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Abstract. Relational verification is a technique that aims at proving
properties that relate two different program fragments, or two different
program runs. It has been shown that constrained Horn clauses (CHCs)
can effectively be used for relational verification by applying a CHC
transformation, called Predicate Pairing, which allows the CHC solver
to infer relations among arguments of different predicates. In this paper
we study how the effects of the Predicate Pairing transformation can be
enhanced by using various abstract domains based on Linear Arithmetic
(i.e., the domain of convex polyhedra and some of its subdomains) during
the transformation. After presenting an algorithm for Predicate Pairing
with abstraction, we report on the experiments we have performed on
over a hundred relational verification problems by using various abstract
domains. The experiments have been performed by using the VeriMAP
verification system, together with the Parma Polyhedra Library (PPL)
and the Z3 solver for CHCs.

1 Introduction

Relational program properties are properties that relate two different programs or
two executions of the same program. Relational properties that have been stud-
ied in the literature include program equivalence, non-interference for software
security, and relative correctness [4, 5, 22].

Recent papers have advocated the use of Constrained Horn Clauses (CHCs)
for the verification of relational program properties [12, 18, 27]. As suggested in
these papers a verification problem is first translated into a set of Horn clauses
with constraints in a suitable domain (usually, Linear Arithmetic), and then the
satisfiability of that set of clauses is verified by using an SMT solver for Horn
clauses, called here a CHC solver, such as Z3 [15] or Eldarica [19].

⋆ This work has been partially funded by INdAM-GNCS (Italy). E. De Angelis,
F. Fioravanti, and A. Pettorossi are research associates at IASI-CNR, Rome, Italy.
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The main difficulty encountered by CHC solvers when verifying relational
properties is that these solvers find models of single predicates expressed in
terms of Linear Arithmetic constraints, whereas the proof of relational proper-
ties often requires the discovery of relations among arguments of two (or more)
distinct predicates. To mitigate this difficulty, Predicate Pairing transforms a set
of clauses defining two predicates, say p and q, into a new set of clauses defining
a new predicate, say r, equivalent to the conjunction of p and q [12]. Thus, when
the CHC solver finds a model for the predicate r, it discovers relations among
the arguments of p and q.

In the approach presented in this paper we use Predicate Pairing together
with Abstraction, which is a technique often used in program analysis and trans-
formation. It consists in mapping the concrete semantics of a program into an
abstract domain, where some program properties can more easily be verified [6].
In the context of relational verification, Predicate Pairing combined with a ba-
sic form of abstraction has been introduced in a previous paper [12]. In that
paper, in fact, Predicate Pairing is performed by introducing new definitions
whose bodies are made out of two atoms together with equalities between some
arguments of these predicates, and these equality constraints can be viewed as
an abstraction into the domain of equalities.

Abstraction is also used by CHC Specialization, which is another transfor-
mation technique that has been proposed to increase the effectiveness of CHC
solvers [8, 20]. Given a set of clauses, CHC Specialization propagates constraints
through the clauses, and since this propagation often causes strengthening of the
constraints, it may be the case that, if we first specialize a given set of clauses,
the task of CHC solving is made easier. However, the impact of the specialization
process very much depends on the choices of the particular abstract domain and
associated widening operator, which are used when the specialized predicates are
introduced or manipulated.

In this paper we address the problem of evaluating various combinations of
(i) Predicate Pairing, (ii) Abstraction, and (iii) Specialization for the specific
objective of verifying relational properties of programs. In order to do so, we
have introduced a general algorithm for Predicate Pairing that is parametric
with respect to the abstract constraint domain that is used. This domain is
taken to be a subdomain of Linear Arithmetic, such as Convex Polyhedra, Boxes,
Bounded Differences, and Octagons [2, 3, 7, 26]. Our parametric Abstraction-
based Predicate Pairing algorithm, called the APP strategy, generalizes the one
that makes use of equalities between variables that has been used in a previous
paper of ours [12]. We have also considered a CHC Specialization algorithm,
called the ASp strategy, that is parametric with respect to the abstract constraint
domain that is used, and can be viewed as a particular instance of the APP
strategy. Finally, we have performed various sets of experiments by applying
different sequences of the APP and ASp strategies to sets of CHCs encoding
relational properties of imperative programs. In these experiments we have varied
the abstract constraint domains that the strategies use and we have explored the
relative merits of these different domains when verifying relational properties.
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The lesson we learned from our experiments is that the strategies achiev-
ing the best results use constraint domains, such as Bounded Differences or
Octagons, in which one can express relations between variables, without requir-
ing more precise domains, such as Convex Polyhedra. Moreover, Abstraction-
based Predicate Pairing essentially incorporates the effect of CHC Specialization,
and thus extra specializations steps (before or after Abstraction-based Predicate
Pairing) are not cost-effective.

The paper is organized as follows. In Section 2 we present an introductory
example showing the usefulness of abstraction. Then, in Section 3 we present the
various abstract constraint domains, such as Convex Polyhedra, Boxes, Bounded
Differences, and Octagons, and the operations defined on them. In Section 4 we
present the APP and ASp strategies, and we prove that they preserve satisfia-
bility (and unsatisfiability). In Section 5 we briefly describe the implementation
of our verification method based on: (i) the VeriMAP transformation and verifi-
cation system, (ii) the Parma Polyhedra Library for constraint manipulation [3],
and (iii) the Z3 solver for CHC satisfiability. We also report on the experiments
we performed on more that one hundred verification problems. Finally, in Sec-
tion 6, we discuss the related work on program transformation and verification.

2 An Introductory Example

In this section we present our running example concerning the problem of proving
the equivalence of two imperative programs. CHC solvers, like Z3 [15], which
are based on Linear Arithmetic are not able to prove that equivalence starting
from its direct encoding in CHC. However, we will show that if we pre-process
that encoding by the Predicate Pairing strategy which uses a suitable abstract
constraint domain, then the Z3 solver is able to make that proof.

Let us consider the programs P 1 and P 2 shown in Figure 2, where pro-
gram P 2 is obtained from program P 1 by applying a compiler optimization
technique, called software pipelining. Software pipelining takes as input a pro-
gram with a loop and produces in output a program with a new loop whose in-
structions are taken from different iterations of the original loop. Combined with
other program transformations, software pipelining may allow more parallelism
during program execution, and indeed, it can produce loops whose instructions
have no read/write dependencies and thus can be executed in parallel. For ex-
ample, in program P 2, derived by pipelining from program P 1, the dependency
on x in the instructions of the loop in P 2 can be removed by: (i) introducing a
fresh variable u initialized to x, and (ii) replacing x by u on the right-hand side
of the assignments within the loop. After this replacement we get the instruc-
tions ‘u = x; y = y+u; a = a+1; x = u+a’, and we can safely execute in parallel the
instruction ‘y = y+u’ and the sequence of instructions ‘a = a+1; x = u+a’.

The equivalence of programs P 1 and P 2 with respect to the output value
of x, can be expressed by the following clause F :

F : false← X1 6=X2, whl1(A, B, X, Y, A1, B1, X1, Y 1),
ifte(A, B, X, Y, A2, B2, X2, Y 2)
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P 1 :

while (a < b) {
x = x+a;
y = y+x;
a = a+1;

}

P 2 : if (a < b) {
x = x+a;
while (a < b-1) {

y = y+x;
a = a+1;
x = x+a;

}
y = y+x;
a = a+1;

}

Fig. 1. The input program P 1 and the output program P 2 obtained from P 1 by
applying software pipelining.

where: (i) predicates whl1 and ifte represent the input/output relation of pro-
grams P 1 and P 2, respectively, (ii) A, B, X, Y and A1, B1, X1, Y 1 represent the
values of the variables a, b, x, y at the beginning and at the end, respectively, of
the execution of program P 1, and similarly, (iii) A, B, X, Y and A2, B2, X2, Y 2
represent the values of a, b, x, y at the beginning and at the end, respectively,
of the execution of program P 2. The clauses defining whl1 and ifte, as well as
the predicate whl2 on which ifte depends, are reported below. (The non-expert
reader may find the description of the technique for constructing clauses starting
from imperative programs in a previous paper of ours [13].) Note that predicates
whl1 and whl2 correspond to the while-loops of programs P 1 and P 2, respec-
tively. Note also that strict inequalities occurring in programs (such as a < b in
program P 1) are represented by using non-strict inequalities in clauses (see, for
instance, A ≤ B−1 in clause 2).

1. whl1(A, B, X, Y, A, B, X, Y )← A ≥ B
2. whl1(A, B, X, Y, A2, B2, X2, Y 2)← A ≤ B−1, A1=A+1, X1 = X+A,

Y 1=X1+X, whl1(A1, B, X1, Y 1, A2, B2, X2, Y 2)
3. ifte(A, B, X, Y, A, B, X, Y )← A ≥ B
4. ifte(A, B, X, Y, A2, B2, X2, Y 2)← A ≤ B−1, X1 = X+A,

whl2(A, B, X1, Y, A2, B2, X2, Y 2)
5. whl2(A, B, X, Y, A2, B, X, Y 2)← A ≥ B−1, A2=A+1, Y 2 = Y +X
6. whl2(A, B, X, Y, A2, B2, X2, Y 2)← A ≤ B−2, A1=A+1, X1 = A1+1,

Y 1=Y +X, whl2(A1, B, X1, Y 1, A2, B2, X2, Y 2)

Let P be the set of clauses {1, . . . , 6}. By proving the satisfiability of P ∪{F}, we
prove that programs P 1 and P 2 produce identical values for x as output, when
provided with the same input values. Unfortunately, CHC solvers, like Z3, based
on Linear Arithmetic cannot prove the satisfiability of P ∪{F}. This inability is
due to the fact that the solver computes models of single predicates expressed in
terms of linear constraints among their arguments, while non-linear constraints
among the arguments of each predicate whl1 and ifte need be discovered to
prove that the conjunction of the two atoms in the body of clause F implies
X1=X2. In particular, the solver has to discover that the whl1 and ifte atoms
imply X1=X+(B2−A2−B+A)/2 and X1=X+(B2−A2−B+A)/2, respectively.

The Predicate Pairing strategy we have introduced in a previous paper [12]
may help in overcoming this difficulty. By Predicate Pairing we may introduce
new predicates defined in terms of two (or more) atoms, together with suitable



5

linear constraints among their arguments. Then, CHC solvers based on Linear
Arithmetic may be able to infer relations among arguments of the new predicates
that correspond to conjunctions of predicates before Predicate Pairing.

However, the efficacy of the Predicate Pairing strategy crucially depends on
the choice of the constraints that are added when introducing new predicates.
The original Predicate Pairing strategy [12] adds equalities between arguments.
In Section 4 we extend that strategy so as to be parametric with respect to the
domain of constraints used, and in Section 5 we evaluate in an experimental way
the effect of varying the choice of that domain for relational verification.

In Section 4, after presenting our extended Predicate Pairing transformation
strategy, we complete our running example and we show that the transformation
strategy that uses the constraint domain of Bounded Differences is able to prove
the equivalence property.

3 Constrained Horn Clauses over Numerical Domains

Let us first recall the basic notions about: (i) some abstract domains used in
static program analysis based on abstract interpretation [6], and (ii) constrained
Horn clauses (CHCs).

We consider the abstract constraint domain of Convex (Closed) Polyhe-
dra [2, 3, 7, 26], CP for short, over the n-dimensional real space R

n. The atomic
constraints of the CP domain are of the form a1 x1+ . . . + an xn ≤ a, where the
ai’s are coefficients in R and the x’s are variables ranging over R. A constraint c
is either true, or false, or an atomic constraint, or a conjunction of constraints.

Given a formula F , by ∀(F ) and ∃(F ) we denote its universal and existential
closure, respectively. By vars(F ) we denote the set of variables occurring in F .
A constraint c is said to be satisfiable if CP |= ∃(c). Given two constraints c
and d, we say that c entails d, and we write c ⊑ d, if CP |= ∀(c → d). We say
that c and d are equivalent if c ⊑ d and d ⊑ c.

We also consider the following abstract constraint domains, namely: (i) Univ,
(ii) Boxes, (iii) Bounded Differences, and (iv) Octagons, which are all subdomains
of Convex Polyhedra in the sense that they are defined by putting restrictions on
the form of the polyhedra associated with the atomic constraints. These abstract
domains have all true and false as constraints and are closed under conjunction.

The constraints of the domain Univ are true and false only, and in the n-di-
mensional case true denotes the whole space R

n and false denotes the empty
set on n-tuples of reals. The atomic constraints of Boxes are inequalities of
the form x ≤ a, where a∈R. The atomic constraints of Bounded Differences are
inequalities of the form a1 x1 + a2 x2 ≤ a, where a∈R, ai∈{−1, 0, 1}, for i=1, 2,
and a1 is different from a2. The atomic constraints of Octagons are inequalities
of the form a1 x1 + a2 x2 ≤ a, where a∈R and ai∈{−1, 0, 1}, for i=1, 2.

Each abstract constraint domain D ⊆ CP is endowed with some operators
that we now define. (Details and examples of these operators can be found
in [2, 3, 7, 26].) Let c and d be two constraints in D, or D-constraints.
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The least upper bound operator is a function ⊔ : D×D → D such that
(i) c ⊑ c ⊔ d, (ii) d ⊑ c ⊔ d and (iii) for all D-constraints e, if c ⊑ e and d ⊑ e,
then c ⊔ d ⊑ e.

A widening operator is a function ∇ : D×D → D such that (i) c ⊑ c∇d,
(ii) d ⊑ c∇d, and (iii) for all chains y0 ⊑ y1 ⊑ . . ., the chain x0 ⊑ x1 ⊑ . . . ,
where x0 = y0 and, for i>0, xi+1 = xi∇yi+1, has finitely many distinct elements
(modulo equivalence in Linear Arithmetic).

The abstraction operator for a subdomain D of CP, is a function α : CP→ D
such that (i) c ⊑ α(c), and (ii) for all D-constraints e, if c ⊑ e, then α(c) ⊑ e.

The projection of a D-constraint c onto a set X of variables, denoted c ⇓ X ,
is a D-constraint c′, with variables in X, which is equivalent to ∃Y.c, where
Y=vars(c)−X . Clearly, c ⊑ c′.

An atom is a formula of the form p(X1, . . . , Xm), where p is a predicate sym-
bol different from ‘≤’ and X1, . . . , Xm are distinct variables. A constrained Horn
clause (or simply, a clause, or a CHC) is an implication of the form A← c, G
(comma denotes conjunction), where the conclusion (or head) A is either an
atom or false, the premise (or body) is the conjunction of a constraint c and a
(possibly empty) conjunction G of atoms. The empty conjunction is identified
with true. We also assume that two atoms in the body of a clause do not share
any variable. Note that, for reasons of simplicity, we wrote the clauses of the
example in Section 2 in a form which does not comply with the syntax defined
in this section. However, they can be rewritten into a compliant form by ap-
plying the following transformations: (i) the removal of multiple occurrences of
variables in (conjunctions of) atoms in favor of equalities, (ii) the replacement
of equalities by conjunctions of inequalities, and (iii) the split of clause F into
two clauses where the disequality X1 6=X2 has been replaced by the inequalities
X1≤X2−1 and X1≥X2+1, respectively.

A set S of CHCs is said to be satisfiable if S∪CP has a model, or equivalently,
S ∪ CP 6|= false.

4 Predicate Pairing with Abstraction

In this section we present an algorithm for transforming CHCs, called Abstrac-
tion-based Predicate Pairing (or APP strategy, for short), which combines Pred-
icate Pairing [12] with abstraction operators acting on a given constraint do-
main (see Figure 2). The APP transformation strategy preserves satisfiability of
clauses and has the objective of increasing the effectiveness of the satisfiability
check that is performed by the subsequent application of a CHC solver.

The APP transformation strategy tuples together two or more predicates
into a single new predicate which is equivalent to their conjunction. As dis-
cussed in Section 2, the addition of suitable constraints among the variables of
the predicates paired together (or tupled together, if more than two), may ease
the discovery of the relations existing among the arguments of the individual
predicates. The APP strategy is parametric with respect to: (i) the abstract
constraint domain which is considered, and (ii) a Partition operator that de-
termines, for a given a clause, the atoms to be tupled together by splitting the
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conjunction G of atoms in the body of the clause into n (≥ 1) subconjunc-
tions G1, . . . , Gn. By choosing the abstract constraint domain and the Partition
operator in suitable ways, we can derive a wide range of transformations, and
among these, the Predicate Pairing strategy introduced in a previous paper [12],
Linearization [10], and CHC Specialization [8, 20].

In particular, the Predicate Pairing strategy is derived as follows. The con-
straint domain is the set of equalities between variables (thus, a subdomain
of the Bounded Differences domain). For defining the Partition operator, sup-
pose that the goal of the strategy is to pair two predicates q and r defined
by two disjoint sets of clauses Q and R, respectively. Then, for a clause H ←
c, Q1, . . . , Qm, R1, . . . , Rn, with m ≤ n, where Q1, . . . , Qm are atoms defined
by clauses in Q and R1, . . . , Rn are atoms defined by clauses in R, the Par-
tition operator returns the partition (Q1, R1), . . . , (Qm, Rm), (Rm+1), . . . , (Rn),
and similarly for the case m≥n (more sophisticated ways of choosing (Qi, Rj)
pairs have been proposed [14]).

A CHC Specialization strategy with Abstraction, which we call ASp strategy,
can be derived by instantiating the APP strategy as we now specify. The ASp
strategy is obtained by using the Partition operator that, given a conjunction
of atoms A1, . . . , An in the body of a clause, returns n subconjunctions, each
consisting of a single atom Ai, with i ∈ {1, . . . , n} (that is, Predicate Pairing
is not performed). In Section 5 we will show the effects of using ASp, together
with APP, with different abstract constraint domains.

The APP strategy is realized by performing a sequence of applications of the
well-known unfold/fold rules [17]. In order to be self-contained, now we present
the version of the Unfolding rule used in this paper. The other rules will be
presented when describing the APP strategy.

Unfolding Rule. Let P be a set of clauses and C be a clause of the form
H ← c, L, A, R, where A is an atom and L and R are (possibly empty) con-
junctions of atoms. Let us consider the set {A← ci, Bi | i = 1, . . . , m} made out
of all the clauses in P whose head is A (after renaming). By unfolding C w.r.t. A
using P , we derive the set of clauses {(H ← c, ci, L, Bi, R) | i = 1, . . . , m}.

The APP strategy constructs a tree Defs of clauses whose head is either
false or a new predicate, that is, a predicate not occurring in the input set P of
clauses. Clauses with new head predicates are called definitions. A definition D
is said to be a child of a definition C, and equivalently, C is said to be the parent
of D, if D is introduced to fold a clause derived by unfolding from clause C. The
ancestor relation on Defs is the reflexive transitive closure of the parent relation.

Note that, by construction, every constraint, either ai or di, occurring in
a new definition Di introduced during the Definition & Folding phase (see
Figure 2), belongs to the abstract constraint domain.

Let us now prove the termination and soundness of the strategy. A Partition
operator is said to be bounded if there exists a positive integer k such that,
for any clause C, the operator splits the body of C into the subconjunctions
G1, . . . , Gn, where, for i = 1, . . . , n, the number of atoms in Gi is at most k. For
instance, k≤2 is a bound for the Partition operators described above.
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Input: A set P ∪ {C} of clauses where C is a clause whose head is false.
Output: A set TransfCls of clauses.

Initialization: InCls := {C}; Defs is the tree made out of the root clause C only;
TransfCls := P ;

while there is a clause C in InCls of the form H ← c, B do

• Unfolding: From clause C derive a set U(C) of clauses by unfolding C with
respect to each atom occurring in its body using P ;

• Clause Deletion: Remove from U(C) all clauses with an unsatisfiable constraint;

• Definition & Folding:
for every clause E ∈ U(C) of the form H ← d, G do

Partition the conjunction G into n (≥1) subconjunctions G1, . . . , Gn;
for i = 1, . . . , n do

di := α(d) ⇓ Vi, where Vi is the set of variables in Gi;
if in Defs there is no clause newp

i
(Vi)← ei, Gi such that di ⊑ ei then

if in Defs there is an ancestor clause of C of the form newq(Vi)← fi, Gi

then Di := (newp
i
(Vi)← ai, Gi), where ai = fi∇(fi ⊔ di)

else Di := (newp
i
(Vi)← di, Gi);

InCls := InCls ∪ {Di}; add Di as a child of C in Defs;
end-for ;
TransfCls := TransfCls ∪ {H ← d, newp

1
(V1), . . . , newp

n
(Vn)};

end-for ;

InCls := InCls− {C};

end-while

Fig. 2. The APP transformation strategy.

Theorem 1 (Termination and Soundness of Predicate Pairing with
Abstraction). Let the set P ∪ {C} of clauses be the input of the APP strategy.
Suppose that APP uses a bounded Partition operator. Then, the strategy termi-
nates and returns a set TransfCls of clauses such that P ∪ {C} is satisfiable iff
TransfCls is satisfiable.

Proof. (Sketch) Since the Partition operator is bounded and, by definition, no se-
quence of applications of the widening operator ∇ can generate infinitely many
distinct constraints (modulo equivalence), the set of new predicate definitions
that can be introduced by the APP strategy is finite. Thus, the number of exe-
cutions of the while loop of the strategy is also finite, and hence APP terminates.

To show the soundness of APP we first recall the following result (see The-
orem 2 in [12], which is a consequence of a well-known result by Etalle and
Gabbrielli [17]): Suppose that from a set Cls of clauses we derive a new set
TransfCls of clauses by a sequence of applications of the unfold/fold rules, such
that every definition used for folding is unfolded during that sequence. Then Cls
is satisfiable iff TransfCls is satisfiable. Now, by taking Cls to be the set P ∪{C}
of clauses that are an input of APP, the thesis follows from the fact that every
clause added to Defs (and hence to InCls) is eventually unfolded. �

Let us see the APP strategy in action on the example of Section 2. As already
mentioned, the disequality X1 6=X2 is viewed as a disjunction of two inequalities,
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and hence clause F is split into two clauses, say F1 and F2, containing the two
disjuncts. For reasons of space we only prove the satisfiability of the set P∪{F1},
where F1 is the following clause:

F1: false← X1≤X2−1, whl1(A, B, X, Y, A1, B1, X1, Y 1),

ifte(A, B, X, Y, A2, B2, X2, Y 2)

The satisfiability of P ∪{F1, F2} can be proved by applying the strategy twice.
For the application of the APP strategy we use the Bounded Differences domain,
or BDS, for short.

After the Initialization step, the APP strategy selects F1 from InCls and
applies the Unfolding step. The unfolding of whl1 and ifte occurring in the
body of F1 mimics the execution of the while loop of program P1 and the if-
then-else of program P2. By unfolding we get four clauses, three of which have
unsatisfiable constraints and are removed by the subsequent Clause Deletion

step. The only clause with a satisfiable constraint is the following one (up to
equivalence in Linear Arithmetic and variable renaming):

7. false ← X2≤X4−1, A1≤B1, A1=A3+1, Y 1=Y 3+X1, B1=B3, X1=X3,

whl1(A1, B1, X1, Y 1, A2, B2, X2, Y 2),

whl2(A3, B3, X3, Y 3, A4, B4, X4, Y 4).

Then the Definition & Folding step adds the following new definition to Defs
and to InCls:

8. pp(A1, B1, X1, Y 1, A2, B2, X2, Y 2, A3, B3, X3, Y 3, A4, B4, X4, Y 4)←

X2 ≤X4−1, A1≤B1, A1=A3+1, B1=B3, X1=X3,

whl1(A1, B1, X1, Y 1, A2, B2, X2, Y 2), whl2(A3, B3, X3, Y 3, A4, B4, X4, Y 4).

The body of clause 8 consists of the conjunction of the two atoms occurring in
the body of clause 7 together with the constraints obtained from the constraints
of clause 7 by applying the abstraction operator α for BDS (the projection is
the identity in this case, because the variables occurring in the constraints are
a subset of the variables in the atoms). The operator α drops the constraint
Y 1=Y 3+X1 whose least overapproximation in BDS is true. By folding clause 7
using definition 8 we get the following clause, which is then added to TranfCls:

9. false ← X2≤X4−1, A1≤B1, A1=A3+1, Y 1=Y 3+X1, B1=B3, X1=X3,

pp(A1, B1, X1, Y 1, A2, B2, X2, Y 2, A3, B3, X3, Y 3, A4, B4, X4, Y 4).

Now, the APP strategy performs a second iteration of the while loop to process
definition 8 in InDefs. By Unfolding and Clause Deletion we have that the
constraints occurring in definition 8 are preserved. Hence, we get a clause that
can be folded again using definition 8, thereby deriving:

10. pp(A1, B1, X1, Y 1, A2, B2, X2, Y 2, A3, B3, X3, Y 3, A4, B4, X4, Y 4)←

X2 ≤X4−1, A1≤B1, A1=A3+1, B1=B3, X1=X3, A5≤B1,

A5=A1+1, X5=X1+A1, Y 5=Y 1+X5, X6=X5, Y 6=Y 3+X1,

pp(A5, B1, X5, Y 5, A2, B2, X2, Y 2, A1, B3, X6, Y 6, A4, B4, X4, Y 4).

Since there are no more clauses to be processed in InCls, the final set of clauses is
TransfCls={9,10}. The satisfiability of TransfCls is trivial, and is easily checked
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by Z3, because it contains no constrained facts (that is, clauses with only con-
straints in their body), and hence a model is obtained by taking pp to be false.

Note that the widening and least upper bound operators were not used in
our running example, but widening is needed, in general, to guarantee the ter-
mination of APP (see Theorem 1).

Note also that the abstract constraint domain used by APP is crucial for
deriving clauses without constrained facts. Indeed, if in our running example
we use the domain Univ, instead of BDS, then the body of the new definition
introduced after unfolding consists of the conjunction of the two whl1 and whl2
atoms without any constraint, as the abstraction operator for Univ maps every
satisfiable constraint to true. Then, by unfolding this new definition, we get
a constrained fact derived from the constrained facts of whl1 and whl2 (i.e.,
clauses 1 and 5 of Section 2).

5 Experimental Evaluation

In this section we present the results of the experiments we have performed
by applying in various ways both the APP strategy and its instance, the ASp
strategy. These results illustrate the role of abstract constraint domains consid-
ered when applying those strategies, and they also show the usefulness of the
APP strategy for improving the performance of the CHC solvers when checking
satisfiability of clauses.

We have implemented the APP and the ASp strategies using the VeriMAP
transformation system [9] and the Parma Polyhedra Library (PPL) [3], and we
have used the Z3 solver [15] for checking satisfiability of the clauses generated
by those strategies. The verification process is depicted in Figure 3 and can be
described as follows. The clauses encoding a verification problem are given as
input to the VeriMAP system which applies to them a (possibly empty) sequence
of APP (or ASp) strategies, using a specific constraint domain. When applying
these strategies the constraints in the domain abstract are manipulated using the
Parma Polyhedra Library. The resulting clauses, if produced within a specified
timeout, will be passed in input to the Z3 solver to test their satisfiability.

CHC encoding of
the verification
problem

APP/ASp strategy [VeriMAP]

1. Unfolding
2. Clause Deletion
3. Definition & Folding

Parma Polyhedra Library

CHC solver Z3
answer :

- satisfiable
- unsatisfiable
- unknown

Fig. 3. The verification process.

Implementation of the APP and ASp strategies. We have ported the VeriMAP
system from SICStus Prolog 3.12.5 to SWI-Prolog 7.4.2 and we have extended
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its transformation engine so to use the abstract constraint domains and the
associated operations provided by the Parma Polyhedra Library 1.2.

The domains we have considered are: (i) Univ, (ii) Boxes, (iii) Bounded Dif-
ferences (also called Bounded Difference Shapes, and denoted BDS, for short),
(iv) Octagons (also called Octagonal Shapes, and denoted OS, for short), and
(v) Convex Polyhedra, together with the operations of projection, least upper
bound, widening, emptiness check, and inclusion check (these two kinds of checks
correspond to satisfiability and entailment, respectively). In particular, we have
considered the following two variants of the Convex Polyhedra domain: (1) the
one with the widening operator of Halbwachs [7], and (2) the one with the widen-
ing operator of Bagnara et al. [2]. These variants will be denoted by CP-H and
CP-B, respectively. Since VeriMAP natively represents constraints using the syn-
tax of the Constraint Logic Programming (CLP), when implementing the APP
strategy, we have used the translation from PPL polyhedra to CLP constraints,
and vice versa.

Benchmark suite. We have considered a benchmark suite consisting of 136 ver-
ification problems, for a total number of 1655 input constrained Horn clauses.
Each problem consists in the verification of a relational property, such as equiv-
alence, monotonicity, injectivity, functional dependency, loop optimization, and
non-interference [4, 5, 10, 12, 18].

Experiments. We have performed the following six sets of experiments E0–E5
(see the corresponding six frames in Table 1):

E0: Z3
E1: ASp(X) ; Z3
E2: ASp(X) ; APP(X) ; Z3
E3: ASp(X) ; APP(X) ; ASp(X) ; Z3
E4: APP(X) ; Z3
E5: APP(Univ) ; ASp(X) ; Z3

where: (i) the parameter X is an abstract domain in the set {Boxes, BDS,
OS, CP-H, CP-B} and (ii) ASp(X) and APP(X) denote an application of the
Abstraction-based Specialization strategy and the Abstraction-based Predicate
Pairing strategy, respectively, by using the abstract domain X.

When trying to solve a single verification problem, we set a timeout of 300 sec-
onds for each application of the APP(X) strategy or of the ASp(X) strategy or
of the Z3 solver.

Here is an explanation of the experiments E0, E1 with X=OS, and E2 with
X=OS. The explanation of the other experiments is similar.

Experiment E0 (see Frame E0 in Table 1) consists in performing a run of Z3
directly on the clauses that encode each verification problem. Z3 solves (either
positively or negatively) 28 problems (see Column SolProbls) out of the total
136 verification problems, by providing the answer (either ‘satisfiable’ or ‘unsat-
isfiable’, respectively) within the timeout in an average time of 2.36 seconds (see
Column AvgTime2) per solved problem.

Experiment E1 with X=OS (see line OS of Frame E1 in Table 1) consists
in applying the ASp(OS) strategy on the clauses that encode each of the 136
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VeriMAP Z3

Exp Domain X OutProbls OutCls SizeRatio AvgTime1 SolProbls AvgTime2

E0 — — — — — 28 2.36

E1 Boxes 136 3111 1.88 0.67 29 3.15
BDS 136 2629 1.59 0.66 28 3.79
OS 136 3540 2.14 0.73 28 4.10
CP-H 136 3021 1.83 0.66 34 3.95
CP-B 136 3633 2.20 0.69 36 10.14

E2 Boxes 134 27753 17.10 2.52 73 2.20
BDS 136 12793 7.73 3.26 119 3.69
OS 134 20361 12.44 5.23 121 3.90
CP-H 135 16193 9.84 3.74 113 0.93
CP-B 127 12554 8.06 3.51 114 3.65

E3 Boxes 134 45970 28.32 5.09 77 3.54
BDS 136 26683 16.12 6.56 121 3.86
OS 134 36871 22.52 10.21 119 3.06
CP-H 135 31521 19.16 7.66 115 2.05
CP-B 127 25495 16.37 8.10 112 1.27

E4 Boxes 136 20296 12.26 2.27 78 2.01
BDS 136 8630 5.21 1.38 121 2.45
OS 135 13762 8.37 2.97 120 1.77
CP-H 135 13823 8.40 2.59 110 1.57
CP-B 131 11718 7.35 2.22 113 2.19

E5 Boxes 136 19932 12.04 2.94 74 3.07
BDS 136 8387 5.07 2.17 120 1.63
OS 135 14065 8.55 3.64 118 1.39
CP-H 135 14111 8.58 3.29 112 1.44
CP-B 129 9831 6.24 3.12 113 2.05

Table 1. Column Exp reports the set of experiments considered in each frame. Ev-
ery line in each frame reports the results of a single experiment which consists of 136
verification problems. The abstract domain used in an experiment is shown in Col-
umn Domain X. Columns OutProbls and OutCls report the number of non-aborted
verification problems and the total number of their output clauses, respectively. Col-
umn SizeRatio reports the value OutCls divided by the total number of input clauses
of the non-aborted verification problems. Column AvgTime1 reports the time taken to
produce the clauses of Column OutCls divided by the value OutProbls. Columns Sol-
Probls and AvgTime2 report the number of (non-aborted) verification problems solved
by Z3 and the average time taken by Z3 per solved problem. The times are the CPU
seconds spent in user mode.

verification problems, and then running Z3. From a total of 1655 input clauses
these 136 applications of ASp(OS) produce a total of 3540 output clauses (see
Column OutCls) with a size increase of about 2.14 (≈3540/1655) times (see
Column SizeRatio), in an average time of 0.73 seconds per problem (see Col-
umn AvgTime1). Then, on the 3540 output clauses we run Z3 that solves 28
problems with an average time of 4.10 seconds per solved problem.

Experiment E2 with X=OS (see line OS of Frame E2 in Table 1) consists
in applying the ASp(OS) strategy on the input clauses, exactly as in Experi-
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ment E1, then applying the APP(OS) strategy, which produces a total of 20361
output clauses, and finally running Z3. Note that for two problems APP(OS) is
unable to produce the output clauses within the timeout (see Column OutProbls
where the entry is 134, instead of 136).

When trying to solve a verification problem among the 136 problems of a
given experiment, it may be the case that the ASp(X) strategy, or the APP(X)
strategy, does not complete its execution within the timeout. In that case we
say that the verification problem is aborted and the input clauses encoding that
problem are not taken into account when computing the size ratios of Col-
umn SizeRatio. Similarly, the time taken for any aborted verification problem is
not taken into account when computing the average times of Column AvgTime1.

In all our experiments we have used as constraint solver Z3 4.5.0 with the
Duality fixed-point engine [24] on an Intel Xeon CPU E5-2640 2.00GHz processor
with 64GB of memory under the GNU/Linux 64 bit operating system CentOS 7.

Discussion of the Results. Let us now comment on the experimental results
presented in Table 1. First we observe that various combinations of the ASp and
APP strategies (or the APP strategy alone) significantly increase the number
of problems that Z3 solves. Indeed, while Z3 alone solves 28 problems only (see
Frame E0), suitable combinations of the ASp and APP strategies (or APP alone)
allow Z3 to solve over 120 problems (see Frames E2–E5).

However, the increase of efficacy in proving the desired properties is mainly
due to the APP strategy, rather then the ASp strategy. Indeed, Frame E1 shows
that the use of ASp alone makes just a marginal increase in the number of
problems solved by Z3 (from the 28 solved problems, as shown in Frame E0, to a
maximum of 36 solved problems, as shown in Frame E1). Moreover, by combining
the ASp and APP strategies (see Frames E2 and E3, Column SolProbls) we get
results which are not significantly better than the ones obtained by using the
APP strategy alone (see Frame E4, Column SolProbls).

The comparison between Frames E4 and E5 (Columns for Z3) tells us that
the effect of the APP(X) strategy, for a given abstract domain X, can also be
obtained in two steps: (i) first, by applying APP(Univ), and (ii) then, by ap-
plying ASp(X). Recall that the abstraction operator for the Univ domain maps
any satisfiable constraint to true, and hence APP(Univ) does not add any con-
straint when new definitions are introduced. In other terms, APP(Univ); ASp(X)
separates Predicate Pairing from constraint addition using domain X, whereas
APP(X) does the two transformations at the same time.

Let us now analyze our results from the perspective of the constraint do-
main X used in ASp(X) and APP(X). The use of the Boxes domain, that is,
interval constraints on single real variables, is not very effective. Indeed, in
Frames E2–E5 we see that Boxes allows the solution of at most 78 problems
(see Frame E4, line ‘Boxes’), while the other domains enable Z3 to solve at
least 110 problems (see Frame E4, line ‘CP-H’). The poor performance of Boxes
with respect to those of the other domains can be explained by the fact that
constraints in Boxes are not expressive enough to represent relations among pro-
gram variables. Hence, they are of little help for proving relational properties.
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Note, however, that if precision is increased, from BDS and OS to Convex Poly-
hedra (CP-H or CP-B), the efficacy of the verification process decreases. For
instance, Frame E4 shows that APP(BDS) and APP(OS) allow Z3 to solve 121
and 120 problems, respectively, while APP(CP-H) and APP(CP-B) allow Z3 to
solve at most 113 problems. We would also like to point out that the sets of
problems solved with two different abstract domains are not always comparable.
For instance, in Frame E2 the set of 119 problems solved with BDS is not a
subset of the 121 problems solved with OS. In particular, two problems were
solved by using BDS and not by using OS.

Finally, we would like to comment on the computational performances of the
transformations. Some combinations of ASp and APP significantly increase the
number of output clauses (see, in particular, the increase of over 28 times shown
in Frame E3, line ‘Boxes’, Column SizeRatio) and are costly (see, for instance,
the average time of 10.21 seconds in Frame E3, line ‘OS’, Column AvgTime1).
This is mainly due to the fact that ASp may introduce several specialized versions
for the same predicate occurring in the original set of clauses. However, if we
consider the APP(BDS) strategy, without previous or subsequent applications of
ASp (see Frame E4), then the increase of the number of output clauses is limited
to about 5 times and the average transformation time is only 1.38 seconds, and
hence much lower than the average solving time taken by Z3.

6 Related Work and Conclusions

We have proposed various ways of combining transformation and abstraction
techniques for constrained Horn clauses with the goal of verifying relational prop-
erties of imperative programs. To this aim we have presented two algorithms, the
Predicate Pairing and Specialization algorithms, which are parameterized with
respect to a given abstract constraint domain and its operators. Then we have
presented an extensive experimental evaluation of CHC satisfiability problems
encoding relational verification problems. Our experiments show that suitable
combinations of transformations and abstraction dramatically increase the effec-
tiveness of the Z3 solver on the given benchmark. The most effective techniques
combine Predicate Pairing and Abstraction based on Bounded Differences or Oc-
tagons [2, 26], that is, constraint domains that are quite simple, but expressive
enough to capture the relations between predicate arguments.

Relational verification has been extensively studied, and still receives much
attention as a relevant problem in the field of software engineering [4, 12, 18, 22,
27]. In particular, during the software development process it may be helpful to
prove that the semantics of a new program version has some specified relation
with the semantics of an old version.

Among the various methods to prove relational properties, those by Mordvi-
nov and Fedyunkovich [27] and by Felsing et al. [18] are the most closely related
to ours. The method proposed in the former paper [27] introduces the notion of
CHC product (somewhat related to Predicate Pairing), that is, a CHC transfor-
mation that synchronizes computations to improve the effectiveness of the CHC
satisfiability checks. The latter method proposed by Felsing et al. [18] presents
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proof rules for relations between imperative programs that are translated into
constrained Horn clauses. The satisfiability of these clauses, which entails the
relation of interest, is then checked by state-of-the-art CHC solvers.

The Predicate Pairing technique we present in this paper is a descendant of
well-known techniques for logic program transformation, such as Tupling [29] and
Conjunctive Partial Deduction [16], which derive new predicates defined in terms
of conjunctions of atoms. The goal of these techniques is to derive efficient logic
programs by: (i) avoiding multiple traversals of data structures and repeated
evaluations of predicate calls, and (ii) producing specialized program versions
that take into account partial information on the input values. An integration
of Conjunctive Partial Deduction and abstract interpretation, called Abstract
Conjunctive Partial Deduction, has also been presented in the literature [23].
Recent work has shown that the extension of these transformation techniques to
constrained Horn clauses can play a significant role in improving the effectiveness
of CHC solvers for proving properties of imperative programs, and in particular
for verifying relational properties [11, 12].

The CHC Specialization strategy we consider in this paper is a variant of
specialization techniques for (constraint) logic programs which have been pro-
posed to support program verification [1, 8, 10, 13, 20, 21, 25, 28]. However,
these techniques are focused on the verification of partial or total correctness of
single programs, and not on the relational verification.
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