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Abstract. We present an operational semantics for time-aware business processes, that is,
processes modeling the execution of business activities, whose durations are subject to linear
constraints over the integers. We assume that some of the durations are controllable, that
is, they can be determined by the organization that executes the process, while others are
uncontrollable, that is, they are determined by the external world.

Then, we consider controllability properties, which guarantee the completion of the execu-
tion of the process, satisfying the given duration constraints, independently of the values of
the uncontrollable durations. Controllability properties are encoded by quantified reachabil-
ity formulas, where the reachability predicate is recursively defined by means of constrained
Horn clauses (CHCs). These clauses are automatically derived from the operational seman-
tics of the process.

Finally, we present two algorithms for solving the so called weak and strong controllability
problems. Our algorithms reduce these problems to the verification of a set of quantified
integer constraints, which are simpler than the original quantified reachability formulas, and
can effectively be handled by state-of-the-art CHC solvers.

1. Introduction

A business process model is a procedural, semi-formal specification of the order of execution of
the activities, also called tasks, in a business process (or BP, for short) and of the way these
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activities must coordinate to achieve a goal [20, 40]. Many notations for BP modeling, and
in particular the popular BPMN [30], allow the modeler to express time constraints, such as
deadlines and activity durations. However, time related aspects are neglected when the semantics
of a BP model is given through the standard Petri Net formalization [20], which focuses on the
control flow only. Thus, formal reasoning about time related properties, which may be very
important in many applications, is not possible in that context.

In order to overcome this difficulty, various approaches to BP modeling with time constraints
have been proposed in the literature (see [6] for a recent survey). Some of these approaches define
the semantics of time-aware BP models by means of formalisms such as time Petri nets [27],
timed automata [38], and process algebras [41]. Properties of these models can then be verified
by using the effective reasoning tools that are available for those formalisms [3, 19, 26].

In this paper we address the problem of verifying the controllability of time-aware business
processes. This notion has been introduced for dealing with scheduling and planning problems
over Temporal Networks [37], but it has not received much attention in the more complex case
of time-aware BP models. We assume that some of the durations of the tasks of the process are
controllable, that is, they can be determined by the organization that executes (or enacts) the
process, while other durations are uncontrollable, that is, they are determined by the external
world. The properties of weak controllability and strong controllability, guarantee, in two different
senses, that all process tasks can be completed, satisfying the given duration constraints, for
all possible values of the uncontrollable durations. Controllability properties are particularly
relevant in scenarios (e.g., healthcare applications [11]) where the completion of the whole process
within a certain deadline must be guaranteed, even if the exact durations of some of its tasks
cannot be determined in advance.

We propose a method for solving controllability problems by extending a logic-based ap-
proach that has been recently proposed for modeling and verifying time-aware business pro-
cesses [13]. This approach represents both the BP structure and the BP semantics in terms
of Constrained Horn Clauses (CHCs) [4], also known as Constraint Logic Programs [21], over
Linear Integer Arithmetics. (Here we will use the ‘Constrained Horn Clauses’ term, which is
more common in the area of verification.) In our setting, controllability properties are defined
in terms of properties, called reachability properties, which establish the possibility for a process
to complete its execution under some given time constraints. More specifically, controllability
will be defined in terms of quantified reachability properties.

An advantage of the logic-based approach with respect to other approaches is that it allows a
smooth integration of the various forms of reasoning needed to analyze business processes from
different perspectives. These forms of reasoning include, for instance, (i) the ontology-related
reasoning on the business domain where processes are executed [34, 39], and (ii) the reasoning
on the manipulation of data objects such as databases or integer values [2, 12, 33]. Moreover, in
order to perform those kinds of logic-based reasoning, one can make use of effective tools such
as CHC solvers [16] and Constraint Logic Programming systems.

For reasons of simplicity, in this paper we consider business process models where the only
time-related entities are the constraints that task durations should satisfy. However, by following
a similar approach also other entities which refer to time can be modeled, if so desired.

The main contributions of this paper are the following. (1) We define and study the basic
properties of a novel operational semantics for safe time-aware business process models [1]. This
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semantics is a variant of the one presented in [13] (see Section 3). In particular, we provide a new
formalization of the synchronization occurring at the parallel merge gateways. (2) We provide
the formal definitions of weak and strong controllability properties using quantified reachability
formulas (see Section 4). (3) We present a transformation technique for automatically deriv-
ing the CHC representation of the reachability relation starting from the CHC encoding of the
semantics of time-aware processes, and of the process and property under consideration (see Sec-
tion 5). (4) Finally, we propose two algorithms that solve the weak and the strong controllability
problem, respectively, for time-aware business processes. These algorithms avoid the direct ver-
ification of quantified reachability formulas, which often cannot be handled by state-of-the-art
CHC solvers, and they verify, instead, a set of simpler Linear Integer Arithmetic formulas, whose
satisfiability can effectively be worked out by the Z3 constraint solver [16] (see Section 6).

2. Preliminaries

In this section we recall some basic notions about constrained Horn clauses and the Business
Process Model and Notation (BPMN).

Let RelOp be the set {=, 6=,≤,≥, <, >} of predicate symbols denoting the usual relations over
the integers. If p1 and p2 are linear polynomials with integer variables and integer coefficients,
then p1R p2, with R∈RelOp, is an atomic constraint. A constraint c is either true or false or
an atomic constraint or a conjunction or a disjunction of constraints. Thus, constraints are
formulas of Linear Integer Arithmetics (LIA). Note that constraints are closed under negation.
An atom is a formula of the form p(t1, . . . , tm), where p is a predicate symbol not in RelOp
and t1, . . . , tm are terms constructed as usual from variables, constants, and function symbols.
A constrained Horn clause over the constraint theory LIA (or simply, a clause, or a CHC) is
an implication of the form A ← c, G (comma denotes conjunction), where the conclusion (or
head) A is either an atom or false, the premise (or body) is the conjunction of a constraint c

and a (possibly empty) conjunction G of atoms. The empty conjunction is identified with true.
A constrained fact is a clause of the form A ← c, and a fact is a clause whose premise is true.
We will write A ← true also as A ←. A clause is ground if no variable occurs in it. A clause
A ← c, G is said to be function-free if no function symbol occurs in (A, G), while arithmetic
function symbols may occur in c. For clauses we will use a Prolog-like syntax.

A set S of CHCs is said to be satisfiable if S ∪LIA has a LIA-model (that is, a model where
the function symbols and predicate symbols of LIA are interpreted as expected), or equivalently,
S ∪ LIA 6|= false. Given two constraints c and d, we write c ⊑ d if LIA |= ∀(c → d), where
∀(F ) denotes the universal closure of formula F . Recall that the satisfiability of quantified LIA
formulas is decidable [5]. The projection of a constraint c onto a set X of variables is a new
constraint c′, with variables in X, which is equivalent, in the domain of rational numbers, to
∃Y.c, where Y is the set of variables occurring in c and not in X. Clearly, c ⊑ c′. This notion of
a projection is adequate for our use in the specialization algorithm (see Section 5), and it will
be sufficient to prove the correctness of that algorithm [18].

A BPMN model of a business process consists of a diagram drawn by using a graphical
notation for depicting: (i) flow objects, and (ii) sequence flows (also called flows, for short) [30].

A flow object is: either (i.1) a task, depicted as a rounded rectangle, or (i.2) an event,
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depicted as a circle, or (i.3) a gateway, depicted as a diamond. A sequence flow is depicted as
an arrow that connects a flow object, called the source, to a flow object, called the target (see
Figure 1).

Tasks are atomic units of work that are performed during the execution, also called the
enactment, of the business process. An events is either a start event or an end event, which
denote the beginning and the completion, respectively, of the activities of the process. Gateways
denote the branching or the merging of activities. In this paper we consider the following four
kinds of gateways:

(a) the parallel branch, that simultaneously activates all the outgoing flows, if its single incoming
flow is activated (see g2 in Figure 1),

(b) the exclusive branch, that (non-deterministically) activates exactly one of its outgoing flows,
if its single incoming flow is activated (see g4 in Figure 1),

(c) the parallel merge, that activates the single outgoing flow, if all the incoming flows are
simultaneously activated (see g3 in Figure 1), and

(d) the exclusive merge, that activates the single outgoing flow, if any one of the incoming flows
is activated (see g1 in Figure 1).

The diamonds representing parallel gateways (a) and (c) are labeled ‘+++’, and the diamonds
representing exclusive gateways (b) and (d) are labeled by ‘×××’.

start

g1 g2

u1

4 ≤ Du1 ≤ 6

c0

1 ≤ Dc0 ≤ 8

c1

2 ≤ Dc1 ≤ 4

u0

2 ≤ Du0 ≤ 5 g3 g4

c3

4 ≤ Dc3 ≤ 5

c2

1 ≤ Dc2 ≤ 2

end

Figure 1. A business process CarDealer. Tasks u0 and u1 (with grey background) have uncontrollable
durations. The other tasks c0–c3 (with white background) have controllable durations.

Given a business process, a sequence flow denotes the fact that the execution of the process
can pass from the source object to the target object. If there is a sequence flow from an object u

to an object v, then u is said to be a predecessor of v, and symmetrically, v is said to be a
successor of u. A path is a sequence of flow objects such that every pair of consecutive objects
in the sequence is connected by a sequence flow. A cycle is a path with at least two flow objects
(not necessarily distinct) such that the first flow object of the path is equal to the last flow
object of the path.

In Figure 1 we show the BPMN model of a business process, called CarDealer, of a car dealer
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company. The company buys cars from a supplier and sets them up before shipping them to the
customers together with certificates of compliance. More than one car may be shipped during a
single execution of the process. After the start event, the exclusive merge g1 activates the parallel
branch g2, which in turn activates the tasks u1 (Buy-Car) and c0 (Prepare-Documents). When
the tasks c1 (Setup-Car) and u0 (Obtain-Certificate) have terminated, the parallel merge g3
activates the exclusive branch g4 which activates either (i) the task c2 (Get-Car-Orders) or
(ii) the task c3 (Load-on-Carrier). In Case (i), at the completion of the task c2 a new instance
of the task u1 and a new instance of the task c0 are activated (via the gateways g1 and g2) and
the execution of the process proceeds as indicated above. In Case (ii), the task c3 is activated
and at its completion the whole process CarDealer terminates with the end event.

We will consider models of business processes that are well-formed, in the sense that they
satisfy the following properties: (1) every business process is made out of a finite number of
flow objects, and for any flow object there is only a finite number of incoming and outgoing
sequence flows, (2) for every sequence flow, the source and the target flow objects are distinct,
(3) there is a single start event having exactly one successor and no predecessors, and there is a
single end event having exactly one predecessor and no successors, (4) every flow object occurs
in a path from the start event to the end event, (5.1) parallel branch gateways and exclusive
branch gateways have exactly one predecessor and at least one successor, (5.2) parallel merge
gateways and exclusive merge gateways have at least one predecessor and exactly one successor,
(5.3) tasks have exactly one predecessor and one successor, and (6) there are no cycles whose
flow objects are gateways only.

Note that business process models need not be block-structured. This means that, for
instance, in a model whose flow objects are a, b1, b2, and c, and whose set of paths includes the
paths a→b1→c and a→b2→c, there may be the sequence flow b1→b2.

3. Specification and Semantics of Business Processes

In this section we introduce the notion of a Business Process Specification, which formally
represents a business process by means of CHCs (see Section 3.1), we define the operational
semantics of a business process (see Section 3.2), and we state some of its basic properties (see
Section 3.3).

3.1. Business Process Specification via CHCs

A Business Process Specification contains: (i) a set of ground facts that specify the flow objects
and the sequence flows between them, and (ii) a set of constrained Horn clauses that specify the
duration of each flow object and the controllability (or the uncontrollability) of the duration of
tasks.

For the flow objects we will use of the following predicates: task(X), event(X), gateway(X),
par-branch(X), par-merge(X), exc-branch(X), exc-merge(X) with the expected meaning. For
the sequence flows we will use the irreflexive predicate seq(X, Y ) meaning that there is a sequence
flow from X to Y .

For every task X we specify its duration D by a constrained fact of the form duration(X, D)←
dmin≤D≤ dmax, where dmin and dmax, with dmin≤ dmax, are positive integer constants repre-
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senting the minimal and the maximal duration of X, respectively. Events and gateways, being
instantaneous, are assumed to have duration 0. (Note that, on the contrary, tasks have positive
duration.) For every task X we also specify whether or not its duration is controllable by stating
the fact either controllable(X)← or uncontrollable(X)←, respectively. We will say that a task
is controllable (or uncontrollable) if its duration is controllable (or uncontrollable, respectively).

In Figure 2 we show the constrained Horn clauses which specify process CarDealer of Figure 1.

task(c0)← task(c1)← task(c2)← task(c3)←

task(u0)← task(u1)← event(start)← event(end)←

exc-merge (g1)← par-branch (g2)← par-merge (g3)← exc-branch (g4)←

seq(start, g1)← seq(g1, g2)← seq(g2, u1)← seq(u1, c1)←

seq(c1, g3)← seq(g2, c0)← seq(c0, u0)← seq(u0, g3)←

seq(g3, g4)← seq(g4, c3)← seq(g4, c2)← seq(c2, g1)←

seq(g4, end)← uncontrollable(u0)← uncontrollable(u1)←

controllable(c0)← controllable(c1)← controllable(c2)← controllable(c3)←

duration(u0, Du0)← 2≤Du0≤5 duration(u1, Du1)← 4≤Du1≤6

duration(c0, Dc0)← 1≤Dc0≤8 duration(c1, Dc1)← 2≤Dc1≤4

duration(c2, Dc2)← 1≤Dc2≤2 duration(c3, Dc3)← 4≤Dc3≤5

duration(X, D)← event(X), D=0 duration(X, D)← gateway(X), D=0

Figure 2. The CHCs of the Business Process Specification of CarDealer of Figure 1.

3.2. Operational Semantics of Business Processes

We will define the operational semantics of a business process under the assumption that the
process is safe, that is, during its execution there are no multiple, simultaneous executions of
the same flow object [1] (we will formalize the safeness notion in Section 3.3.) As a consequence
of this assumption, we will represent the state of a process, during its execution, as a set (not
a multiset) of facts, called fluents, holding at a time instant. We borrow the notion of a fluent
from action languages such as the Situation Calculus [29], the Event Calculus [23], or the Fluent
Calculus [35], and we will present our operational semantics by means of rules that define a
transition relation, denoted ‘−→’, between states, as often done in the theory of programming
languages. We will assume that time is discrete and the first time instant is 0.

Formally, a state s∈States is a pair 〈F, t〉, where F is a set of fluents and t is a non-negative
integer denoting a time instant. A fluent is a term f of the following form:

f ::= begins(x) | enacting(x, r) | completes(x) | enables(x, y)

where: (i) begins(x) represents the beginning of the enactment of the flow object x,(ii)enacting(x,r)
represents the enactment of the flow object x which at the current instant requires r extra units
of time to complete (for this reason r is called the residual time of x), (iii) completes(x) rep-
resents the completion of the enactment of the flow object x, and (iv) enables(x,y) represents
that the flow object x has completed its enactment and it enables the enactment of its succes-
sor y. We have that begins(x) is equivalent to enacting(x, d), where d is the duration of x, and
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enacting(x, 0) is equivalent to completes(x). This redundant representation of the enactment of
an object allows us to write simpler rules for the operational semantics (see rules S1–S7 below).

The operational semantics is defined by means of a transition relation ‘−→’ which is a subset
of States×States. We will refer to this relation also as a rewriting relation when we want to
stress that the set fluents of the current state is rewritten into a new set of fluents in the new
state. The relation ‘−→’ is generated by the rules S1–S7 listed below. In these rules we use the
predicates introduced in Section 3.1 and also the following two predicates: (i) not-par-branch(x),
which holds if the flow object x is not a parallel branch, and (ii) not-par-merge(x), which holds
if the flow object x is not a parallel merge.

(S1)
begins(x)∈F duration(x, dx)

〈F, t〉 −→ 〈(F \ {begins(x)}) ∪ {enacting(x, dx)}, t〉

(S2)
par-branch(x) completes(x)∈F

〈F, t〉 −→ 〈(F \ {completes(x)}) ∪ {enables(x, s) | seq(x, s)}, t〉

(S3)
not-par-branch(x) completes(x)∈F seq(x, s)

〈F, t〉 −→ 〈(F \ {completes(x)}) ∪ {enables(x, s)}, t〉

(S4)
par-merge(x) ∀p seq(p, x)→ (enables(p, x)∈F )

〈F, t〉 −→ 〈(F \ {enables(p, x) | enables(p, x)∈F}) ∪ {begins(x)}, t〉

(S5)
not-par-merge(x) enables(p, x)∈F

〈F, t〉 −→ 〈(F \ {enables(p, x)}) ∪ {begins(x)}, t〉

(S6)
enacting(x, 0)∈F

〈F, t〉 −→ 〈(F \ {enacting(x, 0)}) ∪ {completes(x)}, t〉

(S7)
no-other-premises(F ) ∃x∃r enacting(x, r)∈F m>0

〈F, t〉 −→ 〈(F \ (Enacts ∪Enbls)) ∪ (Enacts⊖m), t+m〉

where: (i) no-other-premises(F ) holds iff none of the rules S1–S6 can be applied in a
state whose set of fluents is F , (ii) m = min {r | enacting(x, r) ∈ F}, (iii) Enacts =
{enacting(x, y) | enacting(x, y) ∈ F}, (iv) Enbls = {enables(x, y) | enables(x, y) ∈ F}, and
(v) Enacts ⊖ m denotes the set Enacts, where every enacting(x, y) has been replaced by
enacting(x, y−m).

From the definitions of rules S1–S6 we have that no-other-premises(F ) holds iff the following
holds (we have indicated to the right of each conjunct the rule whose premise does not hold):

∀x. begins(x) 6∈F [S1]

∧ if par-branch(x) then completes(x) 6∈F [S2]

else completes(x) 6∈F ∨ ∀s.¬seq(x, s) [S3]
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∧ if par-merge(x) then ∃p. seq(p, x) ∧ enables(p, x) 6∈F [S4]

else ∀p. enables(p, x) 6∈F [S5]

∧ enacting(x, 0) 6∈F [S6]

In the conjunct for rule S3 we have that ∀s.¬seq(x, s) iff x = end, because for the business
processes we consider the only flow object with no successor is the end event.

We assume that, for every flow object x, there exists a unique duration, denoted dx, such
that the atom duration(x, dx) holds. (This assumption is relevant for tasks only, because by
definition the duration of events and gateways is 0.) For every flow object x, the value dx is
specified via a constraint fact (see Figure 2), and in every application of an instance of rule S1,
the same value dx is used. Note that S7 is the only rule that formalizes the passing of time,
as it allows the generation of state rewritings of the form 〈F, t〉−→〈F ′, t + m〉, with m > 0. In
contrast, rules S1–S6 generate state rewritings of the form 〈F, t〉 −→ 〈F ′, t〉, where time does
not pass. Here is a brief explanation of rules S1–S7.

(S1) If the execution of a flow object x begins at time t, then at the same time t, x is enacting
with the residual time dx which is the duration of x;

(S2) If the execution of the parallel branch x completes at time t, then at the same time t, x

enables all its successors;

(S3) If the execution of x completes at time t and x is not a parallel branch, then at same time t,
x enables precisely one of its successors (in particular, this case occurs when x is a task,
and in this case x has one successor only);

(S4) If all the predecessors of x enable the parallel merge x at time t, then at the same time t,
the execution of x begins;

(S5) If at least one predecessor p of x enables x at time t and x is not a parallel merge, then at
the same time t, the execution of x begins (in particular, this case occurs when x is a task,
and in this case x has exactly one predecessor);

(S6) If a flow object x is enacting at time t with residual time 0, then at that same time t, the
execution of x completes;

(S7) Suppose that: (i) none of the rules S1–S6 can be applied to generate a state rewriting of
the form 〈F, t〉 −→ 〈F ′, t′〉, (ii) at time t at least one task is enacting with positive residual
time (note that flow objects different from tasks do not have positive residual time), and
(iii) m is the least value among the residual times of all the tasks enacting at time t. Then,
(i) every task x that is enacting at time t with residual time r, is enacting at time t+m

with residual time r−m, and (ii) all enables(p, s) fluents are removed. Note that, after the
application of rule S7, there exists at least one task x such that enacting(x, 0) ∈ F ′, and
thus after rule S7, we can apply rule S6.

Due to rules S4 and S5, if a fluent of the form enables(p, s) is removed by applying rule S7, then s

necessarily refers to a parallel merge that is not enabled at time t by some of its predecessors.
Thus, a parallel merge is executed at time t if and only if it gets simultaneously enabled at
time t by all its predecessors. In this sense rules S1–S7 formalize the synchronous semantics of
the parallel merge gateway.

Note that the operational semantics of the parallel merge gateway can be provided in a
different manner, by stipulating that its execution takes place when and only when all its
predecessors are enabled, but not necessarily at the same time t. For this different, asynchronous
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semantics of the parallel merge the reader may refer to a previous paper of ours [13]. It is not
difficult to see that the asynchronous semantics may be obtained from the synchronous semantics
we have formalized above by rules S1–S7, by adding to the business process under consideration
suitable extra tasks whose durations realize delays.

We say that state 〈F ′, t′〉 is reachable from state 〈F, t〉, if 〈F, t〉 −→∗ 〈F ′, t′〉, where ‘−→∗’
denotes the reflexive, transitive closure of the rewriting relation ‘−→’.

The initial state is the state 〈{begins(start)}, 0〉 (recall that time starts at the time instant 0).
A final state is any state of the form 〈{completes(end)}, t〉, for some time instant t.

3.3. Properties of the Operational Semantics

Having defined in the previous section the operational semantics of a business process by means
of a rewriting relation ‘−→’, now we will introduce four notions associated with that relation,
namely, the notions of: (i) a derivation, (ii) a removed set, (iii) an added set, and (iv) a selection
function. Then, we will prove an important property of the derivations (see Theorem 3.7 below).

Definition 3.1. (Derivation)
A derivation from a state s0 is a (possibly infinite) sequence s0−→ . . .−→ si−→ si+1−→ . . . of
states, also written as s0−→

∗ si−→ si+1−→ . . . We say that a derivation uses rules S1–Sn, for
some n, with 1≤n≤7, if each of its rewritings is generated by an instance of one of the rules in
the set {S1, . . . , Sn}.

Definition 3.2. (Removed set and added set)
Every rewriting generated by an instance σ of the rule Sk, with 1 ≤ k ≤ 7, is of the form
〈F, t〉 −→ 〈(F \ R) ∪ S, t′〉, where R and S are called the removed set and the added set,
respectively, of that rewriting. The sets R and S are non-empty sets uniquely determined by
the conclusion of the instance σ (see the listing of rules S1–S7 above). A fluent in R (or in S)
is said to be a removed fluent (or an added fluent, respectively).

Example 3.3. If the rewriting 〈F, t〉 −→ 〈(F \R)∪ S, t〉 is generated by the instance of rule S4

which binds the free variable x to the flow object a, then in that rewriting the removed set R is
{enables(y, a) | enables(y,a)∈F} and the added set S is {begins(a)}.

In any rewriting of the form 〈F, t〉 −→ 〈(F \R) ∪ S, t′〉, where R is the removed set and S is
the added set, we have that R⊆F and R∩S =∅.

Now we can formalize the notion of a safe process, which has been introduced at the
beginning of Section 3.2. A process is said to be safe iff for every rewriting of the form
〈F, t〉 −→ 〈F ′, t′〉, with F ′ = (F\R) ∪ S, where R and S are the removed set and the added set,
respectively, we have that: (i) F ∩ S = ∅, and (ii) it does not exist any flow object x such that
{enacting(x, r1), enacting(x, r2)}⊆F ′, for two distinct integers r1 and r2. Thus, in particular,
every fluent of a state s of a safe process is not an added fluent in any rewriting of the form
s−→s′, for some state s′.

Definition 3.4. (Selection function)
Let δ be a derivation of the form s0−→

∗ 〈F, t〉, with F 6=∅. A selection function R is a function
that takes δ and returns: either (i) the empty set, if no state s′ exists such that 〈F, t〉 −→ s′,
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(that is, the derivation δ cannot be extended) or (ii) the removed set of a rewriting 〈F, t〉 −→ s′,
if at least one such rewriting exists (that is, the derivation δ can be extended into the longer
derivation s0−→

∗ 〈F, t〉−→s′).

Definition 3.5. (Derivation via a selection function)
We say that a derivation δ is via a selection function R iff for each proper prefix γ of δ, where γ

is of the form s0−→
∗ 〈F, t〉, if 〈F, t〉 −→ 〈F ′, t′〉, and the derivation s0−→

∗ 〈F, t〉−→〈F ′, t′〉 is a
prefix of δ, then R(γ) is the removed set of 〈F, t〉 −→ 〈F ′, t′〉.

From the definition of the rules we have the following.

Fact 3.6. Every non-empty derivation via any selection function that starts from the initial
state is generated by a sequence of applications of the rules S1–S7 which in the regular expression
notation is denoted by (S1+ . . . +S6)+ (S7 (S1+ . . . +S6)+)∗.

Proof:
It is enough to note that: (i) the only fluent in the initial state is begins(start), (ii) rule S7

can be applied only if none of the rules in S1–S6 can be applied, and (iii) after any rewriting
〈F, t〉 −→ 〈F ′, t′〉 generated by an application of rule S7, one can apply rule S6 because, by
construction, at least one fluent of the form enacting(x, 0) belongs to F ′. ⊓⊔

Now we show that, given an initial state s0 and a selection function R, it may exist more
than one derivation from s0 via R. Let us assume that in the last state 〈F, t〉 of a derivation γ

from s0, we have that R(γ) = completes(a), where a is an exclusive branch gateway. On that
last state we can apply the instance of rule S3 where x is a and s is a successor b of a (that is,
seq(a,b) holds), and we get the rewriting 〈F, t〉 −→ 〈F ′, t〉, where the new fluent enables(a, b)
belongs to F ′. Now, if a has also a different successor b′ (that is, seq(a,b′) holds, for b′ different
from b), then by using rule S3, we may also get the rewriting 〈F, t〉 −→ 〈F ′′, t〉, where the new
fluent enables(a, b′) belongs to F ′′ and enables(a, b) does not belong to F ′′, and thus we can
have two different extensions of γ via the same R.

Note that for any given state and removed set R, there exists at most one instance of a rule
in the set {S1, . . . , S7}\{S3} which, when applied to the given state, generates a rewriting whose
removed set is R, and thus there exists at most one next state.

We have the following theorem, whose proof is given in Appendix A.

Theorem 3.7. Let R be a fixed selection function. For every derivation δ from a state s via
any selection function R, there exists a derivation δ from s via R such that: (i) if a state 〈F, t〉
occurs in δ and f ∈F , then there exists a state 〈F, t〉 in δ such that f ∈F , and (ii) if the rewriting
〈F, t〉 −→ 〈F ′, t′〉, with t<t′, occurs in δ, then the same rewriting occurs in δ.

4. Encoding Controllability Properties into CHCs

In this section we show how the operational semantics is translated into CHCs by defining a CHC
interpreter, that is, a set of CHCs that encode the operational semantics of business processes.
The CHC interpreter defines a predicate reach, encoding state reachability, which is then used
for formalizing the weak and strong controllability properties.
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4.1. Encoding the Operational Semantics in CHCs

A state of the operational semantics is represented by a term of the form s(F, T ), where F

is a set of fluents, and T is the time instant at which the fluents in F hold. (Here we use
the Prolog notation and we use capital letters as initials of variable names.) The rewriting
relation ‘−→’ between states and its reflexive, transitive closure ‘−→∗’ are encoded by the
predicates tr and reach, respectively. The definitions of these predicates are shown in Table 4.1,
where clauses C1–C7 encode rules S1–S7, respectively.

C1. tr(s(F, T ), s(FU, T ), U, C)←
select({begins(X)}, F ), task-duration(X, D, U, C),
update(F, {begins(X)}, {enacting(X, D)}, FU)

C2. tr(s(F, T ), s(FU, T ), U, C)←
par-branch(X), select({completes(X)}, F ), findall(enables(X, S), seq(X, S), Enbls),
update(F, {completes(X)}, Enbls, FU)

C3. tr(s(F, T ), s(FU, T ), U, C)←
not-par-branch(X), select({completes(X)}, F ), seq(X, S),
update(F, {completes(X)}, {enables(X, S)}, FU)

C4. tr(s(F, T ), s(FU, T ), U, C)←
par-merge(X), findall(enables(P, X), seq(P, X), Enbls), select(Enbls, F ),
update(F, Enbls, {begins(X)}, FU)

C5. tr(s(F, T ), s(FU, T ), U, C)←
not-par-merge(X), select({enables(P, X)}, F ),
update(F, {enables(P, X)}, {begins(X)}, FU)

C6. tr(s(F, T ), s(FU, T ), U, C)←
select({enacting(X, 0)}, F ), update(F, {enacting(X, 0)}, {completes(X)}, FU)

C7. tr(s(F, T ), s(FU, T U), U, C)←
no-other-premises(F ), member(enacting(X1, Res1), F ),
findall(Y, (Y =enacting(X, Res), member(Y, F )), Enacts), mintime(Enacts, M), M >0,

findall(Z, (Z =enables(P, S), member(Z, F )), Enbls),
set-union(Enacts, Enbls, EnactsEnbls), decrease-residual-times(Enacts, M, EnactsU ),
update(F, EnactsEnbls, EnactsU , FU), T U =T +M

R1. reach(S, S, U, C)←
R2. reach(s(F0, T 0), s(F2, T 2), U, C) ← T 1≤T 2, tr(s(F0, T 0), s(F1, T 1), U, C),

reach(s(F1, T 1), s(F2, T 2), U, C)

Table 4.1. The CHC interpreter for time-aware business processes.

Let us briefly describe the various predicates used in clauses C1–C7. Given a state s(F, T ),
the predicate select(R, F ), used in the bodies of clauses C1–C6, holds iff there exists at least
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one rewriting from state s(F, T ) to a new state, generated by a rule in S1–S6, and R ⊆ F

is the removed set of that rewriting. This predicate encodes a selection function in the sense
of Definition 3.4, that is, the set R is uniquely determined by F . In the body of clause C7

we do not use the predicate select(R, F ), as the applicability of rule S7 is determined by the
predicate no-other-premises(F ), which holds iff there exists no R such that select(R, F ) holds.
EnactsEnbls in clause C7 is the removed set of the rewriting generated by rule S7.

Note that, by Theorem 3.7, the reachability of a final state is independent of the specific
selection function used by the operational semantics, and hence the actual implementation of
the predicate select(R, F ) is immaterial.

The predicate task-duration(X, D, U, C) holds iff duration(X, D) holds and D belongs to
either the list U of durations of the uncontrollable tasks (if X is uncontrollable) or the list C

of durations of the controllable tasks (if X is controllable). The predicate update(F, R, S, FU)
holds iff FU is the set of fluents obtained from the set F by removing the fluents of the removed
set R and adding the fluents of the added set S. The predicate mintime(Enacts, M) holds
iff Enacts is a set of fluents of the form enacting(X, Res) and M is the minimum value of Res
among the elements of Enacts. The predicate decrease-residual-times(Enacts, M, EnactsU ) holds
iff EnactsU is the set of fluents obtained from the set Enacts by replacing every fluent of the
form enacting(X, Res) with the fluent enacting(X, RU ), where RU = Res−M . The predicates
member(El , Set) and set-union(A, B, AB) are self-explanatory. The predicate findall(X, G, L)
holds iff X is a term whose variables occur in the conjunction G of atoms, and L is the set of
instances of X such that ∃Y. G holds, where Y is the tuple of variables occurring in G different
from those in X.

Theorem 4.2 below shows the correctness of the encoding of both the process specifications
and the operational semantics (that is, the interpreter) of business processes. First we need the
following definition.

Definition 4.1. (Interpreter)
We denote by Sem the set {C1, . . . , C7, R1, R2} of clauses listed in Table 4.1, together with the
clauses that define a business process specification (see, for instance, the clauses of Figure 2).

Theorem 4.2. (Correctness of encoding)
Let init be the term that encodes the initial state 〈{begins(start)}, 0〉 of the process, and let
fin(t), for any time instant t, be the term that encodes a final state 〈{completes(end)}, t〉 of the
process. Then, for every time instant t, 〈{begins(start)}, 0〉 −→∗ 〈{completes(end)}, t〉 iff there
exist tuples u and c of integers such that Sem ∪ LIA |= reach(init, fin(t), u, c).

Proof:
Suppose that there exists a derivation 〈{begins(start)}, 0〉 −→∗ 〈{completes(end)}, t〉. Let u

and c be the tuples of integers corresponding to the durations of the uncontrollable and con-
trollable tasks, respectively, used in the derivation. As mentioned above, the predicate tr
implements the relation ‘−→’ with a fixed selection function, say R. By Theorem 3.7 there
exists a derivation via R of the form 〈F0, t0〉 −→ 〈F1, t1〉 −→ . . .−→ 〈Fn, tn〉, where 〈F0, t0〉 =
〈{begins(start)}, 0〉 and 〈Fn, tn〉 = 〈{completes(end)}, t〉. Then, for i = 0, . . . , n−1, Sem ∪LIA |=
tr(s(Fi, ti), s(Fi+1, ti+1), u, c), where s(F0, t0) = init and s(Fn, tn) = fin(t), and hence, by the
definition of the predicate reach, Sem ∪ LIA |= reach(init, fin(t), u, c).
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Vice versa, if Sem ∪ LIA |= reach(init, fin(t), u, c), then, by the definition of the predi-
cate reach, there exists a positive integer n such that, for i = 0, . . . , n− 1, Sem ∪ LIA |=
tr(s(Fi, ti), s(Fi+1, ti+1), u, c), where s(F0, t0) = init and s(Fn, tn) = fin(t). Thus, by the defini-
tion of tr , there exists a derivation 〈F0, t0〉−→〈F1, t1〉−→ . . .−→〈Fn, tn〉 via R, where 〈F0, t0〉 =
〈{begins(start)}, 0〉 and 〈Fn, tn〉 = 〈{completes(end)}, t〉, and hence 〈{begins(start)}, 0〉 −→∗

〈{completes(end)}, t〉. ⊓⊔

4.2. Encoding Controllability Properties

A reachability property which specifies that a final state 〈{completes(end)},Tf 〉, also denoted
fin(Tf ), can be reached from the initial state 〈{begins(start)},0〉, is introduced by a clause of
the form:

RP. reachProp(U, C) ← c(Tf , U, C), reach(init, fin(Tf ), U, C)

where: (i) U and C denote tuples of uncontrollable and controllable durations, respectively, and
(ii) c(Tf , U, C) is a constraint on the time Tf and the uncontrollable and controllable durations.

We say that the duration D of task X is admissible iff duration(X, D) holds. The weak
controllability problem for a business process specification consists in checking whether or not,
for all admissible uncontrollable durations U , there exist controllable durations C such that
reachProp(U, C) holds. The strong controllability problem for a business process specification
consists in checking whether or not there exist controllable durations C such that, for all admis-
sible uncontrollable durations U , the property reachProp(U, C) holds.

Now let us formally introduce the notions of weak controllability and strong controllability
for a business process specification. First we need the following definition.

Definition 4.3. (Reachability property)
We denote by I the set Sem∪{RP} of clauses, and we say that I defines a reachability property.

Definition 4.4. (Weak and strong controllability)
Given a business process specification B and a reachability property defined by a set I of clauses,
we say that:
(i) B is weakly controllable iff I ∪ LIA |= ∀U.adm(U) → ∃C reachProp(U, C), and
(ii) B is strongly controllable iff I ∪ LIA |= ∃C ∀U. adm(U)→ reachProp(U, C),

where adm(U) holds iff U is a tuple of admissible durations.

Note that, by definition, adm(U) is satisfiable because we have assumed that no duration
interval is empty. Moreover, if reachProp(U, C) holds, then all durations that allow the process
to reach a final state are admissible, and hence in the definition of the weak or strong control-
lability there is no need to require that the existentially quantified controllable durations C are
admissible.

When a business process specification is weakly controllable, in order to determine the du-
rations of the controllable tasks, we need to know in advance the actual durations of all the
uncontrollable tasks. This might be an unrealistic requirement in practice, as uncontrollable
tasks may occur after controllable ones.
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Note also that strong controllability implies weak controllability and guarantees that suitable
durations of the controllable tasks can be computed in advance, before the enactment of the
process, by using the constraints on the uncontrollable durations.

5. Specializing Reachability Properties

The clauses of the set I (see Definition 4.3) use complex terms (that is, terms with function
symbols of positive arity), and in particular they represent a state by a pair of a set of fluents and
a time instant (see clauses C1–C7). Now we present a transformation that specializes the set I

to the particular business process specification under consideration, and derives an equivalent
set Isp of function-free CHCs, on which CHC solvers are very effective. The specialization
algorithm is a variant of the one called Removal of the Interpreter, which has been proposed
in the area of verification of imperative programs [15]. The specialization algorithm makes
use of the following well-studied transformation rules: unfolding, definition introduction, and
folding [17].

The specialization algorithm (see Figure 3) starts off by unfolding clause RP, and then it
performs some more unfolding steps that realize a symbolic exploration of an initial portion of
the space of the reachable states.

The unfolding rule is defined as follows.

Unfolding Rule. Let C be a clause of the form H ← c, L, A, R, where H and A are atoms, L

and R are (possibly empty) conjunctions of atoms, and c is a constraint. Let {Ki ← ci, Bi |
i = 1, . . . , m} be the set of the (renamed apart) clauses in I such that, for i = 1, . . . , m, A

is unifiable with Ki via the most general unifier ϑi and (c, ci) ϑi is satisfiable. We define the
following function:

Unf (C, A, I) = { (H ← c, ci, L, Bi, R) ϑi | i = 1, . . . , m }

Each clause in Unf (C, A, I) is said to be derived by unfolding A in C using I.

Now, if we unfold every atom of every clause derived by unfolding, we may get into an
infinite unfolding process. Thus, in order to ensure termination, in the Unfolding phase
of the specialization algorithm we put a restriction on the unfolding rule. This restriction is
based on the notion of an unfoldable atom. An atom is said to be unfoldable if: either (i) its
predicate is different from reach, or (ii) it is of the form reach(s(F1, T 1), s(F2, T 2), U, C) and
I ∪ LIA 6|= ∃X. no-other-premises(F1), where X is the tuple of variables occurring in F1 (that
is, rule S7 is not applicable in state s(F1, T 1)).

In the Unfolding phase, for every clause C ∈ InCls, we first unfold the only atom in the
body of C, and then we unfold all unfoldable atoms in the body of the clauses obtained by
previous applications of the unfolding rule. At the end of the Unfolding phase, we obtain a
set of CHCs where each clause is either a constrained fact or a clause of the form:

E. H ← e, reach(s(fl(Rs), T ), fin(Tf ), U, C)

where e is a constraint, fl(Rs) is a term representing a set of fluents, and Rs is the tuple of
variables representing the residual times.

The goal of the Definition-Introduction & Folding phase is to derive a function-free
clause from every clause E by applying the folding rule. If clause E can be folded by using a
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Input: A set I of CHCs defining a reachability property.
Output: A set Isp of function-free CHCs such that, for all tuples u and c of integer values,
I ∪ LIA |= reachProp(u, c) iff Isp ∪ LIA |= reachProp(u, c).

Initialization:
Isp := ∅; InCls := {RP}; Defs := ∅;

while in InCls there is a clause C with a single reach atom in its body do

Unfolding:

SpC := Unf (C, A, I) where A is the reach atom in the body of C;

while in SpC there is a clause D whose body contains an unfoldable atom do
SpC := (SpC − {D}) ∪ Unf (D, A, I)

where A is the leftmost unfoldable atom in the body of D

end-while;

Definition-Introduction & Folding:

while in SpC there is a clause E of the form:
H ← e, reach(s(fl(Rs), T ), fin(Tf ), U, C)

where: H is an atom, e is a constraint, fl(Rs) stands for a set of fluents where Rs is the
tuple of residual time variables in that set, T is a variable denoting a time instant, and
U and C are tuples of variables denoting the uncontrollable and controllable durations,
respectively, do

if in Defs there is a clause D of the form (up to variable renaming):
newp(Rs, T, Tf , U, C)← d(Rs), reach(s(fl(Rs), T ), fin(Tf ), U, C)

where d(Rs) is a constraint such that e ⊑ d(Rs)

then SpC := (SpC − {E}) ∪ {H ← e, newp(Rs, T, Tf , U, C)};

else let F be the clause:
newr(Rs, T, Tf , U, C)← ẽ(Rs), reach(s(fl(Rs), T ), fin(Tf ), U, C)

where newr is a predicate symbol not occurring in I ∪Defs, and ẽ(Rs) is the
projection of e onto Rs ;

InCls := InCls ∪ {F};
Defs := Defs ∪ {F};
SpC := (SpC − {E}) ∪ {H ← e, newr(Rs, T, Tf , U, C) }

end-while;

InCls := InCls − {C}; Isp := Isp ∪ SpC ;
end-while;

Figure 3. The Specialization Algorithm.

clause already in Defs, then a function-free clause is obtained by folding (see the then branch of
the if-then-else statement in the Definition-Introduction & Folding phase). Otherwise, a
new predicate definition is introduced by a clause of the form:

newr(Rs, T, Tf, U, C)← ẽ(Rs), reach(s(fl(Rs), T ), fin(Tf ), U, C)

where ẽ(Rs) is obtained by projecting the constraint e onto the tuple Rs of residual time variables
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(see the else branch of the if-then-else statement). We have that e ⊑ ẽ(Rs), and this guarantees
the correctness of the subsequent folding step. At the end of the execution of either branch of
the if-then-else statement, every reach atom with a complex argument representing a state, is
replaced by a function-free call by applying the folding rule. Thus, at the end of the Definition-

Introduction & Folding phase, we derive a set of function-free CHCs, which are added
to Isp. Moreover, since initially Isp = ∅, we have that all clauses in Isp are function-free. The
specialization algorithm proceeds by adding the clause defining the new predicate newr to the
set InCls of the clauses to be specialized and also to the set Defs of the clauses introduced by
the definition introduction rule. The algorithm terminates when all clauses in InCls have been
processed.

Note that, since the residual time variables range over finite integer intervals, there are
finitely many non-equivalent constraints ẽ(Rs). This property ensures that the set of clauses
introduced in Defs is finite, and hence the specialization algorithm terminates for any set I of
CHCs defining a reachability property (see Theorem B.5 in Appendix B for a detailed proof).

By known results, the unfolding, definition introduction, and folding rules preserve satisfia-
bility [17], and hence for all tuples of integer values u and c, reachProp(u, c) holds in I ∪ LIA if
and only if it holds in Isp ∪ LIA.

Thus, we have the following result.

Theorem 5.1. (Total correctness of the specialization algorithm)
For any input set I of CHCs defining a reachability property, the specialization algorithm ter-
minates. Suppose that the specialization algorithm returns the set Isp of CHCs. Then we have
that: (i) Isp is a set of function-free CHCs, and (ii) for all tuples of integer values u and c,

I ∪ LIA |= reachProp(u, c) iff Isp ∪ LIA |= reachProp(u, c).

Example 5.2. Let Sem be the set of clauses as in Definition 4.1, and let the reachability
property for the process CarDealer of Figure 1 be denoted by the set I = Sem ∪ {RP1}, where
RP1 is the following clause:

reachProp(U0,U1,C0,C1,C2,C3) ← Tf ≥15, Tf ≤20, reach(init, fin(Tf ), U0,U1,C0,C1,C2,C3)

In the above clause, the pair (U0, U1) denotes the duration of the uncontrollable tasks u0 and
u1, and the 4-tuple (C0, C1, C2, C3) denotes the duration of the controllable tasks c0, c1, c2,
and c3. Tf denotes a final time instant.

Now, let us run the specialization algorithm using the set I of clauses as input. Initially,
Isp =∅, InCls={RP1}, and Defs=∅.

The Unfolding phase, starting from clause RP1, derives the following clause:

E. reachProp(U0, U1, C0, C1, C2, C3) ←
Rc0=C0, Ru1=U1, Ti =0, Tf ≥15, Tf ≤20, C0≥1, C0≤8, U1≥4, U1≤6,

reach(s({enacting(c0, Rc0), enacting(u1, Ru1)}, Ti), s({completes(end)}, Tf ),
U0, U1, C0, C1, C2, C3)

Then, we perform the Definition & Folding phase and, since Defs is the empty set of clauses,
we introduce a new predicate new1 defined by the following clause:

F . new1(Rc0, Ru1, Ti , Tf , U0, U1, C0, C1, C2, C3) ← Rc0≥1, Rc0≤8, Ru1≥4, Ru1≤6,

reach(s({enacting(c0, Rc0), enacting(u1, Ru1)}, Ti), s({completes(end)}, Tf ),
U0, U1, C0, C1, C2, C3)



E. De Angelis et al. / Semantics and Controllability of Time-Aware Business Processes 17

whose constraint is the projection of the constraint in the body of clause E on the variables Rc0
and Ru1, denoting residual times, occurring in the set {enacting(c0, Rc0), enacting(u1, Ru1)}
of fluents. Then, by folding E using F , we get the following function-free clause:

G. reachProp(U0, U1, C0, C1, C2, C3) ← Rc0=C0, Ru1=U1, Ti =0, Tf ≥15, Tf ≤20,

C0≥1, C0≤8, U1≥4, U1≤6, new1(Rc0, Ru1, Ti, Tf , U0, U1, C0, C1, C2, C3)

Now, the specialization algorithm proceeds by performing a new iteration of the body of
the outer while-loop starting from Isp = {G}, InCls = {F}, and Defs = {F}. Eventually, the
algorithm terminates because the Definition & Folding phase does not introduce any new
predicate, and we derive the following function-free clauses as output:

new1(Rc0, Ru1, Ti , Tf , U0, U1, C0, C1, C2, C3) ← Rc0≥1, Rc0≤Ru1, Ru1≥4, Ru1≤6, (‡)
Ru0=U0, Ru1′ =Ru1−Rc0, Ti ′ =Ti + Rc0, Ti ′≤Tf , U0≥2, U0≤5,

new2(Ru0, Ru1′, Ti ′, Tf , U0, U1, C0, C1, C2, C3)

new1(Rc0, Ru1, Ti , Tf , U0, U1,C0, C1, C2, C3) ← Rc0≥Ru1, Rc0≤8, Ru1≥4, Ru1≤6,

Rc0′ =Rc0−Ru1, Rc1=C1, Ti ′ =Ti+Ru1, Ti ′≤Tf , C1≥2, C1≤4,

new3(Rc0′, Rc1, Ti ′, Tf , U0, U1, C0, C1, C2, C3)

new2(Ru0, Ru1, Ti , Tf , U0, U1, C0, C1, C2, C3) ← Ru0≥2, Ru0≤5, Ru1=0, Rc1=C1,

Ru0′ =Ru0, C1≥2, C1≤4, new4(Rc1, Ru0′, Ti, Tf , U0, U1, C0, C1, C2, C3)

new2(Ru0, Ru1, Ti , Tf , U0, U1, C0, C1, C2, C3) ← Ru0≥2, Ru0≤5, Ru1≥1, Ru1≤Ru0,

Rc1=C1, Ru0′ =Ru0−Ru1, Ti ′ =Ti + Ru1, Ti ′≤Tf , C1≥2, C1≤4,

new6(Rc1, Ru0′, Ti ′, Tf, U0, U1, C0, C1, C2, C3)

new3(Rc0, Rc1, Ti, Tf , U0, U1, C0, C1, C2, C3) ← Rc0=0, Rc1≥2, Rc1≤4, Rc1′ =Rc1,

Ru0=U0, U0≥2, U0≤5, new4(Rc1′, Ru0, Ti, Tf , U0, U1, C0, C1, C2, C3)

new3(Rc0, Rc1, Ti, Tf , U0, U1, C0, C1, C2, C3) ← Rc0≥1, Rc0≤Rc1, Rc1≥2, Rc1≤4,

Rc1′ =Rc1−Rc0, Ru0=U0, U0≥2, U0≤5, Ti ′ =Ti+Rc0, Ti ′≤Tf ,

new5(Rc1′, Ru0, Ti ′, Tf , U0, U1, C0, C1, C2, C3)

new4(Rc1, Ru0, Ti , Tf , U0, U1, C0, C1, C2, C3) ← Rc1≥2, Rc1≤4, Ru0=Rc1, Rc2=C2,

Ti ′ =Ti+R1, Ti ′≤Tf , C2≥1, C2≤2, new7(Rc2, Ti ′, Tf , U0, U1, C0, C1, C2, C3)

new4(Rc1, Ru0, Ti , Tf , U0, U1, C0, C1, C2, C3) ← Rc1≥2, Rc1≤4, Ru0=Rc1, Rc3=C3,

Ti ′ =Ti+Rc1, Ti ′≤Tf , C3≥4, C3≤5, new8(Rc3, Ti ′, Tf , U0, U1, C0, C1, C2, C3)

new5(Rc1, Ru0, Ti , Tf , U0, U1, C0, C1, C2, C3) ← Rc1≥2, Rc1≤3, Ru0=Rc1, Rc2=C2,

Ti ′ =Ti+Rc1, Ti ′≤Tf , C2≥1, C2≤2, new7(Rc2, Ti ′, Tf , U0, U1, C0, C1, C2, C3)

new5(Rc1, Ru0, Ti , Tf , U0, U1, C0, C1, C2, C3) ← Rc1≥2, Rc1≤3, Ru0=Rc1, Rc3=C3,

Ti ′ =Ti+Rc1, Ti ′≤Tf , C3≥4, C3≤5, new8(Rc3, Ti ′, Tf , U0, U1, C0, C1, C2, C3)

new6(Rc1, Ru0, Ti , Tf , U0, U1, C0, C1, C2, C3) ← Rc1≥2, Rc1≤4, Ru0=Rc1, Rc2=C2,

Ti ′ =Ti+Rc1, Ti ′≤Tf , C2≥1, C2≤2, new7(Rc2, Ti ′, Tf , U0, U1, C0, C1, C2, C3)

new6(Rc1, Ru0, Ti , Tf , U0, U1, C0, C1, C2, C3) ← Rc1≥2, Rc1≤4, Ru0=Rc1, Rc3=C3,

Ti ′ =Ti+Rc1, Ti ′≤Tf , C3≥4, C3≤5, new8(Rc3, Ti ′, Tf , U0, U1, C0, C1, C2, C3)

new7(Rc2, Ti, Tf , U0, U1, C0, C1, C2, C3) ← Rc2≥1, Rc2≤2, Rc0=C0, Ru1=U1,

Ti ′ = Ti + Rc2, Ti ′≤Tf , U1≥4, U1≤6, C0≥1, C0≤8,

new1(Rc0, Ru1, Ti ′, Tf , U0, U1, C0, C1, C2, C3)

new8(Rc3, Ti, Tf , U0, U1, C0, C1, C2, C3) ← Rc3≥4, Rc3≤5, Tf =Ti+Rc3
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Clause G and the above clauses for new1–new8 form the set Isp of clauses, which is the output
of the specialization algorithm when given as input a set I of clauses defining a reachability
property.

In the clauses for new1–new8 the variables RuN and RcN , possibly primed, denote the values
of the residual durations of the uncontrollable and controllable tasks uN and cN , respectively.
The variables Ti and Ti ′ denote time instants. The new predicates newN , which have been
introduced by the specialization algorithm, represent symbolic states, denoting sets of states,
by abstracting away the current time instants. For instance, predicate new1 corresponds to the
following symbolic state (see clause F ):

s({enacting(c0, Rc0), enacting(u1, Ru1)}, Ti)
with Rc0≥1, Rc0≤8, Ru1≥4, Ru1≤6. Each clause describes a transition between symbolic
states, where, by applying the unfolding rule, many transition steps may have been condensed
into one only. For instance, the first clause for new1 (see clause (‡) above), when read ‘from
the head to the body’, tells us that from the symbolic state represented by new1 the business
process can go to the following symbolic state represented by new2:

s({enacting(u0, Ru0), enacting(u1, Ru1′)}, Ti ′)
with Ru0 ≥ 2, Ru0 ≤ 5, Ru1′ ≥ 0, Ru1′ ≤ 5. We leave to the reader to check that indeed
these constraints on Ru0 and Ru1′ are the projections on the variables Ru0 and Ru1′ of the
constraints in the body of clause (‡) .

6. Solving Controllability Problems

State-of-the-art CHC solvers are often not effective for solving controllability problems defined
by a direct encoding of the formulas that occur in Definition 4.4, mainly because those formulas
have nested existential and universal quantifiers and involve predicates that are defined by
(possibly recursive) constrained Horn clauses. Thus, we propose an alternative method which
essentially consists in solving a sequence of problems, each of which refers to simpler formulas
and, in particular, to formulas whose quantifications are over LIA constraints only.

Our method is based on the fact that any reachability property defined by the set I of clauses
(see Definition 4.3) is decidable. Indeed, for the set Isp of CHCs obtained by the specialization
algorithm starting from I, we have the following theorem (see Appendix C for a proof), where U

and C are tuples of variables denoting the durations of the uncontrollable and controllable tasks,
respectively.

Theorem 6.1. (Decidability of reachability properties)
There exists an algorithm, call it solve, such that, for any input query Q of the form
reachProp(U, C), (i) terminates, and (ii) returns an answer constraint, that is, a satisfiable
LIA constraint a(U, C) such that Isp ∪ LIA |= ∀(a(U, C) → Q), if such a constraint exists, and
false, otherwise.

In what follows, for reasons of simplicity, an answer constraint will also be called an answer.
From Theorem 6.1 it follows that solve is a decision algorithm for the class of reachability

properties considered in this paper. In the implementation of solve, unlike what we have done
in the proof of Theorem 6.1, we do not perform an exhaustive instantiation of the variables
occurring in U and C using the integer values of the finite domains over which those variables
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range. Instead, we make use of the CLP(FD) library provided by SWI Prolog1 which allows the
manipulation of constraints over finite domains, and hence variables are instantiated on demand.
Here we do not enter into the details of the implementation of solve via the CLP(FD) library.

The method we propose for solving the weak and strong controllability problems consists of
two algorithms: (i) the Weak Controllability Algorithm (WCA, for short), and (ii) the Strong
Controllability Algorithm (SCA, for short), respectively (see Figure 4). Each of these algorithms
calls, once or more times, the algorithm solve and constructs a satisfiable constraint ã(U, C),
if any, where U and C are tuples of variables denoting the durations of the uncontrollable and
controllable tasks, such that: (1) Isp ∪ LIA |= ∀U ∀C. ã(U, C)→ reachProp(U, C) and either

(2.W) LIA |= ∀U. adm(U)→ ∃C. ã(U, C) (for WCA) or

(2.S) LIA |= ∃C ∀U. adm(U)→ ã(U, C) (for SCA).

Once WCA terminates, from (1) and (2.W) we get weak controllability (see Definition 4.4).
Analogously, once SCA terminates, from (1) and (2.S) we get strong controllability.

Algorithm WCA constructs the constraint ã(U, C) as a disjunction of answers computed by
the algorithm solve until either Condition (2.W) holds or there are no more answers, in which
case solve returns false. Algorithm SCA works similarly to algorithm WCA by considering
Condition (2.S), instead of Condition (2.W).

In order to avoid redundant answers, at each iteration of the do-while body of the algo-
rithms WCA and SCA, the algorithm solve(Isp, Q) is called with input queries Q of the form
reachProp(U, C) ∧ ϕ, where ϕ is the (possibly quantified) negation of the disjunction of the
answers computed so far.2 Note that, since the LIA theory is decidable [5], Theorem 6.1 holds
also for any query Q of this extended form (see Appendix C).

The following theorem, whose proof is in Appendix D, states that the algorithms WCA and
SCA are totally correct.

Theorem 6.2. (Total correctness of the controllability algorithms WCA and SCA)
Let Isp be the set of CHCs derived by the specialization algorithm of Section 5 starting from a
set I of CHCs defining a reachability property for a business process specification B.

(1) Given as input the set Isp, the algorithm WCA: (i) terminates, and (ii) returns a satisfiable
constraint ã(U, C) such that LIA |= ∀U. adm(U)→ ∃C. ã(U, C), if B is weakly controllable, and
returns false, otherwise.

(2) Given as input the set Isp, the algorithm SCA: (i) terminates, and (ii) returns a satisfiable
constraint ã(U, C) such that LIA |= ∃C.∀U. adm(U) → ã(U, C), if B is strongly controllable,
and returns false, otherwise.

Now we illustrate how the algorithm WCA works by applying it to the clauses obtained by
specialization at the end of the previous section (see Example 5.2).

During the first iteration of the do-while loop, the algorithm WCA evaluates the function
call solve(Isp, reachProp(U0, U1, C0, C1, C2, C3) ∧ ¬∃C0, C1, C2, C3. false).

We get the following answer constraint

a1(U0, U1, C0, C1, C2, C3): U0=4, U1=6, C0=U1, C1=U0, C3=5. (a1)

1http://www.pathwayslms.com/swipltuts/clpfd/clpfd.html
2In particular, in WCA the negated existential quantification of the controllable duration variables C avoids
computing multiple answers with the same values of the durations U of the uncontrollable tasks.
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Input: A set Isp of CHCs defining a reachability property for a business process specification B.
Output of WCA: A satisfiable constraint ã(U, C) such that LIA |= ∀U. adm(U) → ∃C. ã(U, C),

if B is weakly controllable, and otherwise, false.
Output of SCA: A satisfiable constraint ã(U, C) such that LIA |= ∃C.∀U. adm(U) → ã(U, C),

if B is strongly controllable, and otherwise, false.

WCA: Weak Controllability Algorithm SCA: Strong Controllability Algorithm

ã(U, C) := false

do {

A :=solve(Isp, reachProp(U,C)∧¬∃C.ã(U,C));

if (A= false) return false

else ã(U, C) := ã(U, C)∨A;

} while (LIA 6|= ∀U. adm(U)→∃C. ã(U, C));

return ã(U, C);

ã(U, C) := false

do {

A :=solve(Isp, reachProp(U,C)∧¬ ã(U,C));

if (A= false) return false

else ã(U, C) := ã(U, C)∨A;

} while (LIA 6|= ∃C ∀U. adm(U)→ ã(U, C));

return ã(U, C);

Figure 4. The algorithms WCA and SCA for verifying weak controllability and strong controllability,
respectively.

In our example, the constraint adm(U0, U1) is U0≥2, U0≤5, U1≥4, U1≤6.

Now we have that:

LIA 6|= ∀U0, U1. adm(U0, U1)→ ∃C0, C1, C2, C3. a1(U0, U1, C0, C1, C2, C3)

and hence the algorithm executes the second iteration of the do-while loop. Thus, the algorithm
WCA evaluates the function call

solve(Isp, reachProp(U0,U1, C0,C1,C2,C3)∧¬∃C0, C1, C2, C3. a1(U0, U1, C0, C1, C2, C3)).

We get the following answer constraint

a2(U0, U1, C0, C1, C2, C3): U0≥2, U0≤3, U1≥4, U1≤6, C0=U1, C1=U0,

C2≥1, C2≤2, C3≥4, C3≤5. (a2)

Again, we have that:

LIA 6|= ∀U0, U1. adm(U0, U1)→ ∃C0, C1, C2, C3. (a1(U0, U1, C0, C1, C2, C3) ∨

a2(U0, U1, C0, C1, C2, C3)).

Hence the algorithm performs further iterations of the do-while loop. At the first iteration the
solve function returns the answer constraint

a3(U0, U1, C0, C1, C2, C3): U0=5, U1≥4, U1≤6, U1≥C0, C0≤3, C0≥5,

C1≤2, C1≥4, C3≥4, C3≤5, (a3)

and, at the second iteration, solve returns the answer constraint

a4(U0, U1, C0, C1, C2, C3): U0=4, U1≥4, U1≤5, C0≤2, C0≥4, C1≤2, C1≥3, (a4)

C2≤1, C2≥2, C3≥4, C3≤5,

U1−C0≥1, U1−C0≤2, U1−C0+C1=4.

Now, the condition of the do-while loop is false, because LIA |= ∀U0, U1. adm(U0, U1) →
∃C0, C1, C2, C3.

∨4
i=1 ai(U0, U1, C0, C1, C2, C3). Thus, the algorithm WCA terminates and

we conclude that the process CarDealer is weakly controllable.
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Now, as a further example of use of the controllability algorithms, we will see the strong con-
trollability algorithm SCA in action for the business process, called Proc2, depicted in Figure 5.

The reachability property we now consider expresses the fact that the total duration time
of Proc2, when expressed in time units, is in the interval [6, 10]. This property is defined by
the following clause RP2, together with the set Sem of clauses listed in Table 4.1 defining the
predicate reach:

reachProp(U0, U1, U2, C0, C1) ← Tf ≥6, Tf ≤10, reach(init, fin(Tf ), U0, U1, U2, C0, C1)

where U0, U1, and U2 denotes the duration of the uncontrollable tasks u0, u1 and u2, respec-
tively, and similarly, C0 and C1 denotes the durations of the controllable tasks c0 and c1.

start

g1

u1

1 ≤ Du1 ≤ 3

u0

3 ≤ Du0 ≤ 4

c1

2 ≤ Dc1 ≤ 5

g2

c0

1 ≤ Dc0 ≤ 4

g3

g4

u2

2 ≤ Du2 ≤ 4

end

Figure 5. A business process Proc2. Tasks u0, u1, and u2 (with grey background) have uncontrollable
durations. The other tasks c0 and c1 (with white background) have controllable durations.

By applying the specialization algorithm to the set I of input clauses Sem∪{RP2}, we derive
the following set Isp of function-free constrained Horn clauses:

reachProp(U0, U1, U2, C0, C1) ← Ru1≥1, Ru1≤3, Ru1=U1, Ti =0, Tf ≥6, Tf ≤10,

new1(Ru1, Ti , Tf , U0, U1, U2, C0, C1)

reachProp(U0, U1, U2, C0, C1) ← Ru0≥3, Ru0≤4, Ru0=U0, Ti =0, Tf ≥6, Tf ≤10,

new2(Ru0, Ti , Tf , U0, U1, U2, C0, C1)

new1(Ru1, Ti , Tf , U0, U1, U2, C0, C1) ← Ru1≥1, Ru1≤3, Rc1=C1, C1≥2, C1≤5,

Ti ′ =Ti+Ru1, Ti ′≤Tf , new4(Rc1, Ti ′, Tf , U0, U1, U2, C0, C1)

new2(Ru0, Ti , Tf , U0, U1, U2, C0, C1) ← Ru0≥3, Ru0≤4, Rc0=C0, C0≥1, C0≤4,

Ti ′ =Ti+Ru0, Ti ′≤Tf , new3(Rc0, Ti ′, Tf , U0, U1, U2, C0, C1)

new3(Rc0, Ti , Tf , U0, U1, U2, C0, C1) ← Rc0≥1, Rc0≤4, Rc0′ =C0, C0≥1, C0≤4,

Ti ′ =Ti+Rc0, Ti ′≤Tf , new3(Rc0′, Ti ′, Tf , U0, U1, U2, C0, C1)

new3(Rc0, Ti , Tf , U0, U1, U2, C0, C1) ← Rc0≥1, Rc0≤4, Ru2=U2, U2≥2, U2≤4,

Ti ′ =Ti+Rc0, Ti ′≤Tf , new5(Ru2, Ti ′, Tf , U0, U1, U2, C0, C1)

new4(Rc1, Ti , Tf , U0, U1, U2, C0, C1) ← Rc1≥2, Rc1≤5, Ru2=U2, U2≥2, U2≤4,

Ti ′ =Ti+Rc1, Ti ′≤Tf , new5(Ru2, Ti ′, Tf , U0, U1, U2, C0, C1)

new5(Ru2, Ti , Tf , U0, U1, U2, C0, C1) ← Ru2≥2, Ru2≤4, Tf =Ti+Ru2
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During the first iteration of the do-while loop of the algorithm SCA, the function call

solve(Isp, reachProp(U0, U1, U2, C0, C1) ∧ ¬false) (†)
is evaluated and returns the following answer constraint:

a1(U0, U1, U2, C0, C1): U1≥1, U1≤3, U2≥2, U2≤4, C1≥2, C1≤5,

U1+C1+U2≥6, U1+C1+U2≤10.

In our example we have that:

adm(U0, U1, U2) is U0≥3, U0≤4, U1≥1, U1≤3, U2≥2, U2≤4.

Thus, we have that LIA |= ∃C0, C1.∀U0, U1, U2. adm(U0, U1, U2) → a1(U0, U1, U2, C0, C1).
As a consequence, the SCA algorithm terminates and we conclude that the strong controllability
property holds for process Proc2, that is, there exist C0 and C1 such that for all admissible
values of U0, U1, and U2, we have that the total duration Tf of Proc2 is in the interval [6, 10].
Indeed, Tf is ensured to be in that interval if we take C1=3 and any C0 in the interval [1, 4].

A different answer constraint, besides a1, that can be obtained by evaluating the function
call (†), is the following:

a2(U0, U1, U2, C0, C1): U0≥3, U0≤4, U2≥2, U2≤4, C0≥1, C0≤4,

U0+C0+U2≥6, U0+C0+U2≤10.

In this case, if we take either C0 = 1 or C0 = 2, then Tf is ensured to be in the interval [6, 10]
for all admissible values of U0, U1, and U2,

We have used the VeriMAP transformation and verification system for CHCs [14] to imple-
ment the specialization algorithm of Section 5, and SWI Prolog and the Z3 solver to implement
the algorithms WCA and SCA. We have applied our method for the verification of the weak
controllability of the process CarDealer and the strong controllability of the process Proc2.

The times taken in these verifications are as follows3. For the verification of the weak
controllability of the process CarDealer the execution of the specialization algorithm requires
0.19 seconds and the execution of the algorithm WCA requires 0.67 seconds, whereas for the
verification of the strong controllability of the process Proc2 the execution of the specialization
algorithm requires 0.03 seconds and the execution of the algorithm SCA requires 0.38 seconds.

We have also solved controllability problems for other small-sized processes, not shown here
for reasons of space, whose reachability relation, like the one for process CarDealer, contains
cycles that may generate an unbounded proof search, and hence may cause non-termination if
not handled in an appropriate way. In particular, in every example we have considered, the
Z3 solver is not able to provide a proof of the desired controllability property within a time
limit of one hour for a direct encoding of the controllability properties as they are formulated
in Definition 4.4 above.

7. Related Work and Conclusions

Controllability problems arise in all contexts where the duration of some tasks in a business
process cannot be determined in advance by the process designer. We have addressed this

3The experiments have been performed on an Intel Core Duo E7300 2.66Ghz processor with 4GB of memory
under GNU/Linux OS, for the execution of the specialization algorithm, and on an Intel i5 2.3GHz with 8GB
memory under macOS, for the execution of the algorithms WCA and SCA.
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class of problems and we have presented a method for checking the so-called weak and strong
controllability properties of business processes. The method is based upon well-established
techniques and tools in the field of computational logic.

Modeling and reasoning about time in the field of business process management has been
largely investigated in the past. We refer to a paper by Cheikhrouhou et al. [6] for a survey
which covers the recent years, while among the less recent techniques we limit ourselves to
mention PERT [28] and GERT [32]. Although both techniques can be used for analyzing
the time behaviour of business processes, and in particular for computing the minimal (or the
expected) total duration of a process, neither of them addresses controllability problems as we
do in this paper. PERT and GERT also have some other limitations: (i) PERT does not allow
cycles in the activity diagrams and considers the duration of every activity to be specified by
numbers, not by intervals, as done in our approach here, and (ii) GERT requires, in general,
the Montecarlo simulation method to determine the time properties of the business processes,
because the durations of the activities are specified in GERT via probabilistic distributions.

More recently, techniques for addressing violation of time constraints in business processes
have been proposed in a paper by Combi et al. [10]. In that paper timer events, parallel gateways,
and event-based gateways are used to represent and deal with time constraints. However, the
issue of how to control the duration of the tasks so to avoid those violations has not been
addressed.

The notion of controllability has been extensively studied in the context of scheduling and
planning problems over temporal networks [7, 8, 9, 31, 36, 37], and it has been considered as a
useful concept for supporting decisions in business process management and design [11, 24, 25].

Algorithms for checking weak and strong controllability properties were first introduced for
Simple Temporal Networks with Uncertainty [37]. Later, sound and complete algorithms were
developed for both weak [36] and strong [31] controllability of Disjunctive Temporal Problems
with Uncertainty (DTPU). More recently, a general and effective method for checking weak [9]
and strong [8] controllability of DTPU’s via SMT has been developed.

The task of verifying controllability of BP models we have addressed in this paper is similar
to the task of checking controllability of temporal workflows addressed by Combi and Posen-
ato [11]. These authors present a workflow conceptual framework that allows the designer to
use temporal constructs to express duration, delays, relative, absolute, and periodic constraints.
The durations of tasks are uncontrollable, while the delays between tasks are controllable. The
controllability problem, which arises from relative constraints that limit the duration of two
non-consecutive tasks, consists in checking whether or not the delays between tasks enforce
the relative constraints for all possible durations of tasks. The special purpose algorithms for
checking controllability presented in [11] enumerate all possible choices, and therefore are com-
putationally expensive.

Our approach to controllability of BP models exhibits several differences with respect to the
one considered by Combi and Posenato in [11]. In our approach the designer has the possibility
of explicitly specifying controllable and uncontrollable durations. We also consider workflows
with minimal restrictions on the control flow, and unlike the framework in [11], we admit loops.
We automatically generate the clauses to be verified from the formal semantics of the BP model,
thus making our framework easily extensible to other classes of processes and properties. Finally,
we propose concrete algorithms for checking both weak and strong controllability, based on off-
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the-shelf CHC specializers and solvers.
As future work we plan to perform an extensive experimental evaluation of our method and

to apply our approach to extensions of time-aware BP models, whose properties also depend on
the manipulation of data objects.
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A. Proof of Theorem 3.7

The following fact holds for rules S1–S6.

Fact A.1. (i) Any two distinct rewritings, from the same state, generated by two instances
of (not necessarily distinct) rules in S1–S6 have the removed sets which are either identical or
disjoint. (ii) If an instance σ of a rule in S1–S6 is applied to a state 〈F, t〉, then for every fluent f

of the removed set of the rewriting generated by σ, the premise of σ implies f ∈F .

Proof:
Point (i) follows immediately from the definitions of the rules. Indeed, if we take two rewritings
generated by two instances of rule S3 with the same value of x and different values of s, then
their removed sets will be identical. In all other cases the removed sets of two distinct rewritings
are disjoint.

For Point (ii) only rule S4 requires some explanation. By the premise of rule S4, if we
consider the instance σ of that rule which binds the variable x to the constant a, we have
that: (1) ∀p seq(p, a) → (enables(p, a)∈F ). Moreover, for any flow object p, when the element
enables(p, a), is added to a set of fluents (see rules S2 and S3), we have that: (2) seq(p, a) holds.
From (1) and (2), it follows that enables(p, a)∈F is implied by the premise of the instance σ. ⊓⊔

The following lemma states that two rewritings using rules S1–S6 can be switched.

Lemma A.2. (Switching lemma for rules S1–S6)
Consider a state s0 = 〈F0, t〉 and two rewritings, say s0 −→ s1 and s0 −→ s′

1, generated by
two distinct instances σ and σ′ of two (not necessarily distinct) rules in S1–S6. Let R⊆F0 and
R′⊆F0, respectively, be the removed sets of those rewritings.

Suppose that δ = s0−→ s1−→ s2 is a derivation generated by applying the rule instance σ

on the state s0 and then the rule instance σ′ on the state s1. We have the following.
Point (i). There exists a derivation δ′ = s0−→ s′

1−→ s2, such that σ′ whose removed set is R′,
generates s0−→s′

1, and σ whose removed set is R, generates s′

1−→s2.
Point (ii). A fluent f occurs in the set of fluents of a state in {s0, s1, s2} iff f occurs in the set
of fluents of a state in {s0, s′

1, s2}.

Proof:
Proof of Point (i). First we observe that the time components of the states s0, s1, s′

1, and s2 are
all t, because when applying rules S1–S6, time does not pass.

Let F1, F ′

1, and F2 be the sets of fluents of the states s1, s′

1, and s2, respectively. Let S

and S′ be the added set of the rewritings s0−→s1 and s0−→s′

1, respectively. By construction
of δ, we have that R′ and S′ are also the removed set and the added set, respectively, of the
rewriting s1−→s2.

From s0−→ s1, by safeness of the business process, we get F0 ∩ S = ∅, and thus R ∩ S = ∅
and R′ ∩ S = ∅ (because R and R′ are subsets of F0). Symmetrically, from s0 −→ s′

1, we get
F0 ∩ S′ =∅, and thus R′ ∩ S′ =∅ and R ∩ S′ =∅.

Since: (1) F1 = (F0\R)∪S, (2) F0∩S =∅, and (3) R′ is the removed set of the two rewritings
s0−→s′

1 and s1−→s2, by Fact A.1, we have that R ∩R′ =∅. From S ⊆ F1 and F1 ∩ S′ =∅ (by
safeness), we get S ∩ S′ =∅.
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Thus, we have that the sets R, R′, S, and S′ of fluents are pairwise disjoint. From the
derivation δ = s0−→s1−→s2, we have that F2 = (((F0\R) ∪ S)\R′) ∪ S′.

Now the derivation δ′ is obtained as follows. From state s0 by applying the rule instance σ′ we
derive the state s′

1 = 〈F ′

1, t〉 such that F ′

1 = (F0\R
′)∪S′ and then, by applying the rule instance σ

we derive a state, say 〈F ′

2, t〉, with F ′

2 = (((F0\R
′)∪S′)\R)∪S. To complete the proof of Point (i)

it remains to show that F2 =F ′

2. This is a consequence of the fact that the sets R, R′, S, and S′

are pairwise disjoint, and thus F2 and F ′

2 are both equal to (F0\(R ∪R′)) ∪ (S ∪ S′).

Proof of Point (ii). If the fluent f occurs in F0∪F2, then Point (ii) is immediate. Otherwise, if
the fluent f occurs in F1∪F ′

1, Point (ii) follows from the fact that F1∪F ′

1 = F0∪F2. ⊓⊔

We also have the following result which is a consequence of Fact A.1.

Fact A.3. (Permanence for rules S1–S6)
If an instance σ of a rule in S1–S6 can be applied to a state s, then σ can also be applied to any
state s′ such that s−→+ s′, where −→+ denotes the rewriting relation generated by a non-empty
sequence of rule instances in S1–S6, each of which has a removed set different from the one of σ.

Now we introduce a notion which we need in what follows.

Definition A.4. (Removed fluent and added fluent in a derivation)
A fluent is removed (or added) in a derivation δ if it belongs to the removed set (or the added
set, respectively) of a rewriting s −→ s′ in δ.

Lemma A.5. Let δ be an infinite derivation using rules S1–S7 starting from the initial state.
Then there exists in δ a flow object a such that begins(a) is removed infinitely many times.

Proof:
First, let us observe that: (i) δ is an infinite derivation, (ii) the set of flow objects and the set
of sequence flows in a business process are finite, and (iii) the durations of the flow objects are
non-negative integers. From (i), (ii), and (iii), it follows that there must be a flow object (not
necessarily a task) b, whose duration we denote by db, such that a fluent of the form: either
(i) begins(b), or (ii) enacting(b, d) for some duration d, with 0≤d≤db, or (iii) completes(b), or
(iv) enables(b, c) for some flow object c successor of b, is removed infinitely many times in δ.
Now, if begins(b) is removed infinitely many times, then we have the thesis by taking the flow
object a to be b.

Otherwise, take any flow object x with duration dx such that begins(x) in δ is removed
finitely many times (possibly zero). In this case, we have that in the infinite derivation δ, both
enacting(x, d), for some d such that 0 ≤ d ≤ dx, and completes(x) are removed finitely many
times (possibly zero). This is a consequence of the following Points (α), (β), and (γ).

• Point (α). When begins(x) is removed by rule S1, then enacting(x, dx) is added to the set of
fluents.

• Point (β). For any fluent enacting(x, d), with 0≤d≤dx, which is removed by rule S7, a fluent
enacting(x, d′), with 0≤d′ <d is added. Thus, the number of applications of rule S7 to the flow
object x during the whole derivation δ is finite.



E. De Angelis et al. / Semantics and Controllability of Time-Aware Business Processes 29

• Point (γ). completes(x) is added by rule S6 at the expense of removing the fluent enacting(x, 0),
which in turn, by the previous Point (β), is added a finite number of times during the whole
derivation δ.

It remains to show that during the infinite derivation δ it is not the case that enables(x, c),
for some flow object c, is removed infinitely many times. We will show this final point by
contradiction. Thus, let us assume to the contrary that enables(x, c), for some flow object c, is
removed infinitely many times. Then, enables(x, c) is added infinitely many times. Now, if x is
a par-branch , then by rule S2 we have that completes(x) is added infinitely many times and by
Points (γ) above, this is a contradiction. Similarly, we get a contradiction if x is not a par-branch ,
by considering rule S3, instead of rule S2. This concludes the proof of the lemma. ⊓⊔

Lemma A.6. (Finiteness lemma for rules S1–S6)
Let δ be a derivation that uses rules S1–S6 only. Then δ is finite.

Proof:
The proof is by contradiction. Assume that there exists an infinite derivation δ which uses
rules S1–S6 only. The following points hold.

• Point (i): In δ every state refers to the same time instant. The proof is obvious.

• Point (ii): In δ there exists a flow object, call it a, such that begins(a) is removed infinitely
many times. This point follows from Lemma A.5, because any derivation which uses rules S1–S6

only, is a particular derivation which uses rules S1–S7.

• Point (iii): In δ there exists a gateway g such that begins(g) is removed infinitely many times.
This point can be shown as follows. From Point (ii) we have that if the duration da of a is 0,
then Point (iii) is shown by taking g to be a, because: (1) gateways have duration 0, (2) the
event start has duration 0, but begin(start) is removed once only, because the event start has
no predecessor, (3) the event end has duration 0, but begin(end) is never removed, because the
event end has no successor, and (4) tasks have positive integer duration.

Otherwise, we have that da >0, and thus a is a task. Let g be the predecessor of a (that is,
seq(g, a) holds). Since, by Point (ii), begins(a) is removed infinitely many times in δ, it should
also be added infinitely many times. Thus, by rules S4 and S5 we have that enables(g, a) is
removed (and added) infinitely many times in δ. Then, by rules S2 and S3, completes(g) is
removed (and added) infinitely many times in δ and, by Points (α), (β), and (γ) of Lemma A.5,
we have that begins(g) is removed (and added) infinitely many times in δ.

Moreover, since completes(g) is added infinitely many times in δ, by rule S6 we have that
enacting(g, 0) is removed infinitely many times in δ. Since δ uses rules S1–S6 only and these rules
do not allow time to pass, as stated in Point (i), by rule S1 we have that duration(g, 0) holds.
This implies that g is a gateway, because: (1) g cannot be the start event (indeed, completes(g)
is added infinitely many times), and (2) g cannot be the end event either (indeed, completes(g)
is removed infinitely many times and completes(end) is never removed).

• Point (iv): There exists a cycle made out of gateways only. This point can be shown as follows.
Since begins(g) is removed infinitely many times in δ (see Point (iii)), it is also the case that
begins(g) is added infinitely many times in δ. Thus, by rules S4 and S5, there exists a flow
object p predecessor of g such that: (1) seq(p, g), and (2) enables(p, g) is removed (and added)
infinitely many times in δ.
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Now by the same argument of Point (iii) we conclude that p is a gateway and begins(p) is
removed (and added) infinitely many times in δ. By an inductive argument, we get that for all
n≥0, there exists a sequence p0, . . . , pn of flow objects with duration 0, such that: (1) for all i,
with 0≤ i<n, seq(pi, pi+1), (2) seq(pn, g), and (3) enables(pn, g). Since neither the start nor the
end event have a predecessor and a successor flow object, and the number of gateways in every
business process we consider is finite, we get Point (iv).

Now, from Point (iv), we derive a contradiction (recall that we have assumed that in every
business process no cycle made out of gateways only exists), and the proof of the lemma is
completed. ⊓⊔

In the following, given the two derivations δ1 = s0−→
∗ sn and δ2 = sn−→

∗ sm, the concate-
nated derivation s0−→

∗ sn−→
∗ sm will be denoted by δ1 · δ2.

We also denote by States# the set of states such that none of the rules in {S1, . . . , S6} can
be applied.

Theorem A.7. Let R be a fixed selection function. For every derivation δ from a state s0

ending in a state in States# via a selection rule R, there exists a derivation δ from s0 via R
such that: (i) δ and δ end in the same state, and (ii) for each state 〈F, t〉 in δ and f ∈F , there
exists a state 〈F, t〉 in δ and f ∈ F .

Proof:
The proof is by induction on the number l of applications of rule S7 in δ.

Basis. l = 0. In this case δ uses the rules S1–S6 only. Let us assume that s0 = 〈F0, t〉, for some
set F0 of fluents and time instant t. Thus, δ is of the form: 〈F0, t〉−→〈F1, t〉−→ . . .−→〈Fn, t〉.

Consider the smallest i (≥ 0) such that in state si the set R of fluents returned by R in δ

differs from the set R of fluents returned by R in δ. Since R 6= R, by Fact A.1 we also have that
R ∩R = ∅, and suppose that σ is the instance of a rule in S1–S6 with removed set R. Then, by
Fact A.3, σ can also be applied in any state which is derived from si by applying a sequence of
rules in S1–S6, whose removed sets, selected by R, are different from R. Moreover, δ ends with
a state in States#, where no rule in S1–S6 can be applied. Thus, we have that, for some j > 0,
R is the removed set computed by R in the state si+j of δ (since we assume that there are no
loops through gateways only, this integer j is unique).

If such an i does not exist, namely δ is via R, then we take i=n and j =0.

Informally, i is the first position where the selection function R of δ deviates from the
selection function R, and j is the delay of the selection function R of δ with respect to R. We
call (n−i, j) the (deviate, delay) pair of δ with respect to R.

Now, we prove the claim by induction using the lexicographic ordering ≺ on the (deviate,
delay) pairs, where ≺ is defined as usual, that is, for all non-negative integers h, k, h′, k′, we have
that (h, k)≺(h′, k′) iff (h<h′ or (h=h′ and k<k′)).

If the (deviate, delay) pair is (0, 0), then δ is via R and we get the thesis.

Otherwise, suppose that the (deviate, delay) pair is (n− i, j), with (0, 0)≺ (n − i, j). Thus,
the derivation δ is of form:

s0−→
∗ si−→

∗ si+j−1−→si+j−→si+j+1−→
∗ sn
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where the removed set of the rewriting si+j−→si+j+1 is R (that is, the removed set computed
by R at state si) and, by construction, the removed sets computed by R at states si, . . . , si+j−1

is different from R. Then, the rule instance applied at state si+j is also applicable at state
si+j−1, and hence by Lemma A.2, the rule instances applied at states si+j−1 and si+j can be
switched yielding a derivation δ′ of the form:

s0−→
∗ si−→

∗ si+j−1−→s′−→si+j+1−→
∗ sn

such that a fluent f occurs in s′ iff f occurs either in si+j−1 or in si+j+1.

The (deviate, delay) pair of δ′ with respect to R is (n−i, j−1) if j >1, and it is (n−i−1, ℓ),
for some ℓ≥0, if j =1. Thus, in both cases the (deviate, delay) pair of δ′ is below (n−i, j) and,
by well-founded induction with respect to ≺, we get the thesis.

Step. Assume for l, show for l+1. Let δ be of the form s0−→
∗ sn−→ sn+1−→

∗ sm, where the
number of applications of S7 in δ1 =s0−→

∗ sn and in δ2 =sn+1−→
∗ sm is l and 0, respectively, and

sn−→sn+1 is obtained by applying S7. By definition of rule S7, it is the case that sn∈States#.

By inductive hypothesis we have that there exists a derivation δ1 = s0 −→
∗ sn from s0 via

R such that: (i) δ1 and δ1 end in the same state, and (ii) for each state 〈F, t〉 in δ1 and f ∈F ,
there exists a state 〈F , t〉 in δ1 and f ∈F . Moreover, since sn ∈ States#, only rule S7 can be
applied thereby obtaining the state sn+1. Thus, δ1

′ = δ1 · (sn−→sn+1) is a derivation via R.

Now, let R′ be the selection rule such that, for any derivation γ, R′ returns the same set of
fluents of R applied to δ1

′ ·γ. Since the number of application of rule S7 in δ2 is equal to 0, there
exists a derivation δ2 =sn+1−→

∗ sm via R′, such that: (i) δ2 and δ2 end in the same state, and
(ii) for each state 〈F, t〉 in δ2 and f ∈F , there exists a state 〈F, t〉 in δ2 and f ∈F .

Now we get the thesis, because by construction δ1
′ · δ2 is a derivation via R. ⊓⊔

Proof of Theorem 3.7

Proof of Point (i). If δ ends in a state States#, then Point (i) follows from Theorem A.7.
Otherwise, by Lemma A.6, derivation δ can be extended to a derivation δext ending in a state
in States#. Then by Theorem A.7, there exists a derivation δext from s via R such that for each
state 〈F, t〉 in δext and f ∈F , there exists a state 〈F, t〉 in δext , and f ∈F . Since δ is a proper
prefix of δext , the proof of Point (i) is completed.

Proof of Point (ii). If the rewriting 〈F, t〉 −→ 〈F ′, t′〉, with t<t′, occurs in δ, it is generated by
rule S7, and thus the state 〈F, t〉 belongs to States#. Let us consider the prefix γ of δ that ends
in the state 〈F, t〉. By Theorem A.7 there exists a derivation γ from s via R such that γ and γ

end in the same state 〈F, t〉. Now, derivation γ can be extended by the selection rule R and R
in the same way, because they both apply rule S7. This completes the proof of Point (ii). @

B. Proofs of Termination of the Specialization Algorithm

In order to show the termination of the specialization algorithm we prove some preliminary
lemmas.

Lemma B.1. The Unfolding phase of the specialization algorithm terminates.
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Proof:
Let C be a clause in InCls. Let C0, . . . , Cn, . . . , where C0 = C, be any sequence of clauses
generated by the Unfolding phase. We have that, for i = 0, . . . , n, . . . , Ci+1 ∈ Unf (Ci, A, I),
where A is either the single reach atom in the body of C0 or the leftmost unfoldable atom in the
body of Ci, if i ≥ 1. We need to show that this sequence is finite. Assume, by contradiction,
that C0, . . . , Cn, . . . is an infinite sequence. Since every atom with predicate different from
reach is unfoldable, and the unfolding of such atoms generates finite sequences of clauses, from
C0, . . . , Cn, . . . we can extract an infinite subsequence of clauses of the form:

E0: H ← e0, reach(s(fl0(Rs0), T0), fin(Tf ), U, C)

· · ·

Ek: H ← ek, reach(s(flk(Rsk), Tk), fin(Tf ), U, C)

· · ·

where, by the correctness of the encoding (see Theorem 4.2), for i = 0, . . . , k, . . . , there exists a
state 〈Fi, ti〉 which is represented by a ground instance s(fl i(rsi), ti) of the term s(fli(Rsi), Ti),
such that the residual times Rsi and the time instant Ti satisfy the constraint ei. Moreover,
〈Fi+1, ti+1〉 is obtained from 〈Fi, ti〉 by applying a rule in S1–S7. By Lemma A.6, there ex-
ists m > 0 such that 〈Fm+1, tm+1〉 is obtained from 〈Fm, tm〉 by applying rule S7. Thus,
no-other-premises(Fm) holds, and hence

I ∪ LIA |= ∃Rsm . no-other-premises(flm(Rsm))

which contradicts the fact that the atom reach(s(flm(Rsm), Tm), fin(Tf ), U, C) is unfoldable. ⊓⊔

Let BPS be an abbreviation for Business Process Specification.

Lemma B.2. For every BPS the set F = {F | there exists t≥ 0 such that init −→∗ 〈F, t〉} is
finite.

Proof:
Since F is a set, for every flow object x, for every residual time r, for every successor y of x,
there exists in F at most one fluent begins(x), at most one fluent completes(x), at most one
fluent enacting(x, r), and at most one fluent enables(x, y).

The thesis follows from the facts that: (i) in any BPS there are finitely many flow objects,
and (ii) for every flow object x, the set of fluents enacting(x, r) that occur in F is finite, because
the residual time r is a non-negative integer initialized to a duration belonging to a finite interval,
and it can only decrease. ⊓⊔

Definition B.3. Let m be a non-negative integer. A constraint g(X1, . . . , Xn) is bounded by m
if, for i=1, . . . , n, g(X1, . . . , Xn) ⊑ 0≤Xi≤m.

Lemma B.4. All new definitions introduced by the specialization algorithm are clauses of the
form :

newr(Rs, T, Tf, U, C)← ẽ(Rs), reach(s(fl(Rs), T ), fin(Tf), U, C)

where ẽ(Rs) is bounded by the largest value among the maximal task durations specified by the
given BPS.
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Proof:
Let m be the largest value among the maximal task durations specified by the BPS. Recall that
the variables in the tuple Rs are called the residual time variables.

A constraint on a residual time variable can be introduced during the Unfolding phase
by unfolding a tr atom using a clause among C1, C6, and C7, and then unfolding the atoms
occurring in the bodies of these clauses. If the tr atom is unfolded using C1, then the subsequent
unfolding of the atom task-duration(X, D, U, C) will add a constraint of the form dmin≤D≤dmax

on the residual time variable D. This constraint is bounded by m because, by definition of m,
we have that dmax≤m.

If the tr atom is unfolded using C6, then the constraint R=0 is added to a residual time
variable R. Clearly, this constraint is bounded by m.

The case where the tr atom is unfolded using C7 is slightly more elaborated. Suppose that
the body of the clause to be unfolded contains a constraint b(R1, . . . , Rn), where R1, . . . , Rn

are residual time variables, and b(R1, . . . , Rn) is bounded by m. By unfolding the clause with
respect to tr using C7, and subsequently with respect to the atoms in the body of C7, we derive
(zero or more) clauses whose body has a constraint of the following form, for some j∈{1, . . . , n}:

b(R1, . . . , Rn), Rj >0, Rj≤R1, . . . , Rj≤Rn, R′

1 =R1−Rj, . . . , R′

n =Rn−Rj (∗)

The constraint Rj≤R1, . . . , Rj≤Rn is derived by unfolding the mintime atom and the constraint
R′

1 =R1−Rj, . . . , R′

n =Rn−Rj is derived by unfolding the decrease-residual-times atom. Since
b(R1, . . . , Rn) is bounded by m, we have that, for j =1, . . . , n, the constraint (∗) entails R′

j≤m,
and hence (∗) is bounded by m.

Thus, every constraint on residual time variables which is derived during the Unfolding

phase is bounded by m. The thesis follows from the fact that the constraint ẽ(Rs) is derived by
projection onto the residual time variables Rs and this projection operation preserves bounded-
ness. ⊓⊔

Now we are ready to show the termination of the specialization algorithm.

Theorem B.5. (Termination of the specialization algorithm)
For any input set of CHCs, the specialization algorithm terminates.

Proof:
By Lemma B.1, every execution of the Unfolding phase terminates. Also, every execution of
the Definition-Introduction & Folding phase terminates, because for each clause in SpC,
at most one definition introduction and folding step is performed.

Thus, it remains to show that the outer loop of the specialization algorithm terminates, that
is, the new predicate definitions that are introduced in Defs by the specialization algorithm
constitute a finite set. Every new definition is a clause of the form

newr(Rs, T, Tf , U, C)← ẽ(Rs), reach(s(fl(Rs), T ), fin(Tf ), U, C)

where: (i) Rs, U, and C are tuples of variables, (ii) T and Tf are variables, and (iii) ẽ(Rs) is a
constraint.

Now, by Lemma B.4, ẽ(Rs) is bounded by the largest integer m which is an upper bound of a
task duration interval specified by I, and the set of pairwise non-equivalent constraints bounded
by m is finite. Moreover, consider the set A of all atoms reach(s(fl(Rs), T ), fin(Tf ), U, C),
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where s(fl(Rs), T ) is a term that can be obtained from a state 〈F, t〉 by replacing the residual
time values in F by the variables Rs, and the time value t by the variable T . By Lemma B.2,
the set A is finite, modulo variable names.

Since the specialization algorithm does not introduce two new definitions with equivalent
constraints and equal reach atoms, modulo variable names, the set of new predicates introduced
in Defs is finite. ⊓⊔

C. Proof of decidability of reachability properties

Proof:
Any set Isp which is the output of the specialization algorithm is of the form:

reachProp(U, C) ← c(Tf , U, C), d0(Rs, U, C), new1(Rs, 0, Tf , U, C)

· · ·

newK(Rs1, T 1, Tf , U, C) ← dK(Rs1, Rs2, U, C, M), T 2=T 1+M, T 2≤Tf ,

newN(Rs2, T 2, Tf , U, C)

· · ·
newZ(Rs1, T 1, Tf , U, C) ← dZ(Rs1, U, C, M), T 2=T 1+M, T 2=Tf

where: (i) U and C denote tuples of uncontrollable and controllable durations, respectively,
(ii) Tf is the time instant when the final state is reached, (iii) T 1 and T 2 are time instants at
non-final states, (iv) Rs, Rs1, and Rs2 are tuples of residual times, (v) M ≥ 0 is a time elapse,
(vi) c(Tf , U, C), d0(Rs, U, C), . . . , dK(Rs1, Rs2, U, C, M), . . . , dZ(Rs1, U, C, M) are constraints.

The variables U, C, Rs, Rs1, Rs2, and M range over finite intervals of non-negative integers
(they cannot take values higher than the upper bounds of the durations of the uncontrollable
or controllable tasks). Thus, we can instantiate the above clauses using values in these finite
intervals, and then replace instantiated atoms by atoms with new predicate names. Hence we
get the following set Iinst of clauses:

reachProp1 ← c1(Tf ), new11(0, Tf )

reachProp2 ← c2(Tf ), new12(0, Tf )

· · ·
newK1(T 1, Tf )← T 2=T 1+m1, T 2≤Tf , newN1(T 2, Tf )

newK2(T 1, Tf )← T 2=T 1+m2, T 2≤Tf , newN2(T 2, Tf )

· · ·

newZ1(T 1, Tf ) ← T 2=T 1+r1, T 2=Tf

newZ2(T 1, Tf ) ← T 2=T 1+r2, T 2=Tf

· · ·

where, for i = 1, . . . , we have the following: (i) reachPropi is an instance of reachProp(U, C),
(ii) ci(Tf ) is an instance of c(Tf , U, C), (iii) newXi(T 1, Tf ) and newXi(T 2, Tf ) are instances of
newX(Rs1, T 1, Tf , U, C) and newX(Rs2, T 2, Tf , U, C), respectively, (iv) m1, m2, . . . , r1, r2, . . .

are non-negative integer values. Without loss of generality, we assume that ci(Tf ) is of the form
either τ1≤Tf ≤τ2 or Tf ≥τ2, for some non-negative integers τ1, τ2 (indeed any constraint ci(Tf )
can be rewritten as a disjunction of constraints of the form τ1≤Tf ≤ τ2 or Tf ≥ τ2, and we can
split the clause for reachPropi into a new clause for each disjunct).
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A constrained goal is a conjunction (d, G), where d is a constraint and G is a (possibly
empty) conjunction of atoms. (Recall that the empty conjunction is true.) Now let us recall
the definition of a derivation (called c-derivation here, to avoid confusion with Definition 3.5),
which is the basis of the operational semantics of CLP [22]. In this definition, for reasons of
simplicity, we assume that all clauses have distinct variables in their head.

Definition C.1. (c-Derivation)
A c-derivation from a constrained goal (c0, G0) in a set P of clauses is a (finite or infinite)
sequence of constrained goals (c0, G0) ⇒ (c1, G1) ⇒ . . . ⇒ (cn, Gn) ⇒ . . . where, for i ≥ 1,

(ci, Gi) is obtained from (ci−1, Gi−1) as follows:
if Gi−1 is of the form (A, G) and in P there exists a clause H ← c, B such that A and H are

unifiable via an mgu ϑ and (ci−1, c)ϑ is satisfiable in LIA,
then ci = (ci−1, c)ϑ and Gi = (B, G)ϑ.

A finite c-derivation of the form (c0, G0)⇒ (c1, G1)⇒ . . .⇒ (cn, true), where cn is a satisfiable
constraint, is said to be successful.

Suppose that a c-derivation is of the form (c0, G0) ⇒ (c1, G1) ⇒ . . . ⇒ (ci−1, Gi−1), where,
for all clauses H ← c, B in P , either A and H are not unifiable or they are unifiable via an mgu
ϑ and (ci−1, c)ϑ is unsatisfiable in LIA. Then the c-derivation cannot be extended, and it is said
to be a failed c-derivation.

From the soundness and completeness of the operational semantics of CLP [22], we have that,
for any tuples u, c of non-negative integers, Isp ∪ LIA |= ∀(U =u ∧ C =c→ reachProp(U, C)) iff
there exists a successful c-derivation from (true, reachProp(u, c)) in Iinst . Thus, there exists an
answer constraint for the query reachProp(U, C) iff there exists a successful c-derivation from
(true, reachPropi) in Iinst , where reachPropi is one of the atoms introduced as explained above.

A c-derivation from (true, reachPropi) in Iinst is said to be up-cycling if it is of the form:

(true, reachPropi)⇒ (ci(Tf ), new1i(0, Tf ))⇒ . . .

⇒ (ci(Tf ), t1≤Tf , newXj(t1, Tf ))⇒ . . .

⇒ (ci(Tf ), t2≤Tf , newXj(t2, Tf ))⇒ . . .

where t1 and t2 are non-negative integers such that τ2 <t1<t2 (see above for the definition of τ2).
Since for every clause in Iinst of the form newXi(T 1, Tf )← T 2=T 1+xi, T 2≤Tf , newYi(T 2, Tf ),
the integer xi is non-negative, we have t1≤ t2. Moreover, by the assumption that there are no
cycles whose flow objects are gateways only (see Section 2), and time elapses by at least one
unit, when a task is enacted (that is, rule S7 is applied), we easily get that t1<t2. Thus, there is
a threshold length l such that every c-derivation from (true, reachPropi) in Iinst which is longer
than l is up-cycling, and hence the set of c-derivations from (true, reachPropi) in Iinst which are
not up-cycling is finite.

Now, we show that if there exists an up-cycling successful c-derivation from (true, reachPropi)
in Iinst , then there exists also a successful c-derivation from (true, reachPropi) in Iinst which is
not up-cycling.

Consider an up-cycling successful c-derivation of the form:

(true, reachPropi)⇒ (ci(Tf ), new1i(0, Tf ))⇒ . . .

⇒ (ci(Tf ), t1≤Tf , newXj(t1, Tf )) (†)⇒ . . .

⇒ (ci(Tf ), t2≤Tf , newXj(t2, Tf ))
C1

⇒ . . .
Cn

⇒ (ci(tf ), true) (δ)
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where C1, . . . , Cn, for n ≥ 1, are the clauses used in the construction of the final part of the
c-derivation, and tf is the final time instant. Then, we can construct a shorter successful
c-derivation of the form:

(true, reachPropi)⇒ (ci(Tf ), new1i(0, Tf ))⇒ . . .

⇒ (ci(Tf ), t1≤Tf , newXj(t1, Tf ))
C1

⇒ . . .
C2

⇒ . . .
Cn

⇒ (ci(tf
′), true) (δ̃)

To see this, let us consider the following two cases.

Case (1). Suppose that ci(Tf ) is of the form τ1≤Tf ≤τ2. Then, the constraint in the constrained
goal (ci(Tf ), t1≤Tf , newXj(t1, Tf )) is (τ1 ≤Tf ≤ τ2, t1≤Tf ), which is unsatisfiable because
τ2 <t1. Thus, this case is impossible.

Case (2). Suppose that ci(Tf ) is of the form Tf ≥ τ2. Then, the constraint in the constrained
goal (ci(Tf ), t1≤Tf , newXj(t1, Tf )) (†) is (Tf ≥ τ2, t1≤Tf ), which is satisfiable. Clause C1

can be used to derive a new constrained goal from the goal (†). Indeed, clause C1 is of the form
either (if n=1)

Case (2A). newXj(T 1, Tf ) ← T 2=T 1+rj , T 2 =Tf

or (if n>1)

Case (2B). newXj(T 1, Tf )← T 2=T 1+mj , T 2 ≤Tf , newYj(T 2, Tf )

In Case (2A) from the constrained goal (†), that is, (Tf ≥ τ2, t1≤Tf , newXj(t1, Tf )) (††), we
derive (Tf ≥ τ2, t1≤Tf , Tf = t1+rj, true), where the constraint Tf ≥ τ2, t1≤Tf , Tf = t1+rj

is satisfiable, because t1≥ τ2 and rj ≥ 0. Thus, in this case, we have obtained a c-derivation of

the form (δ̃), because (Tf ≥ τ2, t1≤Tf , Tf = t1+rj , true) is equivalent to (ci(tf
′), true), with

tf ′ = t1+rj .

In Case (2B) from the constrained goal (††) we derive (Tf ≥τ2, t1′≤Tf , newYj(t1′, Tf )), where
t1′ = t1+mj , with t1′≥ t1 (recall that mj ≥ 0), and the constraint Tf ≥τ2, t1′≤Tf is satisfiable.
Now, in this case, we can continue the c-derivation by applying clause C2 to the newly derived
constrained goal (Tf ≥ τ2, t1′≤Tf , newYj(t1

′, Tf )). Then, after k steps, with k < n, we derive
a constrained goal (Tf ≥ τ2, t1(k)≤Tf , newZj(t1(k), Tf )), with t1(k)≥ t1> τ2, to which Ck+1 is
applicable. Thus, for k=n−1, we derive a constrained goal to which the constrained fact Cn is
applicable, like in Case (2A), and we have constructed a c-derivation of the form (δ̃) by using
C1, . . . , Cn. Since (δ̃) is strictly shorter than (δ), by iterating the process which led us from the
c-derivation (δ) to the c-derivation (δ̃), we conclude that there exists a successful c-derivation
from (true, reachPropi) in Iinst which is not up-cycling.

Thus, in order to decide whether or not solve(Isp, reachProp(U, C) returns a satisfiable answer
constraint, we can explore, for all tuples u, c of integers in the given finite intervals, all (finitely
many) c-derivations from (true, reachPropi) in Iinst which are not up-cycling, where reachPropi

is the predicate corresponding to reachProp(u, c). If the constrained goal (true, reachPropi), cor-
responding to reachProp(u, c), has a successful c-derivation in Iinst , then the decision algorithm
returns the answer constraint U = u, C = c. Otherwise, the decision algorithm returns false. In
particular, the search for a successful (not up-cycling) c-derivation from (true, reachPropi) in
Iinst can be done by arranging the c-derivations in a c-derivation tree [22] and traversing that
tree in a depth-first manner, as done by most CLP systems. ⊓⊔
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Finally, we note that the decision algorithm for reachProp(U, C) queries can be extended
to a decision algorithm for queries Q of the form reachProp(U, C) ∧ ϕ(U, C), where ϕ(U, C)
is any (possibly quantified) LIA formula whose free variables are among the ones in {U, C}.
Indeed, solve(Isp, Q) returns an answer constraint iff there exist two tuples u and c of inte-
gers belonging to the finite intervals over which U and C range, such that: (i) Isp ∪ LIA |=
reachProp(u, c), and (ii) LIA |= ϕ(u, c). Point (i) can be checked by the decision algorithm
shown in the above proof, and the Point (ii) is decidable, because LIA is a decidable theory.

D. Proof of total correctness of the controllability algorithms

WCA and SCA

We present the proof for WCA. The proof for SCA is similar, and we omit it.
In order to show the total correctness of WCA we first prove some lemmas.

Lemma D.1. (Property of solve)
Let us consider n (≥ 0) constraints a1(U, C), . . . , an(U, C). Let ã(U, C) be an abbreviation for
a1(U, C)∨ . . .∨an(U, C). For n=0, ã(U, C) is false. Let lm(Isp, LIA) denote the least LIA-model
of Isp, where the function and predicate symbols of LIA are interpreted as expected.
We have that: if solve(Isp, reachProp(U, C) ∧ ¬∃C ′. ã(U, C ′)) = false, then lm(Isp, LIA) |=
∀U, C. (reachProp(U, C)→ ∃C ′. ã(U, C ′)).
In particular, for n = 0, we have that if solve(Isp, reachProp(U, C))= false, then lm(Isp, LIA) |=
∀U, C. (reachProp(U, C)→ false).

Proof:
We make the proof by contradiction. We assume that lm(Isp, LIA) 6|= ∀U, C. (reachProp(U, C)→
∃C ′. ã(U, C ′)). Thus, by definition of a model, we have that there exist u and c such that
lm(Isp, LIA) |= reachProp(u, c) ∧ ¬∃C ′. ã(u, C ′), and hence lm(Isp, LIA) |= reachProp(u, c) (†1)
and LIA |= ¬∃C ′. ã(u, C ′) (†2).

From (†1), by the model intersection property, we get: Isp ∪ LIA |= reachProp(u, c) (†3).
From (†2) and (†3) we get: Isp ∪ LIA |= reachProp(u, c) ∧ ¬∃C ′. ã(u, C ′) (†4).

From (†4), since ϕ(v)↔ ∀V. V =v → ϕ(V ), we get:
Isp ∪ LIA |= ∀U,C. (U =u ∧C =c→ (reachProp(U, C) ∧ ¬∃C ′. ã(U, C ′))) (†5).
By Theorem 6.1, the existence of the constraint U = u ∧ C = c that satisfies (†5), implies that
solve(Isp, reachProp(U, C)∧¬∃C ′. ã(U, C ′)) 6= false. This contradicts the hypothesis of the lemma
which states that solve returns false. ⊓⊔

Lemma D.2. If WCA returns false, then B is not weakly controllable.

Proof:
If WCA returns false, then during the execution of WCA there exists a call to solve of the form
solve(Isp, reachProp(U, C) ∧ ϕ), for some LIA formula ϕ, which returns false.

We will make the proof by contradiction. Thus, let us assume that B is weakly controllable.
Hence, by definition, we have that Isp ∪ LIA |= ∀U. adm(U) → ∃C. reachProp(U, C) holds, and
in particular lm(Isp, LIA) |= ∀U. adm(U)→ ∃C. reachProp(U, C) (†6) holds.
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Now there are two cases.

Case (i) During WCA we have that solve is called once only.
In this case, by definition of WCA, ϕ is true. Thus, by hypothesis, we have that;

solve(Isp, reachProp(U, C)) = false. Moreover, by Lemma D.1 (for n = 0) lm(Isp, LIA) |=
∀U ∀C. (reachProp(U, C)→ false) holds, and this contradicts (†6), because adm(U) is satis-
fiable.

Case (ii) During WCA we have that solve is called more than once.
In this case, before the last call to solve which, by hypothesis, returns false, we have that
LIA 6|= ∀U. adm(U) → ∃C. ã(U, C) (†7), where ã(U, C) is the disjunction of all the answer
constraints returned by solve during the execution of WCA. Since the last call to solve
returns false, by Theorem 6.1 there is no satisfiable LIA constraint w(U, C) such that Isp ∪
LIA |= ∀U, C. w(U, C) → (reachProp(U, C) ∧ ¬∃C ′. ã(U, C ′)). By Lemma D.1 (for n > 0),
lm(Isp, LIA) |= ∀U, C. (reachProp(U, C)→ ∃C ′. ã(U, C ′)) (†8) holds. Then, by (†6) and (†8),
we have that LIA |= ∀U. adm(U)→ ∃C ′. ã(U, C ′), which contradicts (†7). ⊓⊔

Lemma D.3. If WCA returns a satisfiable constraint ã(U, C) such that LIA |= ∀U. adm(U)→
∃C. ã(U, C), then B is weakly controllable.

Proof:
If WCA returns a satisfiable constraint ã(U, C), then the exit condition of the do-while loop
implies that LIA |= ∀U. adm(U) → ∃C. ã(U, C) (†9). By construction, the answer constraint
ã(U, C) is of the form a1(U, C) ∨ a2(U, C) ∨ . . . ∨ an(U, C), where a1(U, C), a2(U, C), . . . , and
an(U, C) are the n (≥1) answer constraints returned by solve during the execution of WCA. By
definition of solve and WCA we have:

(1) Isp ∪ LIA |= ∀(a1(U, C)→ reachProp(U, C))

(2) Isp ∪ LIA |= ∀(a2(U, C)→ reachProp(U, C) ∧ ¬∃C. a1(U, C))

. . .

(n) Isp ∪LIA |= ∀(an(U, C)→ reachProp(U, C))∧¬∃C. (a1(U, C)∨a2(U, C)∨ . . .∨an−1(U, C)))

Thus,

Isp ∪ LIA |= ∀((a1(U, C) ∨ a2(U, C) ∨ . . . ∨ an(U, C))→ reachProp(U, C)), that is,

Isp ∪ LIA |= ∀U, C. ã(U, C)→ reachProp(U, C). (†10)

Now from (†9) and (†10) it follows that Isp ∪ LIA |= ∀U. adm(U) → ∃C. reachProp(U, C), and
hence B is weakly controllable. ⊓⊔

Now we are ready to show the total correctness of WCA.

Proof:
(i) Proof of termination of WCA.
The termination of WCA follows from the termination of solve (see Theorem 6.1) and the fact
that the duration of each task of any given business process belongs to a finite integer interval,
and thus the set of all possible answers that can be returned by solve, is finite.

(ii) Proof of correctness of WCA.

(ii.1) First let us show that, if B is weakly controllable, then WCA returns a satisfiable LIA
constraint ã(U, C) such that LIA |= ∀U. adm(U)→ ∃C. ã(U, C).
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Suppose that B is weakly controllable. Let us assume, by contradiction, that WCA returns
false (recall that WCA always terminates). Then, by Lemma D.2, we have that B is not weakly
controllable, which contradicts the hypothesis.

(ii.2) It remains to show that, if B is not weakly controllable, then WCA returns false.
Suppose that B is not weakly controllable. Let us assume, by contradiction, that WCA

returns a satisfiable LIA constraint ã(U, C) such that LIA |= ∀U. adm(U)→ ∃C. ã(U, C) (recall
that WCA always terminates). Then, by Lemma D.3, we have that B is weakly controllable,
which contradicts the hypothesis. ⊓⊔
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