-end also includes a solver for quantifier free formulas of the theory of
arrays that checks satisfiability and entailment for array constraints by using the rules RR1–WR3 (see
Section 5.2) and the solver for linear equalities and inequalities over the rationals provided by the clpq

library of SICStus Prolog.
We have compared our results with those obtained by the state-of-the-art verifiers BOOSTER [3] and

SMACK+Corral [26] (SMACK, for short). The results of our experiments, summarized in Tables 2
and 3, show that our approach is quite effective and efficient in practice.

Now we briefly discuss the programs, mostly taken from the literature [2, 5, 8, 13, 25, 36, 49], that
have been considered in our experimental evaluation. The source code of these programs can be found in
http://map.uniroma2.it/smc/arrays/. Every program verification experiment we have performed,
consisted in checking the validity of a triple of the form {true} prog {¬ ϕerror}, where prog and ¬ ϕerror

are given in Table 1. The validity check was done by using either VeriMAP, or BOOSTER, or SMACK.

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs 19

Precondition: true
Postcondition to be verified: ¬ ϕerrorExample: prog

1. bubblesort-inner ∀k. (0≤ i< n ∧∧ 0≤k<j ∧∧ j=n−i−1)→ a[k]≤a[j]
2. bubblesort ∀i, j. (0≤ i< j ∧∧ j<n)→ a[i]≤a[j]
3. insertionsort-inner ∀k. (0≤ i<n ∧∧ j+1<k≤ i)→ a[k]>x

4. selectionsort-inner ∀k. (0≤ i≤k<n)→ a[k]≥a[i]
5. copy ∀i. (0≤ i<n)→ a[i]=b[i]

6. copy-partial ∀i. (0≤ i<k≤n)→ a[i] = b[i]

7. copy-reverse ∀i. (0≤ i<n)→ a[i]=b[n−i−1]
8. difference ∀i. (0≤ i<n)→ c[i]= a[i]−b[i]
9. sum ∀i. (0≤ i<n)→ c[i]=a[i]+b[i]

10. find-first-non-null-1 (0≤p<n)→ a[p] 6=0

11. find-first-non-null-2 (0≤p<n)→ (a[p] 6= 0 ∧∧ (∀i. (0≤ i<p)→ a[i]=0))

12. find (0≤p<n)→ a[p]=x

13. init-constant ∀i. (0≤ i<n)→ a[i]=d

14. init-partial-zero ∀i. (0≤ i<k≤n)→ a[i]=0

15. init-backward-zero ∀i. (0≤ i<n)→ a[i]=0

16. init-non-constant ∀i. (0≤ i<n)→ a[i]=2 i+d

17. init-sequence ∀i. (1≤ i<n)→ a[i]=a[i−1]+1

18. max ∀i. (0≤ i<n)→ m≥a[i]
19. partition (∀i. (0≤ i<j)→ b[i]≥0) ∧∧ (∀i. (0≤ i<k)→ c[i]<0)

20. rearrange-in-situ (∀k. (0≤k <i)→ a[k] ≥ 0) ∧∧ (∀k. (j<k<n)→ a[k] < 0)

Table 1. Array programs and postconditions. The arrays a, b, and c are assumed to have dimension n.

Programs bubblesort-inner, insertionsort-inner, and selectionsort-inner are the inner loops of the
standard textbook versions of those sorting algorithms. Program bubblesort is the bubblesort algorithm
of the benchmark suite of BOOSTER. Programs copy and copy-partial perform the element-wise copy
of the entire input array or a portion of it, respectively. Program copy-reverse copies the input array
in reverse order, by making use of a temporary extra copy. Programs difference and sum perform the
element-wise difference and sum, respectively, of two input arrays. Programs find-first-non-null-1 and
find-first-non-null-2 both return the position p of the first non-zero element of the input array by using
two different algorithms. Program find returns the position p of the first occurrence of a given value x
in the input array. Program init-constant initializes to the integer d all elements of the input array.
Program init-partial-zero initializes to 0 a portion of the input array (the initialization starts from the first
element). Program init-backward-zero initializes to 0 the entire input array (the initialization starts from
the last element). Programs init-non-constant and init-sequence initialize the input array using values
that depend on the element position or the preceding element, respectively. Program max computes the
maximum element of the input array. Program partition copies the non-negative and negative elements
of the input array into two distinct arrays. Program rearrange-in-situ, rearranges the elements of the
input array, so that all negative elements are placed to the right of the non-negative ones.

In order to verify the above programs, we have applied the VCTransf strategy using different gener-

20 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs

alization operators for linear constraints. In particular, when computing new predicate definitions using
the Generalization Algorithm, we have considered the GenW operator, which performs widening, and
the GenCHW operator, which in the same generalization step performs widening and convex hull. We
have also combined these operators with a delay mechanism, thereby obtaining GenWD and GenCHWD,
respectively. The GenWD operator applies the GenW operator and the convex hull operator in an alternate
way, and GenCHWD does the same for GenCHW. The interested reader may refer to [12, 17] for details on
these operators.

In Table 2 we report the results of our experimental evaluation obtained by using the VeriMAP
tool with the four generalization operators mentioned above and the BOOSTER tool. All programs are
assumed to manipulate arrays of unknown dimension n. The SMACK tool has not been considered in
this evaluation because it can only deal with arrays of known dimension. For each program that has been
proved correct, we report the time (in seconds) taken to verify the postcondition of interest. In Table 2 the
entry ‘unknown’ means that the tool terminates without being able to prove or disprove the postcondition,
while the entry ‘timeout’ means that the tool did not provide an answer within 300 seconds. At the bottom
of Table 2 we also report: (i) the precision, that is, the ratioNC/P , where NC is the number of programs
proved correct (that is, those programs for which the answer is different from ‘unknown’ and ‘timeout’)
and P is the total number of verification problems (P = 20, in our case), (ii) the total time T , that is,
the time taken for proving the NC programs correct, and (iii) the average time, that is, T/NC . These
experiments have been performed on an Intel Core Duo E7300 2.66Ghz processor with 4GB of memory
under the GNU Linux operating system.

The data presented in Table 2 show that the delayed versions of the generalization operators we have
considered have almost the same time performance and at least the same precision of their non-delayed
counterparts. In particular, by using the GenW operator, which is based on widening alone, our method is
able to prove only 6 programs out of 20. Notably, the use of the delay mechanism in GenWD determines a
significant increase of precision with respect to GenW. Alternatively, precision can be increased by using
the operators GenCHW and GenCHWD, which use also convex hull. These results confirm the effectiveness
of the convex hull operator which may help inferring relations among program variables, and may ease
the discovery of useful program invariants, while causing (in our benchmark set) only a slight increase
of the verification time.

The last column of Table 2 reports the results obtained by using BOOSTER. A distinctive feature
of that tool is that it uses loop acceleration techniques, which allow the replacement of loops belong-
ing to decidable classes [2] with suitable formulas. For those decidable classes BOOSTER generates
proof obligations which can then be discharged by using a complete SMT solver. If the program under
consideration falls outside those decidable classes, BOOSTER first runs a bounded model checking mod-
ule and then, if necessary, it runs multiple parallel instances of the MCMT model checking engine [21],
which also uses loop acceleration techniques together with lazy abstraction with interpolants for arrays.
In Table 2 we have marked with (simple) the programs that BOOSTER recognizes as belonging to the
decidable class of simple0A programs [2] for which loop acceleration performs very well.

In our experiments we found that BOOSTER is very effective at verifying the programs in our bench-
mark set. In some cases, it is able to prove properties of programs containing two nested loops, like the
bubblesort program, which VeriMAP has been unable to prove using the generalization operators consid-
ered in this paper. However, in some examples the applicability and effectiveness of the loop acceleration
techniques turn out to be quite sensitive to small changes in the code. For instance, we have considered 5
variants of the init-backward-zero program [8] (see line 15 of Table 2), and BOOSTER fails to verify 2

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs 21

Example: prog
VeriMAP

BOOSTER
GenW GenWD GenCHW GenCHWD

1. bubblesort-inner 0.67 0.85 0.70 0.88 0.01
2. bubblesort unknown unknown unknown unknown 0.67
3. insertionsort-inner 0.30 0.32 0.53 0.55 unknown
4. selectionsort-inner unknown 1.34 1.16 1.38 0.15
5. copy unknown 0.30 0.42 0.37 (simple) 0.01
6. copy-partial unknown 0.33 0.42 0.34 (simple) 0.02
7. copy-reverse unknown 0.36 0.68 0.63 (simple) 0.03
8. difference unknown 0.61 1.22 1.08 (simple) 0.02
9. sum unknown 0.65 1.30 1.13 (simple) 0.01

10. find-first-non-null-1 0.14 0.15 0.18 0.17 0.06
11. find-first-non-null-2 0.22 0.24 0.24 0.25 0.45
12. find 0.33 0.49 0.58 0.53 0.08
13. init-constant unknown 0.15 0.20 0.19 (simple) 0.01
14. init-partial-zero unknown 0.13 0.21 0.16 (simple) 0.02
15. init-backward-zero unknown 0.11 0.24 0.21 timeout
16. init-non-constant unknown 0.16 0.40 0.35 (simple) 0.02
17. init-sequence unknown 0.63 0.93 0.85 (simple) 0.72
18. max unknown 0.30 0.30 0.34 0.08
19. partition 0.49 0.53 0.56 0.55 0.12
20. rearrange-in-situ unknown unknown 0.79 0.86 0.23

precision 0.30 0.90 0.95 0.95 0.90
total time 2.15 7.65 11.06 10.82 2.04

average time 0.36 0.42 0.58 0.57 0.15

Table 2. Verification results using VeriMAP with different generalization operators and BOOSTER. Arrays have
unknown dimension. Times are in seconds. (simple) denotes a program of the decidable class simple0A [2]. The
timeout occurs after 300 seconds. ‘unknown’ denotes termination within the timeout without a proof or a disproof.

of these variants not falling into the class of simple0A programs. VeriMAP can successfully verify all
these variants. Similarly, a variant of the bubblesort program where the innermost loop moves smaller
elements towards the beginning of the array (instead of moving bigger elements towards the end), could
not be proved correct by BOOSTER.

We have also performed an additional experimental evaluation on the same set of problems, but using
arrays of known dimension. In particular, we have considered arrays of dimension n = 10, 25, 50. In
Table 3 we report the results obtained by running VeriMAP using the GenCHWD generalization operator,
BOOSTER, and SMACK. These experiments have been performed on an Intel Core i5-2467M 1.60GHz
processor with 4GB of memory under the GNU Linux operating system. The performance of VeriMAP
does not depend on the actual dimensions of the input arrays. The verification times are slighty higher
than the corresponding times, shown in Table 2, obtained for programs with arrays of unknown dimen-
sion. This difference of performance is partly due to the differences of the experimental environments.

22 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs

Example: prog
VeriMAP BOOSTER SMACK

n=10 n=25 n=50 n=10 n=25 n=50 n=10 n=25 n=50

1. bubblesort-inner 2.85 2.97 2.85 8.35 10.59 9.28 255.99 timeout timeout
2. bubblesort timeout timeout timeout 0.66 0.71 0.76 timeout timeout timeout
3. insertionsort-inner 1.70 1.69 1.65 unknown unknown unknown 2.71 2.60 2.93
4. selectionsort-inner 3.29 3.27 3.26 0.18 0.15 0.16 timeout timeout timeout
5. copy 1.02 1.01 1.00 0.01 0.03 0.01 18.83 timeout timeout
6. copy-partial 1.01 1.07 1.06 0.03 0.02 0.03 3.87 41.83 timeout
7. copy-reverse 1.68 1.79 1.81 0.04 0.03 0.02 18.09 timeout timeout
8. difference 2.38 2.42 2.46 0.03 0.03 0.02 25.15 timeout timeout
9. sum 2.66 2.59 2.62 0.03 0.03 0.03 15.49 timeout timeout
10. find-first-non-null-1 0.81 0.75 0.78 0.10 0.11 0.10 2.29 2.17 2.28
11. find-first-non-null-2 1.19 1.14 1.15 0.41 0.23 0.37 11.44 149.96 timeout
12. find 1.48 1.51 1.46 0.12 0.12 0.13 2.36 1.68 1.81
13. init-constant 0.66 0.59 0.61 0.02 0.01 0.03 5.42 26.07 164.80
14. init-partial-zero 0.58 0.55 0.58 0.02 0.02 0.02 2.99 8.99 87.17
15. init-backward-zero 0.59 0.58 0.59 0.14 0.31 1.62 9.37 28.39 160.87
16. init-non-constant 0.99 0.97 0.95 0.02 0.01 0.04 6.52 26.71 124.74
17. init-sequence 1.91 1.98 1.90 0.73 0.74 0.73 51.23 timeout timeout
18. max 1.04 1.06 1.07 0.11 0.11 0.15 16.74 timeout timeout
19. partition 2.09 2.05 2.19 timeout timeout timeout timeout timeout timeout
20. rearrange-in-situ 2.19 2.21 2.16 0.27 0.61 0.54 timeout timeout timeout

precision 0.95 0.95 0.95 0.90 0.90 0.90 0.80 0.45 0.35
total time 30.12 30.20 30.15 11.27 13.86 14.04 448.49 288.4 544.6

average time 1.59 1.59 1.59 0.63 0.77 0.78 28.03 32.04 77.80

Table 3. Verification results using VeriMAP, BOOSTER, and SMACK. Arrays have dimension n = 10, 25, 50.
Times are in seconds. The timeout occurs after 300 seconds. ‘unknown’ denotes termination within the timeout
without a proof or a disproof.

The performance of BOOSTER is also generally not sensitive to variations of the array dimension, ex-
cept for the init-backward-zero program, which it was not able to prove when using arrays of unknown
dimension. We also note that for two programs the verification times are much higher than those shown
in Table 2, namely bubblesort-inner and partition (which always runs out of time). This behavior is
possibly due to the fact that BOOSTER, as already mentioned, makes use of a bounded model checking
module before invoking MCMT. The SMACK tool, contrary to VeriMAP and BOOSTER, belongs to the
family of bounded software verifiers. It guarantees the absence of bugs by exploring the state space up
to a certain depth. SMACK first translates the LLVM intermediate representation (IR) of the program to
the Boogie intermediate verification language [37], and then it uses Corral [35] as a reachability modulo
theories solver. As expected, SMACK is very sensitive to the dimensions of the input arrays, except for
a few problems, namely insertionsort-inner, find-first-non-null-1, and find, for which it does not need to
reach the so called recursion bound. Moreover, even for small arrays of dimension n= 10, the verifi-
cation times are considerably higher than those reported by the other two tools. This explains the high

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs 23

number of problems for which it runs out of time.
Thus, we may conclude that our transformation-based approach to the verification of programs that

manipulate arrays of known or unknown dimension, is quite competitive, regarding both precision and
time performance, with respect to state-of-the-art software verification methods.

7. Related Work and Conclusions
We have presented a verification method for imperative programs that manipulate integer arrays, based on
an encoding of the verification task into a CLP program with constraints that represent array operations.
Our method makes use of an automated strategy that guides the application of semantics preserving
transformation rules, including unfolding, folding, and constraint replacement. The verification method
presented in this paper is an extension of the one introduced in [12], where programs manipulate integer
variables only.

The idea of encoding imperative programs into CLP programs for reasoning about their properties
was presented in various papers [18, 31, 44], where it is shown that through CLP programs one can
express in a simple manner both (i) the symbolic executions of the imperative programs, and (ii) the
invariants that hold during these executions. The peculiarity of our work here is that we use CLP program
transformations to prove properties, rather than symbolic execution or static analysis.

The verification method for proving properties of array manipulating programs we have presented
in this paper, is related to several other methods that use abstract interpretation and theorem proving
techniques.

Among the papers that use abstract interpretations for finding invariants of programs that manipu-
late arrays, we first mention [25]. In that paper, which builds upon [22], invariants are discovered by
partitioning the arrays into symbolic slices and associating an abstract variable with each slice. A sim-
ilar approach is taken in [8], where a scalable, parameterized abstract interpretation framework for the
automatic analysis of array programs is introduced. In [19, 34] a predicate abstraction for inferring uni-
versally quantified properties of array elements is presented, and in [24] the authors present a similar
technique that uses template-based quantified abstract domains.

The methods based on abstract interpretation construct over-approximations of the behaviour of the
programs, that is, invariants implied by program executions. These methods have the advantage of being
quite efficient because they fix in advance a set of assertions where the invariants are searched for, but
for the same reason, they may lack flexibility as the abstraction should be re-designed when the program
verification fails.

Also theorem proving techniques have been used for: (i) discovering invariants of the executions
of programs that manipulate arrays, and (ii) proving the verification conditions generated from the pro-
grams to be verified. In particular, in [2, 6] satisfiability decision procedures for decidable fragments
of the theory of arrays are presented. Those fragments are expressive enough to prove properties such
as sortedness of arrays. In [32, 33, 40] the authors present some techniques based on theorem proving
which may generate array invariants. In [49] a backward reachability analysis based on predicate abstrac-
tion and abstraction refinement is used for verifying assertions that are universally quantified over array
indexes. Finally, in [2, 36] some techniques based on Satisfiability Modulo Theories (SMT) have been
presented for the generation and the verification of universally quantified properties over array variables.

The approaches based on theorem proving and SMT are more flexible with respect to those based
on abstract interpretation, because no set of abstractions is fixed in advance, and the suitable assertions

24 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs

needed by the proof are generated on the fly, during the verification process itself. In particular, the
techniques presented in [2] and related papers on decision procedures for the theory of arrays [20], have
been integrated in BOOSTER [3]: a tool for verifying C-like programs handling arrays that we have used
in our experimental evaluation. It exploits acceleration techniques to compute in an exact way the set
of reachable states of programs with loops, provided that those programs belong to a restricted class of
programs, called simple0A programs [2]. Indeed, for programs belonging to that class, it computes in one
step, the set of the reachable states for which abstraction-based approaches require several refinement
steps. However, since acceleration is based on templates, it is sensitive to the syntactic presentation of
the input programs, and thus the applicability of the technique may have some limitations.

Although the approach based on CLP program transformation shares many ideas and techniques with
the approaches based on abstract interpretation and automated theorem proving, we believe that it has
some distinctive features that can make it quite appealing. Indeed, this paper and previous works [10,
17, 44] show that one can construct a uniform framework where both the generation of verification
conditions and the construction of their proofs can be viewed as instances of program transformation.
The transformation-based approach is also parametric with respect to the imperative language in which
the programs to be verified are written, because interpreters and proof systems can easily be written in
CLP, and verification conditions can automatically be generated by program specialization (which is a
particular instance of program transformation).

Moreover, optimizing transformations considered in the literature [45] can be applied to improve
the efficiency of the verification task. Note also that transformations can be composed together so to
derive powerful verification methods in a modular way. In particular, in [12] it is shown that the iteration
of program specialization combined with suitable constraint propagations can significantly improve the
precision of our program verification method.

Finally, we would like to mention that there are tools, such as the SMACK verifier [26], which au-
tomatically verify array manipulating programs by using bounded model checking techniques. Bounded
model checkers explore the state space up-to a given bound by unrolling the control flow graph a fixed
number of times only. Therefore, once provided with a suitable bound, these tools may prove the cor-
rectness of programs that manipulate arrays of known size. In contrast, the verification method presented
in this paper and implemented in VeriMAP, as well as the techniques implemented in BOOSTER, are able
to deal with arrays of unknown size.

As a future work we plan to extend our approach to the programs that, besides arrays, also manipulate
dynamic data structures such as lists or heaps. This extension will be done by looking for a suitable set
of constraint replacement laws that axiomatize those structures. For some specific theories we could also
apply the constraint replacement rule by exploiting the results obtained by external theorem provers or
SMT solvers.

Acknowledgements
We warmly thank the anonymous referees of CILC 2013 and of the Special Issue of Fundamenta Infor-
maticae for their helpful comments and constructive criticism. This work has been partially supported
by the National Group of Computing Science (GNCS-INDAM).

References
[1] E. Albert, M. Gómez-Zamalloa, L. Hubert, and G. Puebla. Verification of Java bytecode using analysis and

transformation of logic programs. Proc. PADL ’07, LNCS 4354, pages 124–139. Springer, 2007.

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs 25

[2] F. Alberti, S. Ghilardi, and N. Sharygina. Decision Procedures for Flat Array Properties. In TACAS ’14,
LNCS 8413, pages 15–30. Springer, 2014.

[3] F. Alberti, S. Ghilardi, and N. Sharygina. BOOSTER: An Acceleration-Based Verification Framework for
Array Programs. In ATVA ’14, LNCS 8837, pages 18–23. Springer, 2014.

[4] N. Bjørner, K. McMillan, and A. Rybalchenko. Program verification as satisfiability modulo theories. In
SMT ’12, pages 3–11, 2012.

[5] N. Bjørner, K. McMillan, and A. Rybalchenko. On solving universally quantified Horn clauses. In SAS ’13,
LNCS 7395, pages 105–125. Springer, 2013.

[6] A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In VMCAI ’06, LNCS 3855,
pages 427–442. Springer, 2006.

[7] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by
construction of approximation of fixpoints. In POPL ’77, pages 238–252. ACM, 1977.

[8] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully automatic and scalable
array content analysis. In POPL ’11, pages 105–118, ACM, 2011.

[9] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In
POPL ’78, pages 84–96, ACM, 1978.

[10] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying Array Programs by Transforming
Verification Conditions. In VMCAI ’14, LNCS 8318, pages 182–202. Springer, 2014.

[11] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. VeriMAP: A Tool for Verifying Programs
through Transformations. In TACAS ’14, LNCS 8413, pages 568–574. Springer, 2014.

[12] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Program verification via iterated specialization.
Science of Computer Programming, 95, Part 2:149–175, 2014.

[13] I. Dillig, T. Dillig, and A. Aiken. Fluid updates: beyond strong vs. weak updates. In ESOP’10, LNCS 6012,
pages 246–266. Springer, 2010.

[14] G. J. Duck, J. Jaffar, and N. C. H. Koh. Constraint-based program reasoning with heaps and separation. In
CP ’13, LNCS 8124, pages 282–298. Springer, 2013.

[15] S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theor. Comput. Sci., 166:101–146, 1996.
[16] F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Improving reachability analysis of infinite state systems

by specialization. Fundamenta Informaticae, 119(3-4):281–300, 2012.
[17] F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization strategies for the verification of infinite

state systems. Theory and Practice of Logic Programming, 13(2):175–199, 2013.
[18] C. Flanagan. Automatic software model checking via constraint logic. In Sci. Comput. Program., 50(1–

3):253–270, 2004.
[19] C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In POPL ’02, pages 191–202,

New York, NY, USA, 2002. ACM.
[20] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision procedures for extensions of the theory of

arrays. Ann. Math. Artif. Intell., 50(3-4):231–254, 2007.
[21] S. Ghilardi and S. Ranise. MCMT: A Model Checker Modulo Theories. Proc. IJCAR ’10, LNCS 6173, pages

22–29. Springer, 2010.
[22] D. Gopan, T. W. Reps, and S. Sagiv. A framework for numeric analysis of array operations. In POPL ’05,

pages 338–350. ACM, 2005.
[23] S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, and A. Rybalchenko. HSF(C): A Software Verifier

based on Horn Clauses. In TACAS ’12, LNCS 7214, pages 549–551. Springer, 2012.
[24] B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Automatically Refining Abstract Interpreta-

tions. In TACAS ’08, LNCS 4963, pages 443–458. Springer, 2008.
[25] N. Halbwachs and M. Péron. Discovering properties about arrays in simple programs. In PLDI ’08, pages

339–348, 2008.

26 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Rule-based Verification of Array Programs

[26] A. Haran and M. Carter and M. Emmi and A. Lal and S. Qadeer and Z. Rakamarić. SMACK+Corral: A
Modular Verifier. In TACAS ’15, LNCS 9035, pages 451–454. Springer, 2015.

[27] K. S. Henriksen and J. P. Gallagher. Abstract interpretation of PIC programs through logic programming.
Proc. SCAM ’06, pages 103 – 179, 2006.

[28] G. Huet and D. C. Oppen. Equations and Rewrite Rules: A Survey. In Formal Language Theory: Perspectives
and Open Problems, Academic Press, 1980.

[29] J. Jaffar and M. Maher. Constraint logic programming: A survey. Journal of Logic Programming, 19/20:503–
581, 1994.

[30] J. Jaffar, J. A. Navas, and A. E. Santosa. TRACER: A Symbolic Execution Tool for Verification. In CAV ’12,
LNCS 7358, pages 758–766. Springer, 2012.

[31] J. Jaffar, A. Santosa, and R. Voicu. An interpolation method for CLP traversal. In CP ’09, LNCS 5732, pages
454–469. Springer, 2009.

[32] R. Jhala and K. L. McMillan. Array abstractions from proofs. In CAV ’07, LNCS 4590, pages 193–206,
2007.

[33] L. Kovács and A. Voronkov. Finding loop invariants for programs over arrays using a theorem prover. In
FASE ’09, LNCS 5503, pages 470–485. Springer, 2009.

[34] S. K. Lahiri and R. E. Bryant. Predicate abstraction with indexed predicates. ACM Trans. Comput. Log.,
9(1), 2007.

[35] A. Lalh, S. Qadeer and S. K. Lahiri. A Solver for Reachability Modulo Theories. In CAV ’12, LNCS 7358,
pages 427–443, 2012.

[36] D. Larraz, E. Rodríguez-Carbonell, and A. Rubio. SMT-based array invariant generation. In VMCAI ’13,
LNCS 7737, pages 169–188. Springer, 2013.

[37] K. Rustan M. Leino. This is Boogie 2. http://research.microsoft.com/apps/pubs/default.aspx?id=147643,
2008.

[38] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987. Second Edition.
[39] J. McCarthy. Towards a mathematical science of computation. In C.M. Popplewell, editor, Information

Processing: Proceedings of IFIP 1962, pages 21–28, Amsterdam, 1963. North Holland.
[40] K. L. McMillan. Quantified invariant generation using an interpolating saturation prover. In TACAS ’08,

LNCS 4963, pages 413–427, 2008.
[41] M. Méndez-Lojo, J. A. Navas, and M. V. Hermenegildo. A flexible, (C)LP-based approach to the analysis of

object-oriented programs. Proc. LOPSTR ’07, LNCS 4915, pages 154–168. Springer, 2008.
[42] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language and tools for analysis and

transformation of C programs. In Compiler Construction, LNCS 2304, pages 209–265. Springer, 2002.
[43] J. C. Peralta and J. P. Gallagher. Convex hull abstractions in specialization of CLP programs. In LOPSTR ’02,

LNCS 2664, pages 90–108. Springer, 2003.
[44] J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of Imperative Programs through Analysis of Constraint

Logic Programs. In SAS ’98, LNCS 1503, pages 246–261. Springer, 1998.
[45] A. Pettorossi and M. Proietti. Transformation of Logic Programs: Foundations and Techniques. In Journal

of Logic Programming, Vol. 19,20, pages 261–320, 1994.
[46] A. Podelski and A. Rybalchenko. ARMC: The Logical Choice for Software Model Checking with Abstrac-

tion Refinement. In PADL ’07, LNCS 4354, pages 245–259. Springer, 2007.
[47] C. J. Reynolds. Theories of Programming Languages. Cambridge Univ.Press 1998.
[48] P. Rümmer, H. Hojjat, and V. Kuncak. Disjunctive interpolants for Horn-clause verification. Proc. CAV ’13,

LNCS 8044, pages 347–363. Springer, 2013.
[49] M. N. Seghir, A. Podelski, and T. Wies. Abstraction refinement for quantified array assertions. In SAS ’09,

LNCS 5673, pages 3–18. Springer, 2009.
[50] G. Winskel. The Formal Semantics of Programming Languages: An Introduction. The MIT Press, 1993.

