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Abstract

Many approaches proposed in the literature for proving the correctness of unfold/fold transfor-
mations of logic programs make use of measures associated with program clauses. When from
a program P1 we derive a program P2 by a applying a sequence of transformations, suitable
conditions on the measures of the clauses in P2 guarantee that the transformation of P1 into P2

is correct, that is, P1 and P2 have the same least Herbrand model. In the approaches proposed
so far, clause measures are fixed in advance, independently of the transformations to be proved
correct. In this paper we propose a method for the automatic generation of clause measures
which, instead, takes into account the particular program transformation at hand. During the
application of a sequence of transformations we construct a system of linear equalities and in-
equalities over nonnegative integers whose unknowns are the clause measures to be found, and
the correctness of the transformation is guaranteed by the satisfiability of that system. Through
some examples we show that our method is more powerful and practical than other methods
proposed in the literature. In particular, we are able to establish in a fully automatic way the
correctness of program transformations which, by using other methods, are proved correct at
the expense of fixing in advance sophisticated clause measures.

Key words: Constraints; Logic programming; Program correctness; Program transformation;
Transformation rules.
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1. Introduction

Rule-based program transformation is a program development methodology by which one de-
rives, starting from an initial program, a final program by applying a sequence of transformation
rules [BuD77, TaS84]. The initial program can be regarded as a formal specification of a software
module, while the final program can be regarded as an implementation of that specification. The
fact that the rules preserve the intended semantics guarantees that the final program is correct
by construction. In logic programming [Apt90, Llo87] program transformation is a deductive
process. Indeed, programs are logical formulas and the transformation rules are rules for deduc-
ing new formulas from old ones. The logical soundness of the transformation rules implies that
a transformation is partially correct, which means that an atomic formula is true in the final
program only if it is true in the initial program. However, it is usually much harder to prove
that a transformation is totally correct, which means that an atomic formula is true in the initial
program if and only if it is true in the final program.

In particular, the transformations obtained by applying transformation rules such as unfolding
and folding, which basically consist in applying equivalences that hold in the least Herbrand
model of the initial program, are always partially correct. However, the final program derived
by unfolding and folding may terminate (with respect to a suitable notion of termination) less
often than the initial one. For instance, let us consider the program:

P : p← q r ← q q ←

The least Herbrand model of P is M(P ) = {p, q, r} and M(P ) |= p↔ q. If we replace q by p in
r ← q (that is, we fold r ← q using p← q), then we get:

Q : p← q r ← p q ←

The transformation of P into Q is totally correct, because M(P ) = M(Q). However, if we
replace q by p in p← q (that is, we fold p← q using p← q itself), then we get:

R : p← p r ← q q ←

and the transformation of P into R is partially correct, because M(P ) ⊇ M(R), but it is
not totally correct, because M(P ) 6= M(R). Indeed, p 6∈ M(R) because program R does not
terminate for the goal p.

A sufficient condition for the total correctness of a transformation obtained by the unfolding
and folding rules is that termination is preserved, that is, the final program terminates as often
as the initial one. In particular, total correctness is guaranteed if the final program obtained by
transformation always terminates. This method for proving total correctness is the one proposed
in Burstall and Darlington’s seminal paper [BuD77] and is sometimes referred to as McCarthy’s
method [McC63]. However, the termination condition may be, in practice, very hard to verify.
For this reason some methods proposed in the context of functional programming are based on
properties of the transformations that imply the preservation of termination, without actually
having to verify the termination condition. For instance: (i) [Kot78] shows that under suitable
assumptions, total correctness is guaranteed if the final program is derived by a sequence of
transformations where the number of applications of the unfolding rule is not smaller than the
number of applications of the folding rule, and (ii) [San96] identifies some applicability conditions
for the unfolding and folding rules which ensure that the number of steps needed to evaluate a
given expression is not increased and, therefore, program termination is preserved.

A lot of work has also been devoted to devise methods for proving the total correctness of
transformations of logic programs (see, for instance, [BoC94, BCE92, CoG94, EtG96, GeK94,
KaF86, LOP95, Mah87, Mah93, PeP08, RKR02, RKR04, Sek91, TaS84, TaS86]). The simplest
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among these methods consists in considering invertible transformation rules, that is, rules which
allow a program P1 to be transformed into a program P2 only if P2 can be transformed back
into P1 [Mah87, Mah93]. The total correctness of a transformation obtained by an invertible
rule immediately follows from the fact that, by partial correctness, both M(P1) ⊆ M(P2) and
M(P2) ⊆ M(P1) holds. For instance, the transformation of program P into program Q shown
above is invertible because Q can be transformed back into P by unfolding the clause r ← p.
On the contrary, the transformation of P into R is not invertible. Unfortunately, this method
of guaranteeing total correctness is of very limited use because many relevant transformations
are not invertible (in particular, those transformations that derive recursive definitions from
nonrecursive ones).

Other methods [CoG94, LOP95] propose sufficient conditions for total correctness which are
explicitly based on the preservation of suitable termination properties (such as, the universal or
the existential termination). However, as already mentioned, termination conditions may be, in
practice, very hard to verify.

Some other methods, which we may call history-based methods, are based on conditions on the
sequence of applications of the transformation rules that do not deal with termination explicitly,
but nevertheless guarantee that termination is preserved. A notable example of these history-
based methods is presented in [KaF86], where integer counters are associated with program
clauses. The counters of the initial program are set to 1 and are incremented (or decremented)
when an unfolding (or folding, respectively) takes place. A sequence of transformations is totally
correct if the counters of the clauses of the final program are all positive. This result can be
viewed as an extension to logic programming of the approach presented in [Kot78].

Unfortunately, there are many simple transformations where the method based on counters is
not able to prove total correctness. For instance, in the transformation from P to Q described
above, we would get a value of 0 for the counter of the clause r ← p in the final program Q,
because it has been derived by applying the folding rule from clause r ← p. Thus, the counter
method, in the basic form we have described, does not allow us to show the total correctness
of that transformation. In order to overcome the limitations of the basic counter method, some
modifications and enhancements have been described in [KaF86, RKR02, RKR04, TaS86], where
each clause is given a measure which is more complex than an integer counter. In particular, these
complex clause measures may combine counters with suitable orderings on predicate symbols.

In this paper we present a different approach to the improvement of the basic counter method:
instead of fixing in advance complex clause measures, we automatically generate for any given
transformation a set of constraints on clause measures whose satisfiability guarantees the cor-
rectness of the transformation. For reasons of simplicity we assume that clause measures, which
we call weights, are nonnegative integers, and constraints are linear equalities and inequalities.
Given a transformation starting from a program P , we look for a weight assignment to the
clauses of P that proves that the transformation is totally correct.

Our paper is structured as follows. In Section 2 we briefly recall the well-founded annotation
method proposed in [PeP08] on which the correctness of the method presented in this paper
is based. In Section 3 we present the notion of a transformation sequence, that is, a sequence
of programs constructed by applying the definition introduction, unfolding, folding, and clause
deletion rules. We associate the clauses of the initial program of the sequence with some un-
known weights, and during the construction of the sequence, we generate a set of constraints
consisting of linear equalities and inequalities which relate those weights. If the final set of con-
straints is satisfiable for a suitable assignment to the unknown weights, then the transformation
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sequence is totally correct. This total correctness result is proved in Section 4. In Section 5 we
consider transformation sequences constructed by using also the goal replacement rule and we
present a method for proving the total correctness of those transformation sequences as well.
In Section 6 we present a method for proving predicate properties which are needed for ap-
plying the goal replacement rule. Finally, in Section 7 we discuss related work in the field of
program transformation and, in particular, we argue that our approach is more powerful than
other history-based methods.

2. Well-Founded Annotations

In this section we briefly recall the theory of well-founded annotations, which is a general theory
proposed in [PeP08] for proving the correctness of program transformations. This theory will be
used to prove the correctness results presented in Sections 3–6 and also to motivate the technical
definitions introduced in these sections.

In this paper we assume that a clause is of the form A0 ← A1 ∧ . . . ∧ An, with n ≥ 0, where
A0, A1, . . . , An are atoms and the conjunction operator ‘∧’ is associative and commutative with
neutral element ‘true’. A program consists of a multiset of clauses, that is, a clause may have
more than one occurrence in a program. This assumption will make it easier to deal with the
fact that different occurrences of a clause which are derived by transformation may be associated
with different annotations. For multisets we will use set-theoretic notations and it will be clear
from the context when we refer to sets and when we refer to multisets. In particular, we will
denote a multiset of clauses by {C1, . . . , Cn}, the predicate of multiset membership by ∈, the
empty multiset by ∅, and the union and the difference operations between multisets by ∪ and −,
respectively.

The theory of well-founded annotations studies the correctness of a very general notion of
program transformation, called clause replacement, consisting in replacing m clauses C1, . . . , Cm,
with m ≥ 0, occurring in a program by n clauses D1, . . . ,Dn, with n ≥ 0, such that C1, . . . , Cm

are equivalent to D1, . . . ,Dn with respect to a suitable equivalence relation. In particular, the
transformations obtained by applying the unfolding, folding, and goal replacement rules often
considered in the literature, can be regarded as clause replacement transformations. The well-
founded annotation method consists in associating with each atom occurrence an annotation,
that is, an extra argument that holds the measure of a proof of the atom. The theory of well-
founded annotations provides some sufficient conditions for the total correctness of a clause
replacement based on the preservation of a suitable well-founded ordering on the annotations.

Let us introduce the notions of implication and equivalence between multisets of clauses upon
which a clause replacement depends.

Definition 2.1. Let I be an Herbrand interpretation and let Γ1 and Γ2 be two multisets of
clauses. We write I |= Γ1 ⇒ Γ2 if for every ground instance H ← G2 of a clause in Γ2 such that
I |= G2 there exists a ground instance H ← G1 of a clause in Γ1 such that I |= G1. We write
I |= Γ1 ⇐ Γ2 if I |= Γ2 ⇒ Γ1, and we write I |= Γ1 ⇔ Γ2 if I |= Γ1 ⇒ Γ2 and I |= Γ1 ⇐ Γ2.

Note that if (a) I |= Γ1 ⇒ Γ2 holds, then (b) in the interpretation I the conjunction of the
clauses of Γ1 implies (in the sense of classical first order logic) the conjunction of the clauses of
Γ2. However, in general it is not the case that if (b) holds, then (a) holds. For instance, the
empty conjunction true implies the tautology p← p, while I |= ∅ ⇒ {p← p} does not hold. Our
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definition of the⇒ relation between multisets of clauses plays a crucial role in Theorem 2.4 and
Corollary 2.5 below, which do not hold if we replace⇒ with classical first order logic implication.

For all Herbrand interpretations I and multisets Γ1,Γ2, and Γ3 of clauses the following prop-
erties hold:

Reflexivity : I |= Γ1 ⇒ Γ1

Transitivity : if I |= Γ1 ⇒ Γ2 and I |= Γ2 ⇒ Γ3 then I |= Γ1 ⇒ Γ3

Monotonicity :if I |= Γ1 ⇒ Γ2 then I |= Γ1 ∪ Γ3 ⇒ Γ2 ∪ Γ3.

Given a program P , we denote its associated immediate consequence operator by TP [Apt90,
Llo87]. The TP operator has a least and a greatest fixpoint, denoted by lfp(TP ) and gfp(TP ),
respectively. Recall that, M(P ) denotes the least Herbrand model of P and we have that
M(P ) = lfp(TP ).

Now let us consider the transformation of a program P into a programQ consisting in replacing
a multiset Γ1 of clauses in P by a new multiset Γ2 of clauses. The following result expresses the
partial correctness of the transformation of P into Q.

Theorem 2.2 (Partial Correctness) Given two programs P and Q, such that : (i) for some
multisets Γ1 and Γ2 of clauses, Q = (P − Γ1) ∪ Γ2, and (ii) M(P ) |= Γ1 ⇒ Γ2. Then M(P ) ⊇
M(Q).

In order to establish a sufficient condition for the total correctness of the transformation of P
into Q, that is, M(P ) = M(Q), we consider programs whose associated immediate consequence
operators have unique fixpoints.

Definition 2.3 (Univocal Program) A program P is said to be univocal if TP has a unique
fixpoint, that is, lfp(TP ) = gfp(TP ).

The following theorem shows that the converse property of partial correctness holds when the
program derived by a clause replacement is univocal.

Theorem 2.4 (Conservativity) Given two programs P and Q, such that : (i) for some multi-
sets Γ1 and Γ2 of clauses, Q = (P − Γ1) ∪ Γ2, (ii) M(P ) |= Γ1 ⇐ Γ2, and (iii) Q is univocal.
Then M(P ) ⊆M(Q).

As a straightforward consequence of Theorems 2.2 and 2.4 we get the following result.

Corollary 2.5 (Total Correctness Via Unique Fixpoint) Given two programs P and Q
such that: (i) for some multisets Γ1,Γ2 of clauses, Q = (P − Γ1) ∪ Γ2, (ii) M(P ) |= Γ1 ⇔ Γ2,
and (iii) Q is univocal. Then M(P ) = M(Q).

In Theorem 2.4 the hypothesis (iii) is crucial. Indeed, in the example we have given in the
Introduction, we have that Q is univocal and the transformation from P to Q is totally correct,
while R is not univocal and the transformation from P to R is not totally correct.

Corollary 2.5 has severe applicability limitations because: (i) to prove that a program is univo-
cal may be very difficult in practice, as it may require to prove that the program is terminating
for all ground goals [Bez89], and (ii) one may want to derive programs that are not univocal
(and, thus, not terminating).

In order to overcome these limitations the method proposed in [PeP08] introduced the notion
of annotated program. Here we will define a subclass of the annotated programs, called weighted
programs, which will be sufficient for our purposes.
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Definition 2.6 (Weighted Clause and Weighted Program) Given a clause C of the form
p0(t0)← p1(t1)∧. . .∧pm(tm), where t0, t1, . . . , tm are tuples of terms, a weighted clause associated
with C is a clause of the form:

C[w]: p0(t0, N0)← N0 ≥ N1+· · ·+Nm + w ∧ p1(t1, N1) ∧ . . . ∧ pm(tm, Nm)

where N0, N1, . . . , Nm are variables not occurring in C and w is a nonnegative integer called the
weight ofC[w]. Clause C[w] is denoted byC when we do not need refer to its weight w. Given
a program P = {C1, . . . , Cr}, a weighted program associated with P is a program P of the form
{C1, . . . ,Cr}.

Let us now explain in an informal way the meaning of a weighted program. Basically, P is
constructed by associating a nonnegative weight with each clause of P . This association induces
a notion of weight on proofs of atoms. Indeed, we may define the weight of a given proof of an
atom A as the sum of the weights of all clause instances used in that proof of A. Thus, by the
definition ofP , we may say that the atom p(t, n) holds if p(t) has a proof ‘of weight less than or
equal to n’ in P .

The semantics of weighted programs is defined similarly to the semantics of constraint logic
programs [JaM94]. Let N be the first order interpretation defined as follows: (i) the carrier of
N is the set N of the nonnegative integers, (ii) each nonnegative integer number is interpreted
as the corresponding element in N, (iii) the function symbol + is interpreted as the addition
operation in N, and (iv) the predicate symbol ≥ is interpreted as the greater-than-or-equal-to
relation on N. An N -interpretation for a weighted program P is a subset of the following set,
where t denotes a tuple of terms:

BN = {p(t, n) | p(t) is a ground instance of an atom from P and n ∈ N}

The notions of (i) truth of a formula (in particular, of a weighted program) in anN -interpretation,
(ii) the N -model of a formula, and (iii) the immediate consequence operator associated to a
weighted program, are defined as usual in constraint logic programming [JaM94]. Given a for-
mula F and an N -interpretation I, by I |= F we denote that F is true in I. Given a weighted
program P , it can be shown that there exists a least N -model, denoted by M(P ). The imme-
diate consequence operator TP associated with P has a least fixpoint, denoted by lfp(TP ), and
M(P ) = lfp(TP ).

Definitions 2.1 and 2.3, Theorems 2.2 and 2.4, and Corollary 2.5, extend straightforwardly to
weighted programs.

Now we present some results for weighted programs which are immediate consequences of
similar results proved for annotated programs in [PeP08].

The following lemma establishes the relationship between the semantics of a program P and
the semantics of any weighted programP associated with P .

Lemma 2.7. Let P be a program. For every ground atom p(t), p(t) ∈ M(P ) iff there exists
n ∈ N such that p(t, n) ∈M(P ).

By erasing weights from clauses we preserve clause implications, in the sense stated by the
following lemma.

Lemma 2.8. Let P be a program, and Γ1 and Γ2 be any two multisets of clauses. If M(P ) |=
Γ1 ⇒ Γ2 then M(P ) |= Γ1 ⇒ Γ2.

Definition 2.9 (Decreasing, Weighted Program) A weighted program P is said to be de-
creasing if every clause in P has a positive weight.
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Lemma 2.10. Every decreasing program is univocal.

Finally, by Lemmata 2.7 and 2.10, and Theorems 2.2 and 2.4, we have the following result
which, unlike Corollary 2.5, can be used to prove the total correctness of the transformation of
program P into program Q also in the case where Q is not univocal.

Theorem 2.11 (Total Correctness Via Weights) Given two programs P and Q such that :
(i) for some multisets Γ1,Γ2 of clauses, Q = (P −Γ1)∪Γ2, (ii) M(P ) |= Γ1 ⇒ Γ2, (iii) M(P ) |=
Γ1 ⇐ Γ2, and (iv)Q is decreasing. Then M(P ) = M(Q).

Note that, by Theorem 2.4, Conditions (iii) and (iv) of Theorem 2.11 imply that M(P ) ⊆
M(Q) which, by taking into account the informal meaning of a weighted program, can be read
as follows: for every ground atom A, if A has a proof of weight at most n in P , then A has a
(not necessarily shorter) proof of weight at most n in Q.

As already mentioned, the properties M(P ) |= Γ1 ⇒ Γ2 and M(P ) |= Γ1 ⇐ Γ2 are guaranteed
when Γ2 is derived from Γ1 by applying the usual unfolding, folding, and goal replacement
rules. However, in order to use Theorem 2.11 and prove that the transformation of P into
Q = (P − Γ1) ∪ Γ2 is totally correct, one has to associate with the clauses of P (in particular,
with the clauses of Γ1) and with the clauses of Γ2, suitable weights such that also the property
M(P ) |= Γ1 ⇐ Γ2 holds and, moreover,Q is decreasing.

The problem of finding suitable weights in an automatic way in the cases where Γ2 is derived
by Γ1 by applying the unfolding, folding, and goal replacement rules will be addressed in the
following Sections 3, 4, 5, and 6.

3. Unfold/Fold Transformation Rules with Weight Constraints

In this section we consider sequences of programs obtained by applying the definition intro-
duction, unfolding, folding, and deletion transformation rules, and we address the problem of
finding suitable weight assignments so that, by Theorem 2.11, the transformation of the initial
program of the sequence into the final program of the sequence is totally correct. With every
clause of the initial program and with every new clause generated during the transformation, we
associate an unknown, called weight unknown, ranging over nonnegative integers, called weights,
and while constructing the sequence of programs, we construct a system of linear equalities and
inequalities which should be satisfied by the weight unknowns. The total correctness of the
transformation is guaranteed by the satisfiability of that system.

Before presenting the transformation rules, let us introduce some terminology concerning
systems of linear equalities and inequalities with integer coefficients and variables ranging over
nonnegative integers.

By PLIN we denote the set of linear polynomials with integer coefficients. Variables occurring
in polynomials are called weight unknowns, or unknowns, for short, to distinguish them from
logical variables occurring in programs. By U we denote the set of unknowns in PLIN . By CLIN

we denote the set of linear equalities and inequalities with integer coefficients, that is, CLIN is
the set {p1 = p2, p1<p2, p1≤p2 | p1, p2 ∈ PLIN }. By p1≥ p2 we mean p2≤ p1, and by p1 >p2

we mean p2<p1. An element of CLIN is called a constraint. A valuation for a set {u1, . . . , ur}
of unknowns is a mapping σ : {u1, . . . , ur} → N, where N is the set of nonnegative integers. Let
{u1, . . . , ur} be the set of unknowns occurring in the constraint c ∈ CLIN . Given a valuation σ
whose domain is a superset of {u1, . . . , ur}, we denote by σ(c) the constraint obtained from c by
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replacing the occurrences of u1, . . . , ur by the weights σ(u1), . . . , σ(ur), respectively. A valuation
σ is a solution of the constraint c if σ is a valuation whose domain is a superset of the set of
variables occurring in c and N |= σ(c). A valuation σ is a solution of a finite set C of constraints
if, for every c ∈ C , σ is a solution of c. We say that a constraint c is satisfiable if there exists a
solution of c. Similarly, we say that a set C of constraints is satisfiable if there exists a solution
of C . A weight function for a multiset S of clauses is a function γ : S → U such that for any two
distinct occurrences C1 and C2 of clauses in S, γ(C1) 6= γ(C2). In particular, for two distinct
occurrences of the same clause C in S, γ returns two different unknowns. The value γ(C) is
called the unknown associated with C.

A transformation sequence is a sequence of programs, denoted by P0 7→ P1 7→ · · · 7→Pn, such
that n≥ 0 and, for k = 0, . . . , n−1, Pk+1 is derived from Pk by applying one of the following
transformation rules: definition introduction, unfolding, folding, and deletion. These rules will
be defined below. For k = 0, . . . , n, we define: (i) a weight function γk : Pk → U , (ii) a finite
set Ck of constraints, (iii) a multiset Defsk of clauses defining the new predicates introduced by
the definition introduction rule during the construction of the sequence P0 7→P1 7→· · · 7→Pk, and
(iv) a weight function δk : P0 ∪ Defsk → U . The function γ0 can be taken to be any weight
function. By definition, we have that: C0 = ∅, Defs0 = ∅, and δ0 = γ0.

Each application of a transformation rule consists in replacing a multiset Γ1 of clauses in Pk

by a multiset Γ2. Thus, Pk+1 = (Pk − Γ1) ∪ Γ2. We make the following assumptions on the
weight functions γk and γk+1:
(1) for every clause C occurring in Γ2 the value of the weight function γk+1 is a new unknown,

that is, for i=0, . . . , k, for every clause D occurring in Pi, γk+1(C) 6= γi(D), and
(2) for every clause of Pk+1 inherited from Pk, the value of the weight function γk+1 is equal to

the value of γk, that is, for every clause C occurring in Pk − Γ1, γk+1(C) = γk(C).
For k=0, . . . , n, for every clause C occurring in P0 ∪ Defsk, the value of δk(C) is the unknown
which has been associated with C when C was first introduced during the transformation se-
quence P0 7→P1 7→· · · 7→Pk.

We also assume that, for k = 0, . . . , n−1, Ck+1 = Ck and Defsk+1 = Defsk, unless otherwise
specified in the definition of the transformation rule applied for deriving Pk+1 from Pk.

In the sequel, we will feel free to rename variables of clauses, whenever needed (in particular,
when applying the unfolding and folding rules), and for any goal (or set of goals) G, by vars(G)
we denote the set of variables occurring in G.

Rule 1 (Definition Introduction) Let D1, . . . ,Dm, with m > 0, be clauses such that, for
i = 1, . . . ,m, the predicate of the head of Di does not occur in P0 ∪Defsk. (Note that the head
predicate of Di may be equal to the head predicate of Dj , for some i 6= j in {1, . . . ,m}.) By
definition introduction from Pk we derive Pk+1 = Pk ∪ {D1, . . . ,Dm}. We define:

Defsk+1 = Defsk ∪ {D1, . . . ,Dm}.

As a consequence of our definitions, given a transformation sequence P0 7→ P1 7→ · · · 7→ Pn, we
have that, for k = 0, . . . , n, for any clause C ∈ P0 ∪ Defsk, if C ∈ P0, then δk(C) = γ0(C) and,
otherwise, if C∈Defsk, then δk(C)=γi(C), where i∈{1, . . . , k}, C 6∈Defsi−1, and C∈Defsi.

Note that the definition introduction rule does not introduce any constraint on the weight
unknowns and, thus, we are free to assign any weight to the clauses introduced by that rule.

Rule 2 (Unfolding) Let C: H ← GL ∧ A ∧GR be a clause in Pk and let C1: H1 ← G1, . . . ,
Cm: Hm ← Gm, with m ≥ 0, be all clauses in P0 ∪ Defsk such that, for i = 1, . . . ,m, A is
unifiable with Hi via a most general unifier ϑi.
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By unfolding C with respect to A using C1, . . . , Cm, we derive the clauses D1: (H ← GL ∧
G1 ∧GR)ϑ1, . . . , Dm: (H ← GL ∧ Gm ∧GR)ϑm, and from Pk we derive Pk+1 = (Pk − {C}) ∪
{D1, . . . ,Dm}. We define:

Ck+1 = Ck ∪ {γk+1(D1) = γk(C)+δk(C1), . . . , γk+1(Dm) = γk(C)+δk(Cm)}.

Let us briefly explain the definition of Ck+1 in Rule 2. As already mentioned, our aim is to
prove the total correctness of a transformation by exploiting Theorem 2.11. We will show in
Lemma 4.1 of Section 4 that, if we associate with the clauses C,C1, . . . , Cm,D1, . . ., and Dm,
a set of weights satisfying the set Ck+1 of constraints, then Point (iii) of Theorem 2.11 holds,
that is, M(P 0 ∪Defsk+1) |= {C} ⇐ {D1, . . . ,Dm}. (Actually, Lemma 4.1 proves a more general
property which refers to any n≥k+1.) In order to see why this property holds now we present
a simple example.

Example 1. Let C: p ← q be a clause in Pk and let C1: q ← r be the only clause defining q
in P0 ∪Defsk. By unfolding C with respect to q using C1 we get D1: p ← r. Let w and w1 be
the weights associated with C and C1, respectively. Thus, in order to satisfy Ck+1, the weight
of D1 must be w + w1. The weighted clauses associated with C, C1, and D1 are:

C : p(N)← N≥U+w ∧ q(U)
C1 : q(N)← N≥V +w1 ∧ r(V )
D1 : p(N)← N≥V +w+w1 ∧ r(V )

By the definition of ⇐ (see Definition 2.1), in order to prove that M(P 0 ∪Defsk+1) |= {C} ⇐
{D1} we have to show that for every ground goal of the form n ≥ u+w ∧ q(u) that holds in
M(P 0 ∪Defsk+1), there exists a ground goal of the form n ≥ v+w+w1 ∧ r(v) that holds in
M(P 0 ∪Defsk+1). This immediately follows from the fact that C1 is the only clause defining
q(N) inP 0 ∪Defsk+1 and, thus, if q(u) holds in M(P 0 ∪Defsk+1) then there exists v such that
u ≥ v+w1 ∧ r(v) holds in M(P 0 ∪Defsk+1).

Rule 3 (Folding) Let C1: H ← GL ∧ G1 ∧ GR, . . . , Cm: H ← GL ∧ Gm ∧ GR be clauses in
Pk and let D1: K ← B1, . . . , Dm: K ← Bm be clauses in P0 ∪ Defsk. Suppose that there
exists a substitution ϑ such that the following conditions hold: (i) for i = 1, . . . ,m, Gi = Biϑ,
(ii) there exists no clause in (P0 ∪Defsk)−{D1, . . . ,Dm} whose head is unifiable with Kϑ, and
(iii) for i = 1, . . . ,m and for every variable U in vars(Bi) − vars(K): (iii.1) Uϑ is a variable
not occurring in {H,GL, GR}, and (iii.2) Uϑ does not occur in the term V ϑ, for any variable V
occurring in Bi and different from U .
By folding C1, . . . , Cm using D1, . . . ,Dm, we derive E: H ← GL ∧Kϑ ∧ GR, and from Pk we
derive Pk+1 = (Pk − {C1, . . . , Cm}) ∪ {E}. We define:

Ck+1 = Ck ∪ {γk+1(E) ≤ γk(C1)−δk(D1), . . . , γk+1(E) ≤ γk(Cm)−δk(Dm)}.

Similarly to the unfolding rule, the definition of Ck+1 in Rule 3 allows us to prove that, when
we derive clause E by folding clauses C1, . . . , Cm using clauses D1, . . . ,Dm, then Point (iii) of
Theorem 2.11 holds. In Lemma 4.2 of Section 4 we will show that, if we associate with the
clauses C1, . . . , Cm,D1, . . . ,Dm, E a set of weights satisfying the set Ck+1 of constraints, then
we have that M(P 0 ∪Defsk+1) |= {C1, . . . ,Cm} ⇐ {E}. Now we show that this property holds
in an example.

Example 2. Let C1: p← q∧r1 and C2: p← q∧r2 be clauses in Pk and let D1: r ← r1 and D2:
r ← r2 be the only clauses defining r in P0 ∪ Defsk. By folding C1, C2 using D1,D2 we get E:
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p← q ∧ r. Let w1, w2 and z1, z2 be the weights associated with C1, C2 and D1,D2, respectively.
Thus, in order to satisfy Ck+1, the weight of E is a nonnegative integer w such that w ≤ w1−z1
and w ≤ w2−z2. The weighted clauses associated with C1, C2,D1,D2, E are:

C1 : p(N)← N ≥ K+L+w1 ∧ q(K) ∧ r1(L)
C2 : p(N)← N ≥ K+L+w2 ∧ q(K) ∧ r2(L)
D1 : r(M)←M ≥ L+z1 ∧ r1(L)
D2 : r(M)←M ≥ L+z2 ∧ r2(L)
E : p(N)← N ≥ K+M+w ∧ q(K) ∧ r(M)

According to the definition of ⇐ (see Definition 2.1), we have that in order to prove that
M(P 0 ∪Defsk+1) |= {C1,C2} ⇐ {E} we have to show that: (1) for every ground goal of the form
n ≥ j + l + w1 ∧ q(j) ∧ r1(l) that holds in M(P 0 ∪Defsk+1), there exists a ground goal of the
form n ≥ j +m+w ∧ q(j) ∧ r(m) that holds in M(P 0 ∪Defsk+1), and (2) for every ground goal
of the form n ≥ j + l + w2 ∧ q(j) ∧ r2(l) that holds in M(P 0 ∪Defsk+1), there exists a ground
goal of the form n ≥ j + m + w ∧ q(j) ∧ r(m) that holds in M(P 0 ∪Defsk+1). Properties (1)
and (2) immediately follow from the following facts: (i) w1 ≥ z1 + w, (ii) w2 ≥ z2 + w, and, by
clauses D1,D2, (iii) for every m, r(m) holds in M(P 0 ∪Defsk+1) if either m ≥ l + z1 ∧ r1(l) or
m ≥ l + z2 ∧ r2(l) holds in M(P 0 ∪Defsk+1).

Rule 4 (Deletion of Subsumed Clauses) Let C: H1 ← G1 ∧ R and D: H2 ← G2 be two
clauses in Pk such that, for some substitution ϑ, we have H1 ← G1 = (H2 ← G2)ϑ. C is said to
be subsumed by D.
By deletion from Pk we derive Pk+1 = Pk − {C}. We define:

Ck+1 = Ck ∪ {γk(D) ≤ γk(C)}.

Note that by Rule 4 we can delete multiple occurrences of a clause from a program. Similarly
to Rules 2 and 3, the definition of Ck+1 in Rule 4 allows us to prove that when we apply this
rule, Point (iii) of Theorem 2.11 holds. Indeed, in Lemma 4.3 of Section 4 we will show that, if
we associate with clauses C and D a set of weights satisfying the set Ck+1 of constraints, then
M(P 0 ∪Defsk+1) |= {C,D} ⇐ {D}.

The correctness constraint system associated with a transformation sequence P0 7→· · · 7→Pn is
the set Cfinal of constraints defined as follows:

Cfinal = Cn ∪ {γn(C)≥1 | C ∈ Pn}.

We say that a transformation sequence P0 7→ · · · 7→Pn is totally correct if we have that M(P0 ∪
Defsn) = M(Pn).

The following result that is proved in Section 4, guarantees the total correctness of transfor-
mation sequences constructed by using Rules 1–4.

Theorem 3.1 (Total Correctness of Unfold/Fold Transformations) Let P0 7→ · · · 7→ Pn

be a transformation sequence constructed by using Rules 1–4, and let Cfinal be its associated
correctness constraint system. If Cfinal is satisfiable then M(P0 ∪Defsn) = M(Pn).

Note that during the construction of a transformation sequence P0 7→· · · 7→Pn we may eliminate
some unknowns from a set Ck of constraints, with 0 ≤ k ≤ n, without affecting the satisfiability
of Cfinal . In particular, let us suppose that Ck is the set {c1, . . . , cm} and u is an unknown not
belonging to the range of either γk or δk. Let us also suppose that, for some set {d1, . . . , dr} of
constraints, N |= ∀ ((∃u (c1∧. . .∧cm))↔ (d1∧. . .∧dr)). Then we can replace Ck by {d1, . . . , dr}.
Indeed, by the definitions of the transformation rules, u will not occur in any constraint added
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during the construction of the transformation sequence Pk 7→ · · · 7→ Pn. Thus, Cfinal is of the
form {c1, . . . , cm, cm+1, . . . , cs}, where u does not occur in cm+1, . . . , cs and, therefore, Cfinal is
satisfiable if and only if {d1, . . . , dr, cm+1, . . . , cs} is satisfiable. During the presentation of our
derivations we will often eliminate unknowns to simplify the sets of constraints.

Let us now present an example of application of the transformation rules. In this example
and in other examples below, we will enumerate clauses and we will denote by ui the value of
the weight function γ for clause i. We will write the constraints on the unknown associated with
the clauses on a column to the right of the clauses themselves.

Example 3. (Continuation Passing Style Transformation) Let us consider the initial program
P0 consisting of the following three clauses:

1. p←
2. p← p ∧ q
3. q ←

We want to derive a continuation passing style program [Wan80] defining a predicate pcont

equivalent to the predicate p defined by the program P0. Intuitively, the continuation of a
predicate call is a term encoding the computation to be performed after that call. In order to
derive a continuation passing style program, we introduce, by Rule 1, the following clause:

4. pcont ← p ∧ cont(true)

and also the following three clauses for the predicate cont:

5. cont(true)←
6. cont(p(X))← p ∧ cont(X)
7. cont(q(X))← q ∧ cont(X)

where, by abuse of notation, we used p and q both as function symbols and predicate symbols.
By folding clause 4 using clause 6 we get:

8. pcont ← cont(p(true)) u8 ≤ u4 − u6

By unfolding clause 6 with respect to p using clauses 1 and 2, we get:

9. cont(p(X))← cont(X) u9 = u6 + u1

10. cont(p(X))← p ∧ q ∧ cont(X) u10 = u6 + u2

Then by folding clause 10 using clause 7 we get:

11. cont(p(X))← p ∧ cont(q(X)) u11 ≤ u10 − u7

and by folding clause 11 using clause 6 we get:

12. cont(p(X))← cont(p(q(X))) u12 ≤ u11 − u6

Finally, by unfolding clause 7 with respect to q we get:

13. cont(q(X))← cont(X) u13 = u7 + u3

The final program is made out of clauses 1, 2, and 3, together with the following clauses:
8. pcont ← cont(p(true))
5. cont(true)←
9. cont(p(X))← cont(X)

12. cont(p(X))← cont(p(q(X)))
13. cont(q(X))← cont(X)

The correctness constraint system Cfinal is constructed as follows. For clauses 1, 2, 3, 5, 8, 9,
12, and 13, that are the clauses belonging to the final program, Cfinal contains the constraints:

u1≥1, u2≥1, u3≥1, u5≥1, u8≥1, u9≥1, u12≥1, u13≥1.
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For the unfolding and folding steps, Cfinal contains the constraints:

u8≤u4 − u6, u9 = u6 + u1, u10 = u6 + u2, u11≤u10−u7, u12≤u11−u6, u13 = u7 + u3.

This system of constraints is satisfiable and, thus, the transformation from program P0 to the
final program is totally correct.

We end this section by presenting an example where the constraint system associated with
a transformation sequence is unsatisfiable and, as expected, the transformation sequence is not
totally correct.

Example 4. Let us consider the initial program P0 consisting of the following three clauses:

1. p← p

2. p← q
3. q ←

By unfolding clause 1, we replace it by the following two clauses:

4. p← p u4 = u1+u1

5. p← q u5 = u1+u2

We derive the program P1 which is made out of clauses 2, 3, 4, and 5, and the set of constraints
C1 which is {u4 = u1+u1, u5 = u1+u2}. By clause deletion, from P1 we remove clause 2, which
is subsumed by (in fact, it is identical to) clause 5, and we derive P2 made out of clauses 3, 4,
and 5 together with the set of constraints C2 which is C1 ∪ {u5 ≤ u2}. Finally, we fold clauses
4 and 5 using clauses 1 and 2 (which belong to P0) and we get:

6. p← p u6 ≤ u4−u1, u6 ≤ u5−u2

We derive the final program P3 which is made out of clauses 3 and 6 together with the set of
constraints C3 which is C2 ∪ {u6 ≤ u4−u1, u6 ≤ u5−u2}. The correctness constraint system
Cfinal associated with the transformation sequence P0 7→ · · · 7→ P3 is obtained by adding to C3

the constraints u3 ≥ 1 and u6 ≥ 1 corresponding to clauses 3 and 6, respectively. Thus, Cfinal

consists of the following constraints:

u3 ≥ 1, u6 ≥ 1, u4 = u1+u1, u5 = u1+u2, u5 ≤ u2, u6 ≤ u4−u1, u6 ≤ u5−u2.

The transformation sequence P0 7→ · · · 7→ P3 is not totally correct, because M(P0) = {p, q} and
M(P3) = {q} and, indeed, Cfinal is unsatisfiable (because u5 ≤ u2 implies u6 ≤ 0).

Note that, however, the unsatisfiability of the system of constraints associated with a trans-
formation sequence does not imply that the sequence is not totally correct. Indeed, due to the
undecidability of program equivalence, our method is incomplete and we can find examples of
totally correct transformation sequences whose associated system of constraints is unsatisfiable.

4. Total Correctness of Unfold/Fold Transformations

In order to prove Theorem 3.1, that is, the total correctness of a given transformation sequence
P0 7→ · · · 7→ Pn constructed by using Rules 1–4, we will use Theorem 2.11 of Section 2. We
proceed as follows.

For k = 0, . . . , n, we associate with program Pk a suitable weighted programP k, and we asso-
ciate with Defsk a suitable weighted programDefsk. We assume that the correctness constraint
system Cfinal of the given transformation sequence is satisfiable. Then, we prove the following
properties:
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(P1) M(P0 ∪Defsn) |= P0 ∪Defsn ⇒ Pn

(P2) M(P 0 ∪Defsn) |=P 0 ∪Defsn ⇐Pn, and

(P3)Pn is decreasing.

Thus, the total correctness of the transformation sequence P0 7→ · · · 7→Pn follows immediately
from Properties (P1), (P2), and (P3), and from Theorem 2.11. The suitable weighted programs
P 0∪Defsn andPn are constructed as we now indicate by using the hypothesis that the correctness
constraint system Cfinal associated with the given transformation sequence is satisfiable.

Let P be a program consisting of clauses C1, . . . , Cr and let γ be a weight function for P . Given
a valuation σ, for i = 1, . . . , r, we denote by Ci[σ] the weighted clause Ci[σ(γ(Ci))]. By P [σ]
we denote the weighted program {C1[σ], . . . ,Cr[σ]}. For example, given the clause C: p ← q
such that γ(C) = u and σ(u) = 2, we have that C[σ] is the weighted clause p(N0) ← N0 ≥
N1+2 ∧ q(N1).

Now, let σ be a solution of Cfinal . For k = 0, . . . , n and for every clause C occurring either
in Pk or in Defsk, we take C = C[σ] (where C[σ] is constructed by using the weight function
γk, if C ∈ Pk and, otherwise, if C ∈ Defsk, the weight function δk). Thus, P k = P k[σ] and
Defsk =Defsk[σ].

In order to prove Properties (P1) and (P2) we need the following three lemmata, whose proofs
are in Appendix A.

Lemma 4.1. Let P0 7→ · · · 7→ Pn be a transformation sequence and let 1 ≤ k < n. Let C be
a clause in Pk, let C1, . . . , Cm be clauses in P0 ∪ Defsk, and let D1, . . . ,Dm be the clauses in
Pk+1 derived by unfolding C with respect to an atom in its body using C1, . . . , Cm, as described
in Rule 2. Then:

M(P 0 ∪Defsn) |= {C} ⇔ {D1, . . . ,Dm}

Lemma 4.2. Let P0 7→· · · 7→Pn be a transformation sequence and let 1 ≤ k < n. Let C1, . . . , Cm

be clauses in Pk, let D1, . . . ,Dm be clauses in P0∪Defsk, and let E be the clause in Pk+1 derived
by folding C1, . . . , Cm using D1, . . . ,Dm, as described in Rule 3. Then:

(i) M(P0 ∪Defsn) |= {C1, . . . , Cm} ⇒ {E}

(ii) M(P 0 ∪Defsn) |= {C1, . . . ,Cm} ⇐ {E}

Lemma 4.3. Let P0 7→ · · · 7→Pn be a transformation sequence and let 1 ≤ k < n. Let C and D
be clauses in Pk such that C is subsumed by D. Then:

(i) M(P0 ∪Defsn) |= {C,D} ⇒ {D}

(ii) M(P 0 ∪Defsn) |= {C,D} ⇐ {D}

We are now ready to prove Theorem 3.1.

Proof. [Proof of Theorem 3.1.] For a transformation sequence P0 7→ · · · 7→ Pn, the following
properties hold for k = 0, . . . , n−1:

(R1) M(P0 ∪Defsn) |= Pk ∪ (Defsn−Defsk)⇒ Pk+1 ∪ (Defsn−Defsk+1), and

(R2) M(P 0 ∪Defsn) |=P k ∪ (Defsn−Defsk)⇐P k+1 ∪ (Defsn−Defsk+1).

Indeed, Properties (R1) and (R2) can be proved by reasoning by cases on the transformation
rule applied to derive Pk+1 from Pk, as follows.
(Case 1) If Pk+1 is derived from Pk by applying the definition introduction rule then Pk ∪
(Defsn −Defsk) = Pk+1 ∪ (Defsn −Defsk+1) and, therefore, Properties (R1) and (R2) trivially
hold.
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(Case 2) If Pk+1 is derived from Pk by applying the unfolding rule, then Pk+1 = (Pk − {C}) ∪
{D1, . . . ,Dm} and Defsk = Defsk+1. Hence, Properties (R1) and (R2) follow from Lemma 2.8,
Lemma 4.1 and from the monotonicity of ⇒.

(Case 3) If Pk+1 is derived from Pk by applying the folding rule, then Pk+1 =(Pk−{C1, . . . , Cm})∪
{E} and Defsk = Defsk+1. Hence, Properties (R1) and (R2) follow from Points (i) and (ii),
respectively, of Lemma 4.2 and from the monotonicity of ⇒.

(Case 4) If Pk+1 is derived from Pk by applying the deletion rule, then Pk+1 = Pk − {C} and
Defsk = Defsk+1. Hence, Properties (R1) and (R2) follow from Points (i) and (ii), respectively,
of Lemma 4.3 and from the monotonicity of ⇒.

By the transitivity of ⇒ and by Properties (R1) and (R2), we get Properties (P1) and (P2).
Moreover, since σ is a solution of Cfinal andPn =Pn[σ], every clause inPn has a positive weight
and, hence, Property (P3) holds. Thus, by Theorem 2.11, M(P0 ∪Defsn) = M(Pn).

5. Goal Replacement

In this section we extend the notion of a transformation sequence P0 7→ P1 7→ · · · 7→ Pn by
assuming that Pk+1 can be derived from Pk by applying, besides the definition introduction,
unfolding, folding, and deletion rules, also the goal replacement rule as defined by Rule 5 below.

The goal replacement rule consists in replacing a goal G1 occurring in the body of a clause of
Pk, by a new goal G2 such that G1 and G2 are equivalent in M(P0∪Defsk). The transformation
sequences obtained by the goal replacement rule are guaranteed to be partially correct, and in
order to guarantee their total correctness, we will require some extra conditions on the goals G1

and G2 to be satisfied in M(P 0 ∪Defsk). To define these conditions we will introduce the notion
of a replacement law (see Definition 5.1).

For reasons of simplicity, we will define the replacement laws in the case where G1 and G2 are
atomic goals of the form p1(X) and p2(X), respectively, where X is a tuple of variables. The
general case where we want to replace non-atomic goals, can be treated by using, besides atomic
goal replacement, also the definition introduction, folding, and unfolding rules. We will see this
technique in action in Examples 5 and 6 below.

In the following Definition 5.1 we introduce the notion of an replacement law which will be
used in the goal replacement rule (see Rule 5).

Definition 5.1 (Atomic Replacement Law) Let P be a program and C be a finite set of
constraints. Let p1(X) and p2(X) be atoms such that: (i) p1 and p2 occur in P , (ii) X is
a tuple of variables. We say that the atomic replacement law (or replacement law, for short)
p1(X) ⇛ p2(X) holds inP [C ], and in this case we writeP [C ] |= p1(X) ⇛ p2(X), if the following
conditions hold:

(i) M(P ) |= ∀X (p1(X)← p2(X)), and

(ii) for every solution σ of C , M(P [σ]) |= ∀X∀N (p1(X,N)→ p2(X,N)).

By using Lemma 2.8 one can show that, if C is satisfiable, then Condition (ii) of Definition 5.1
implies M(P ) |= ∀X (p1(X) → p2(X)) and, therefore, if C is satisfiable and P [C ] |= p1(X) ⇛

p2(X), we have that M(P ) |= ∀X (p1(X) ↔ p2(X)), which is one of the usual conditions
for the applicability of the goal replacement rule [TaS84]. Furthermore, a replacement law
also establishes a relationship between the weights of the proofs of p1(X) and p2(X) (we have
informally introduced the notion of the weight of a proof in Section 2 above). Thus, when



16.

writingP [C ] |= p1(X) ⇛ p2(X), we mean that given any weight assignment to the clauses of P
which is a solution of the set C of constraints and, given any ground term t, if p1(t) has a proof
of weight less than or equal to n, then p2(t) has a proof of weight less than or equal to n.

Now we give an example of a replacement law.

Example 5. (Associativity of List Concatenation) Let us consider the following program for
list concatenation.

1. app([ ], L, L)←
2. app([H|T ], L, [H|R])← app(T,L,R)

The associativity of list concatenation can be expressed as follows. Let us first introduce the
following two clauses:

3. lassoc(L1, L2, L3, L)← app(L1, L2,M) ∧ app(M,L3, L)
4. rassoc(L1, L2, L3, L)← app(L2, L3, R) ∧ app(L1, R, L)

Then, associativity can be written as the following replacement law:

Law (α): lassoc(L1, L2, L3, L) ⇛ rassoc(L1, L2, L3, L)

Let Append be the program consisting of clauses 1, 2, 3, and 4. In Example 7 below we
will show that Law (α) holds with respect to Append[C ], where C is the set of constraints
{u1≥1, u2≥1, u3≥u4} and, for i = 1, . . . , 4, ui is the unknown associated with clause i.

In Section 6 we will present a method, called weighted unfold/fold proof method, whose objective
is to generate, for any given pair of atoms p1(X) and p2(X), a suitable set C of constraints such
thatP [C ] |= p1(X) ⇛ p2(X) holds.

Now we introduce the atomic goal replacement rule based on a replacement law. This rule is
a variant of the usual goal replacement rule (see, for instance, [TaS84]).

Rule 5 (Atomic Goal Replacement) Let C: H ← GL ∧ p1(t) ∧GR be a clause in program
Pk and let C be a set of constraints such that the replacement law λ : p1(X) ⇛ p2(X) holds
in (P 0 ∪Defsk)[C ].
By applying the replacement law λ, from C we derive D : H ← GL ∧ p2(t) ∧GR, and from Pk

we derive by atomic goal replacement (or goal replacement, for short) Pk+1 = (Pk −{C})∪{D}.
We define:

Ck+1 = Ck ∪ C ∪ {γk+1(D) ≤ γk(C)}.

The following Lemma 5.2, whose proof is given in Appendix A, is analogous to Lemmata 4.1, 4.2,
and 4.3 proved for the unfolding, folding, and deletion rules, respectively. This lemma will be
used to prove the total correctness of any transformation sequence constructed by using Rule 5,
besides Rules 1–4.

Similarly to Section 4, given any transformation sequence P0 7→· · · 7→Pn constructed by using
Rules 1–5, for k = 0, . . . , n, we denote byP k andDefsk the weighted programsP k[σ] andDefsk[σ],
respectively, where σ is any solution of Cfinal .

Lemma 5.2. Let P0 7→ · · · 7→ Pn be a transformation sequence and let 1 ≤ k < n. Let C be a
clause in Pk and D be the clause in Pk+1 derived by applying a replacement law λ that holds
in (P 0 ∪Defsk)[C ], as described in Rule 5. Then:

(i) M(P0 ∪Defsn) |= {C} ⇒ {D}, and

(ii)M(P 0 ∪Defsn) |= {C} ⇐ {D}
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Now we are ready to prove the total correctness of the transformation sequences constructed by
using Rules 1–5.

Theorem 5.3 (Total Correctness of Unfold/Fold/Replacement Transformations)
Let P0 7→· · · 7→Pn be a transformation sequence constructed by using Rules 1–5, and let Cfinal be
its associated correctness constraint system. If Cfinal is satisfiable then M(P0∪Defsn) = M(Pn).

Proof. The proof of this theorem is like the one of Theorem 3.1, except that, when we make
the proofs of Properties (R1) and (R2) by cases on the transformation rule applied to derive
Pk+1 from Pk, we have to consider also the following alternative case.

(Case 5) If Pk+1 is derived from Pk by applying the goal replacement rule, then Pk+1 = (Pk −
{C}) ∪ {D} and Defsk = Defsk+1. Hence, Properties (R1) and (R2) follow from Points (i) and
(ii), respectively, of Lemma 5.2 and from the monotonicity of ⇒.

Example 6. (List Reversal) Let Reverse be a program for list reversal consisting of the clauses
of Append (see clauses 1–4 in Example 5) together with the following two clauses:

5. rev([ ], [ ])←
6. rev([H|T ], L)← rev(T,R) ∧ app(R, [H], L)

We will transform the Reverse program into a program that uses an accumulator [BuD77]. In
order to do so, by Rule 1 we introduce the following clause:

7. g(L1, L2, A)← rev(L1, R) ∧ app(R,A,L2)

We apply the unfolding rule twice starting from clause 7 and we get (recall that we write to the
right of a clause the constraints on the unknown associated with the clause):

8. g([ ], L, L)← u8 = u7 + u5 + u1

9. g([H|T ], L,A)← rev(T,R) ∧ app(R, [H], S) ∧ app(S,A,L) u9 = u7 + u6

Now, in order to apply the associativity of concatenation, we apply the folding, goal replacement,
and unfolding rules as follows. By folding clause 9 using clause 3 we derive:

10. g([H|T ], L,A) ← rev(T,R) ∧ lassoc(R, [H], A, L) u10 ≤ u9 − u3

Then, by applying the replacement law (α), from clause 10 we derive:

11. g([H|T ], L,A) ← rev(T,R) ∧ rassoc(R, [H], A, L) u11 ≤ u10

and we also add the constraints: {u1≥ 1, u2≥ 1, u3≥u4} (see Example 5). Next, by unfolding
clause 11 we derive:

12. g([H|T ],L,A) ← rev(T,R) ∧ app([H],A,S) ∧ app(R,S,L) u12 =u11 + u4

Note that, the effect of the last three transformation step is the replacement of the non-atomic
goal app(R, [H], S) ∧ app(S,A,L) by the non-atomic goal app([H],A,S) ∧ app(R,S,L). Now, by
two applications of the unfolding rule, from clause 12 we get:

13. g([H|T ], L,A) ← rev(T,R) ∧ app(R, [H|A], L) u13 = u12 + u2 + u1

By folding clause 13 using clause 7 we get:

14. g([H|T ], L,A) ← g(T,L, [H|A]) u14 ≤ u13 − u7

Finally, by folding clause 6 using clause 7 we get:

15. rev([H|T ], L)← g(T,L, [H]) u15 ≤ u6 − u7

The final program consists of the following clauses:

5. rev([ ], [ ])←
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15. rev([H|T ], L)← g(T,L, [H])
8. g([ ], L, L) ←

14. g([H|T ], L,A) ← g(T,L, [H|A])

together with clauses 1 and 2 for append of Example 5.
The correctness constraint system associated with the transformation sequence is as follows.

For clauses 1, 2, 3, and 4: u1≥1, u2≥1, u3≥1, u4≥1.
For clauses 5, 15, 8, and 14:u5≥1, u15≥1, u8≥1, u14≥1.
For the unfolding steps: u8 = u7+u5+u1, u9 = u7+u6, u12 = u11+u4, u13 = u12+u2+u1.

For the replacement: u1≥1, u2≥1, u3≥u4, u11≤u10.
For the folding steps: u10 ≤ u9 − u3, u14 ≤ u13 − u7, u15 ≤ u6 − u7.

This set of constraints is satisfiable and, therefore, the transformation sequence is totally correct.

6. The Weighted Unfold/Fold Proof Method

In this section we present a method for proving the replacement laws to be used in Rule 5. By
following the approach of [Kot82, PeP99], this method is itself based on the application of the
transformation rules of Sections 3 and 5 which use weights and, for this reason, it is called the
weighted unfold/fold proof method.

Before introducing the weighted unfold/fold proof method, let us briefly recall how the un-
fold/fold proof method works in the case where weights are not present. Suppose that we want
to prove that two atoms p1(X) and p2(X) are equivalent in the least Herbrand model M(P ) of
a program P , that is, M(P ) |= ∀X (p1(X)↔ p2(X)).

Without loss of generality, we assume that P is of the form T ∪ {D1,D2}, where D1 and D2

are clauses of the form:

D1. p1(X)← G1

D2. p2(X)← G2

and the predicate symbols p1 and p2 occur in P in the head of D1 and D2 only. (Indeed, if this
is not the case, we can always introduce two new clauses newp1(X)← p1(X) and newp2(X)←
p2(X), and then prove M(P ) |= ∀X (newp1(X)↔ newp2(X)).)
Then, by two totally correct transformation sequences, from T ∪ {D1} and T ∪ {D2} we derive
two new programs Q1 and Q2 which are syntactically equivalent, that is, they are equal modulo
predicate and variable renaming.

As it stands, the unfold/fold proof method is not able to prove that the replacement law
p1(X) ⇛ p2(X) holds inP , as we need to show condition (ii) of Definition 5.1 which is stronger
than goal equivalence. Indeed, as remarked immediately after Definition 5.1, we also need to
show suitable relationships between the weights of the proofs for (ground instances of) p1(X)
and p2(X). The weighted unfold/fold proof method is an extension of the unfold/fold proof
method in that it shows the equivalence of p1(X) and p2(X), and also it establishes the required
relationships between their proofs, under suitable restrictions on the applications of the folding
and goal replacement rules.

In order to present the weighted unfold/fold proof method, now we introduce the notions of:
(i) syntactic equivalence, (ii) symmetric folding, and (iii) symmetric goal replacement.

A predicate renaming is a bijective mapping ρ : Preds1 → Preds2, where Preds1 and Preds2 are
two sets of predicate symbols. Given a program P , by preds(P ) we denote the set of predicate
symbols occurring in P . Suppose that preds(P ) = Preds1, then by ρ(P ) we denote the program
obtained from P by replacing every predicate symbol p by ρ(p).



19.

Definition 6.1 (Syntactic Equivalence) Two programs Q and R are syntactically equivalent
if there exists a predicate renaming ρ : preds(Q) → preds(R), such that R = ρ(Q), modulo
variable renaming.

Syntactic equivalence implies semantic equivalence, as stated by the following lemma, whose
proof is straightforward.

Lemma 6.2. If a program Q is syntactically equivalent to a program R via a predicate renaming
ρ, then, for every predicate p occurring in Q and tuple t of ground terms, p(t) ∈ M(Q) iff
ρ(p)(t) ∈M(R).

Definition 6.3 (Symmetric Folding) An application of the folding rule is said to be sym-
metric if

Ck+1 = Ck ∪ {γk+1(E)=γk(C1)−δk(D1), . . . , γk+1(E)=γk(Cm)−δk(Dm)}.

Definition 6.4 (Symmetric Replacement Law) Given a program P and a set C of con-
straints, a replacement law p1(X) ⇛ p2(X) which holds in P [C ], is said to be symmetric, and
we write P [C ] |= p1(X)⇚⇛ p2(X), if the following condition holds:

(ii*) for every solution σ of C , M(P [σ]) |= ∀X∀N (p1(X,N)↔ p2(X,N)).

Note that, by Lemma 2.8, Condition (ii*) implies Conditions (i) and (ii) of Definition 5.1.

Definition 6.5 (Symmetric Goal Replacement) An application of the goal replacement rule
is said to be symmetric if (i) it consists in applying a symmetric replacement law, and (ii) Ck+1 =
Ck ∪ C ∪ {γk+1(D)=γk(C)}.

A transformation sequence is said to be symmetric if it is constructed by applications of the
definition and unfolding rules and by symmetric applications of the folding and goal replacement
rules (thus, no applications of the deletion rule occur in a symmetric transformation sequence).

If the correctness constraint system associated with a symmetric transformation sequence is
satisfiable, then both total correctness is guaranteed (by Theorem 5.3) and also the following
result holds (its proof is in Appendix A).

Theorem 6.6 (Strong Correctness of Symmetric Transformations) Let P0 7→ · · · 7→ Pn

be a symmetric transformation sequence and let Cfinal be its associated correctness constraint
system. If Cfinal is satisfiable, then M(P 0 ∪Defsn) = M(P n).

Now we are ready to present the weighted unfold/fold proof method.

(A) We construct two transformation sequences of the form:
T ∪ {D1} 7→· · · 7→Q and T ∪ {D2} 7→· · · 7→R, such that the following three conditions hold:

(1) the correctness constraint systems CQ and CR associated with the transformation sequences
T ∪ {D1} 7→· · · 7→Q and T ∪ {D2} 7→· · · 7→R, respectively, are satisfiable;

(2) there exists a predicate renaming ρ such that ρ(p1) = p2 and ρ(Q) = R; and

(3) the transformation sequence T ∪ {D2} 7→· · · 7→R is symmetric.

(B.1) Then, we consider the weight functions γQ and γR for the programs Q and R, respectively,
and we state, by definition, that the following relation holds:
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P [C ] ⊢UF p1(X) ⇛ p2(X)

where C is the set {γQ(C)≥γR(ρ(C)) | C∈Q } ∪ CQ ∪ CR of constraints.

(B.2) Moreover, if the transformation sequence T ∪ {D1} 7→ · · · 7→Q is symmetric, we state, by
definition, that the following relation holds:

P [C ] ⊢UF p1(X)⇚⇛ p2(X)

where C is the set {γQ(C)=γR(ρ(C)) | C∈Q} ∪ CQ ∪ CR of constraints.

The following result, whose proof is given in Appendix A, ensures the soundness of the weighted
unfold/fold proof method.

Theorem 6.7 (Soundness of the Weighted Unfold/Fold Proof Method) We have that:
(i) if P [C ] ⊢UF p1(X) ⇛ p2(X) then P [C ] |= p1(X) ⇛ p2(X), and
(ii) if P [C ] ⊢UF p1(X)⇚⇛ p2(X) then P [C ] |= p1(X)⇚⇛ p2(X).

Example 7. (Proving a Replacement Law Using the Weighted Unfold/Fold Method) Let us
consider again the program Append and the replacement law (α), expressing the associativity of
list concatenation, presented in Example 5. By applying the weighted unfold/fold proof method
we will generate a set C of constraints such that law (α) holds in Append[C ].

Let T be the program consisting of clauses 1 and 2 defining the predicate app for list concate-
nation, D1 be clause 3 defining the predicate lassoc and D2 be clause 4 defining the predicate
rassoc. Thus, Append = T ∪ {D1,D2}. Let us denote by u1 and u2 the unknowns associated
with clauses 1 and 2, respectively, and by u3 and u4 the unknowns associated with D1 and D2,
respectively.

Step 1. First, let us construct a transformation sequence starting from T ∪ {D1}. In this
transformation sequence we denote by ei the unknown associated with the clause Ei, for i > 0.
By two applications of the unfolding rule, from clause D1 we derive:

E1. lassoc([ ], L2, L3, L)← app(L2, L3, L) e1 = u3 + u1

E2. lassoc([H|T ], L2, L3, [H|R])←app(T,L2,M) ∧ app(M,L3, R) e2 = u3 + 2u2

By folding clause E2 using clause D1 we derive:

E3. lassoc([H|T ], L2, L3, [H|R])← lassoc(T,L2, L3, R) e3 ≤ e2 − u3

Now, let us construct a transformation sequence starting from T ∪{D2}. In this transformation
sequence we denote by fi the unknown associated with clause Fi, for i > 0. By unfolding clause
D2 w.r.t. a(L1, R, L) in its body we get:

F1. rassoc([ ], L2, L3, L)← app(L2, L3, L) f1 = u4 + u1

F2. rassoc([H|T ], L2, L3, [H|R])←app(L2, L3,M) ∧ app(T,M,R) f2 = u4 + u2

By symmetric folding using clause D2, from clause F2 we get:

F3. rassoc([H|T ], L2, L3, [H|R])← rassoc(T,L2, L3, R) f3 = f2 − u4

The final programs T ∪ {E1, E3} and T ∪ {F1, F3} are syntactically equivalent via the predicate
renaming ρ such that ρ(lassoc) = rassoc. The transformation sequence T ∪ {D2} 7→ · · · 7→
T ∪ {F1, F3} is symmetric.

Step 2. The correctness constraint system associated with the transformation sequence T ∪
{D1} 7→ · · · 7→ T ∪ {E1, E3} is the following:

C1: {u1≥1, u2≥1, e1≥1, e3≥1, e1 =u3 + u1, e2 =u3 + 2u2, e3≤e2 − u3}

The correctness constraint system associated with the transformation sequence Append∪{D2} 7→
· · · 7→ Append ∪ {F1, F3} is the following:
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C2: {u1≥1, u2≥1, f1≥1, f3≥1, f1 =u4 + u1, f2 =u4 + u2, f3 =f2 − u4}

Both C1 and C2 are satisfiable. Let C12 be the set {e1 ≥ f1, e3 ≥ f3} ∪ C1 ∪ C2. In C12 the
constraints e1 ≥ f1 and e3 ≥ f3 are determined by the two pairs of syntactically equivalent
clauses (E1, F1) and (E3, F3), respectively. By eliminating from C12 all unknowns different from
u1, u2, u3, and u4, we obtain the set of constraints C = {u1≥1, u2≥1, u3≥u4}, and we get:

Append[C ] ⊢UF lassoc(L1, L2, L3, L) ⇛ rassoc(L2, L3, L1, L).

7. Related work and Conclusions

In this paper which is based upon the results presented in [PPS07, PeP08], we have presented a
method for proving the correctness of rule-based logic program transformations in an automatic
way. Given a transformation sequence, constructed by applying the unfold, fold, and goal
replacement transformation rules, we associate some unknown natural numbers, called weights,
with the clauses of the programs in the transformation sequence. We also construct a set of
linear constraints that these weights must satisfy to guarantee the total correctness of that
transformation sequence. Thus, the correctness of the transformation sequence can be proven
in an automatic way by checking that the corresponding set of constraints is satisfiable over the
natural numbers. It can be shown that our method is incomplete and indeed, in general, there
is no algorithm for checking whether or not any given unfold/fold transformation sequence is
totally correct.

As already mentioned in the Introduction, our method is related to various methods presented
in the literature for proving the correctness of program transformations by showing that suitable
conditions on the transformation sequences hold. For the case of definite logic programs, that
is, the case of clauses without negative literals in the premise, the reader may refer, for instance,
to [BCE92, GeK94, KaF86, RKR04, TaS84, TaS86]. Among these methods, the one presented
in [RKR04] is the most general one and it makes use of clause measures to express complex
conditions on the transformation sequences. The main novelty of our method with respect
to [RKR04] is that in [RKR04] clause measures are fixed in advance, independently of the
specific transformation sequence which is performed, while the method proposed in this paper
allows us to automatically generate specific clause measures for each transformation sequence
to be proved correct.

Thus, our method is more flexible than the one presented in [RKR04]. For instance, we checked
that the transformation sequence presented in our Example 3 cannot be proved correct by using
the default clause measures provided by the SCOUT transformation system that implements the
method presented in [RKR04]. (In Appendix B we also present a simpler example which cannot
be worked out by SCOUT and, instead, can be easily dealt with by following our approach.)

In order to check the power of our constraint-based method, and compare it with other meth-
ods, we did some practical experiments. We implemented our method in the MAP transfor-
mation system (http://www.iasi.cnr.it/~proietti/system.html) and we worked out some
transformation examples taken from the literature. Our system runs on SICStus Prolog (v.
3.12.8) and for the satisfiability of sets of constraints over nonnegative integers it uses a proce-
dure for integer programming provided by the clpq SICStus library.

By using our system we did the transformation examples presented in this paper (see Ex-
amples 3, 6, and 7) and the following examples taken from the literature: (i) the Adjacent
program, which checks whether or not two elements have adjacent occurrences in a list [KaF86],
(ii) the Equal Frontiers program, which checks whether or not the frontiers of two binary trees
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are equal [BuD77, TaS86], (iii) a program for solving the N -queens problem [SaT85], (iv) the
In Correct Position program taken from [GeK94], and (v) the program that encodes a liveness
property of an n-bit shift register [RKR04]. Even in the most complex derivation we carried out,
that is, the Equal Frontiers example, consisting of 97 transformation steps, the system checked
the total correctness of the transformation within milliseconds. For making that derivation we
also had to apply several replacement laws which were proved correct by using the weighted
unfold/fold proof method described in Section 6.

Our approach can be extended in several ways. First of all, one may take into consideration
general logic programs, that is, logic programs with negation. Some work has been recently
done on the correctness of unfold/fold transformations of general logic programs with the stable
model and the perfect model semantics [Sek09, Sek10]. Similarly to what we have done here for
the case of definite logic programs, we can extend our constraint-based approach to general logic
programs with various semantics of negation.

Another recent area of research is the extension of the unfold/fold transformation method to
logic programs defined on the domain of finite and infinite structures. In this area we mention
two papers: (i) the [PPS10] paper, which presents correctness results of some transformation
rules for locally stratified general programs whose semantics is an extension of the perfect model,
and (ii) the [Sek11] paper, which shows the correctness of a set of transformation rules for
coinductive logic programs, that is, logic programs whose semantics is defined by means of
greatest fixpoints, besides the usual least fixpoints [SMB06]. We leave it to future studies
the extension of our constraint-based approach to logic programs on infinite structures. This
extension is challenging, because the notion of termination we have considered in this paper,
should be modified for dealing with the case of infinite computations.
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A. Proofs

Proofs for Section 4 (Total Correctness of Unfold/Fold)

Proof. [Proof of Lemma 4.1.] For reasons of simplicity we assume that: (i) C is of the form
p0(t0) ← p1(t1) ∧ p2(t2), (ii) C is unfolded w.r.t. p1(t1), and (iii) for i = 1, . . . ,m, Ci is of the
form p1(ai) ← qi(bi). The extension to the general case where predicates have arbitrary arity,
bodies of clauses have arbitrary numbers of atoms, and C is unfolded w.r.t. any atom in its body
is straightforward. We have that: (iv)C is of the form

p0(t0, N0)← N0≥N1+N2+w ∧ p1(t1, N1) ∧ p2(t2, N2)

where w = σ(γk(C)) (recall that σ is a solution of Cfinal ); (v) for i = 1, . . . ,m,Ci is of the form

p1(ai,Mi)←Mi≥Qi+wi ∧ qi(bi, Qi)

where wi = σ(δk(Ci)); (vi) for i = 1, . . . ,m, Di is of the form

p0(t0ϑi)← qi(biϑi) ∧ p2(t2ϑi)

where ϑi is a most general unifier of t1 and ai; and (vii) for i = 1, . . . ,m,Di is of the form

p0(t0ϑi, N0)← N0≥Qi+N2+zi ∧ qi(biϑi, Qi) ∧ p2(t2ϑi, N2)

where zi = σ(γk+1(Di)). We also have that zi = w + wi. Indeed, by construction the equality
γk+1(Di) = γk(C) + δk(Ci) belongs to Ck+1, hence it belongs to Cfinal , and σ is a solution of
Cfinal .

Let us prove thatM(P 0∪Defsn) |= {C} ⇒ {D1, . . . ,Dm}. By Definition 2.1 we have to prove that,
for i = 1, . . . ,m, for every ground instanceDiψi of clauseDi such that M(P 0∪Defsn) |= bd(Diψi),
there exists a ground instance Cϕi of C such that hd(Cϕi) = hd(Diψi) and M(P 0 ∪Defsn) |=
bd(Cϕi).

LetDiψi be a ground instance ofDi such that

M(P 0 ∪Defsn) |= (N0≥Qi+N2+zi ∧ qi(biϑi, Qi) ∧ p2(t2ϑi, N2))ψi

Since zi = w + wi, we have that there exists mi ∈ N such that

M(P 0 ∪Defsn) |= (mi≥Qi+wi ∧ qi(biϑi, Qi))ψi

and

M(P 0 ∪Defsn) |= (N0≥mi+N2+w ∧ p2(t2ϑi, N2))ψi (†1)

Let Ciϑiψiτi be a ground instance of Ci, where τi is a ground substitution for the variables in
vars(ai) − vars(bi). Since (mi ≥Qi +wi ∧ qi(biϑi, Qi))ψi is a ground goal, then it is equal to
(mi≥Qi+wi ∧ qi(biϑi, Qi))ψiτi and, thus, we have that:

M(P 0 ∪Defsn) |= (mi≥Qi+wi ∧ qi(biϑi, Qi))ψiτi

The clauseCi belongs to P 0 ∪Defsk and, therefore, it belongs to P 0 ∪Defsn. Thus,Ciϑiψiτi is
true in M(P 0 ∪Defsn) and we have that:

M(P 0 ∪Defsn) |= p1(ai,mi)ϑiψiτi

Since ϑi is a unifier of t1 and ai, we have that p1(t1,mi)ϑiψiτi = p1(ai,mi)ϑiψiτi and, thus,

M(P 0 ∪Defsn) |= p1(t1,mi)ϑiψiτi (†2)

Let ϕi be the substitution ϑiψiτi and let us consider the clauseCϕi. The atom p0(t0, N0)ϑiψi is
ground and, therefore, we have:

hd(Cϕi) = p0(t0, N0)ϑiψiτi = p(t0, N0)ϑiψi = hd(Diψi)
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Since (N0 ≥N1+N2+w ∧ p2(t2, N2))ϑiψi is a ground goal and it is equal to (N0 ≥N1+N2+
w)ψi ∧ p2(t2ϑi, N2)ψi, we have: bd(Cϕi) = (N0≥N1+N2+w ∧ p1(t1, N1) ∧ p2(t2, N2))ϑiψiτi =
(N0≥N1+N2+w)ψi ∧ p1(t1, N1)ϑiψiτi ∧ p2(t2ϑi, N2)ψi and, by (†1) and (†2), we get:

M(P 0 ∪Defsn) |= bd(Cϕi).

Now we prove that M(P 0 ∪Defsn) |= {C} ⇐ {D1, . . . ,Dm}. By Definition 2.1 we have to
prove that, for every ground instance Cϕ of C such that M(P 0 ∪Defsn) |= bd(Cϕ), for some
i ∈ {1, . . . ,m} there exists a ground instance Diψi of Di such that hd(Diψi) = hd(Cϕ) and
M(P 0 ∪Defsn) |= bd(Diψi).
LetCϕ be a ground instance ofC such that

M(P 0 ∪Defsn) |= (N0≥N1+N2+w ∧ p1(t1, N1) ∧ p2(t2, N2))ϕ (†3)

Thus, we have that M(P 0 ∪Defsn) |= p1(t1, N1)ϕ and, since M(P 0 ∪Defsn) is a fixpoint of
TP 0∪Defs

n

, there exists a ground instanceE of a clause inP 0∪Defsn such that p1(t1, N1)ϕ = hd(E)

and M(P 0∪Defsn) |= bd(E). By the definition of Rule 1, no clause with head predicate p1 occurs
in Defsn −Defsk and, thus,E isCiϕi for some clauseCi ∈P 0 ∪Defsk and some substitution ϕi,
such that p1(t1, N1)ϕ = hd(Ciϕi) and M(P 0 ∪Defsn) |= bd(Ciϕi). Since vars(C) ∩ vars(Ci) = ∅,
we may assume that Ciϕ = Ci. Hence, p1(t1, N1)ϕϕi = p1(t1, N1)ϕ (because p1(t1, N1)ϕ is a
ground atom) = hd(Ciϕi) = hd(Ciϕϕi) (because Ciϕ =Ci) = p1(ai,Mi)ϕϕi, that is, ϕϕi is a
ground unifier of p1(t1, N1) and p1(ai,Mi). Since ϑi is a most general unifier of t1 and ai, it
follows that ϕϕi = ϑiψi for some ground substitution ψi. Moreover, N1ϑiψi = Miϑiψi andDiψi

is a ground clause.
We complete the proof by showing that: (i) hd(Diψi) = hd(Cϕ) and (ii) M(P 0 ∪Defsn) |=
bd(Diψi). Indeed, Point (i) holds because hd(Diψi) = p0(t0, N0)ϑiψi = p0(t0, N0)ϕϕi (because
ϑiψi = ϕϕi) = p0(t0, N0)ϕ (because p0(t0, N0)ϕ is a ground atom) = hd(Cϕ). Point (ii) holds
because the following properties (ii.a)–(ii.d) hold:

(ii.a) bd(Diψi) = (N0≥Qi+N2+zi ∧ qi(bi, Qi) ∧ p2(t2, N2))ϑiψi;

(ii.b) M(P 0 ∪Defsn) |= (N0≥N1+N2+w ∧ p2(t2, N2))ϑiψi,

indeed, from (†3) it follows that M(P 0 ∪Defsn) |= (N0 ≥ N1 +N2 +w ∧ p2(t2, N2))ϕ, and
(N0 ≥ N1 +N2 +w ∧ p2(t2, N2))ϕ = (N0 ≥ N1 +N2 +w ∧ p2(t2, N2))ϕϕi (because the goal
(N0 ≥ N1 +N2 +w ∧ p2(t2, N2))ϕ is ground) = (N0 ≥ N1 +N2 +w ∧ p2(t2, N2))ϑiψi (because
ϕϕi = ϑiψi);

(ii.c) M(P 0 ∪Defsn) |= (N1≥Qi+wi ∧ qi(bi, Qi))ϑiψi,

indeed, recalling that M(P 0 ∪Defsn) |= bd(Ciϕi) and that bd(Ciϕi) = (Mi ≥ Qi +wi ∧
qi(bi, Qi))ϕi, we have that

M(P 0 ∪Defsn) |= (Mi≥Qi+wi ∧ qi(bi, Qi))ϕi and

(Mi≥Qi+wi ∧ qi(bi, Qi))ϕi= (Mi≥Qi+wi ∧ qi(bi, Qi))ϕϕi (becauseCiϕ =Ci )
= (Mi≥Qi+wi ∧ qi(bi, Qi))ϑiψi(because ϕϕi = ϑiψi)
= (N1≥Qi+wi ∧ qi(bi, Qi))ϑiψi(because ϑiψi is a unifier of p1(t1, N1) and p1(ai,Mi)); and

(ii.d) zi = w + wi.

Proof. [Proof of Lemma 4.2.] For reasons of simplicity we assume that: (1) for i = 1, . . . ,m,
Ci is of the form p0(t0) ← p1(ui) ∧ p2(t2), (2) for i = 1, . . . ,m, Di is of the form q(a) ←
p1(bi), and (3) there exists a substitution ϑ satisfying the following conditions (corresponding
to Conditions (i)–(iii) of Rule 3): (i) for i = 1, . . . ,m, ui = biϑ, (ii) there exists no clause in
(P0 ∪ Defsk) − {D1, . . . ,Dm} whose head is unifiable with q(aϑ) and, hence, by the definition
of Rule 1, there exists no clause in (P0 ∪ Defsn) − {D1, . . . ,Dm} whose head is unifiable with
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q(aϑ), and (iii) for i = 1, . . . ,m and for every variable U in vars(bi) − vars(a): (iii.1) Uϑ is a
variable not occurring in {t0, t2}, and (iii.2) Uϑ does not occur in the term V ϑ, for any variable
V occurring in bi and different from U . Thus, the clause E derived by folding C1, . . . , Cm using
D1, . . . ,Dm is of the form p0(t0)← q(aϑ) ∧ p2(t2).

The extension to the general case where predicates have arbitrary arities and bodies of clauses
have arbitrary numbers of atoms is straightforward.

Point (i). In order to prove M(P0 ∪Defsn) |= {C1, . . . , Cm} ⇒ {E}, by Definition 2.1 we have
to show that, for every ground instance Eη of E such that M(P0 ∪ Defsn) |= bd(Eη), there
exists a ground instance Ciϕi of Ci, for some i ∈ {1, . . . ,m}, such that hd(Ciϕi) = hd(Eη) and
M(P0 ∪Defsn) |= bd(Ciϕi).

Thus, let us assume that

M(P0 ∪Defsn) |= (q(aϑ) ∧ p2(t2))η (†4)

Let us consider the following substitutions: α = {U/u ∈ ϑ | U ∈ vars(a)} and, for i =
1, . . . ,m, βi = {U/u ∈ ϑ | U ∈ vars(bi) − vars(a)}. By Condition (iii) above (corresponding
to Condition (iii) of Rule 3), βi is of the form: {U1/W1, . . . , Uni

/Wni
}, where W1, . . . ,Wni

are distinct variables not occurring in E. Let, for i = 1, . . . ,m, ρi be the substitution of
the form {W1/U1, . . . ,Wni

/Uni
}. The following two properties hold: (P1) q(aϑ) = q(aα) and

(P2) p1(biα) = p1(biϑρi). From (†4) it follows that M(P0 ∪ Defsn) |= q(aϑη) and thus, by
Property (P1), M(P0 ∪Defsn) |= q(aαη). Since M(P0 ∪Defsn) is a fixpoint of TP0∪Defsn

and,
by Condition (ii) above (corresponding to Condition (ii) of Rule 3), all clauses of P0 ∪Defsn

whose head is unifiable with q(aϑ) are in {D1, . . . ,Dm}, there exists a clause Di: q(a)← p1(bi) in
{D1, . . . ,Dm} and a ground substitution νi such that M(P0∪Defsn) |= p1(biαηνi). By Property
(P2) we have that M(P0 ∪Defsn) |= p1(biϑρiηνi) and, since no variable is common to ρi and η,
M(P0∪Defsn) |= p1(biϑηρiνi). Hence, by Condition (i) above (corresponding to Condition (i) of
Rule 3), M(P0∪Defsn) |= p1(uiηρiνi). From (†4) and from the fact that p2(t2η) is a ground atom
it follows that M(P0∪Defsn) |= p2(t2ηρiνi) and, thus, M(P0∪Defsn) |= (p1(ui)∧p2(t2))ηρiνi.
Let us now consider the substitution ϕi = ηρiνi. We have that: hd(Ciϕi) = p0(t0ηρiνi) = p0(t0η)
(because p0(t0η) is a ground atom) = hd(Eη) and M(P0 ∪Defsn) |= bd(Ciϕi).

Point (ii). Now we prove that M(P 0 ∪Defsn) |= {C1, . . . ,Cm} ⇐ {E}. We have that: (4) for
i = 1, . . . ,m,Ci is of the form

p0(t0, N0)← N0≥Ui+N2+wi ∧ p1(ui, Ui) ∧ p2(t2, N2)

where wi = σ(γk(Ci)) (recall that σ is a solution of Cfinal ), (5) for i = 1, . . . ,m,Di is of the form

q(a,Q)← Q≥Mi+zi ∧ p1(bi,Mi)

where zi = σ(δk(Di)), and (6)E is of the form

p0(t0, N0)← N0≥Q+N2+w ∧ q(aϑ,Q) ∧ p2(t2, N2)

where w = σ(γk+1(E)).

By Definition 2.1, we have to prove that, for i = 1, . . . ,m, for every ground instance Ciϕi

of Ci such that M(P 0 ∪Defsn) |= bd(Ciϕi), there exists a ground instance Eη of E such that
hd(Eη) = hd(Ciϕi) and M(P 0 ∪Defsn) |= bd(Eη).

LetCiϕi be a ground instance ofCi such that

M(P 0 ∪Defsn) |= (N0≥Ui+N2+wi ∧ p1(ui, Ui) ∧ p2(t2, N2))ϕi

We have that w ≤ wi−zi. Indeed, by construction the inequality γk+1(E) ≤ γk(Ci)−δk(Di)
belongs to Ck+1, hence it belongs to Cfinal , and σ is a solution of Cfinal . Thus, there exists r ∈ N

such that
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M(P 0 ∪Defsn) |= (N0≥r+N2+wi ∧ r≥Ui+zi ∧ p1(ui, Ui) ∧ p2(t2, N2))ϕi (†5)

Let us consider a ground instance ofDi of the form

(q(a,Q)← Q≥Mi+zi ∧ p1(bi,Mi))ϑϕiτi

where τi is a ground substitution such that Qτi = r and Miτi = Uiϕi. We may assume that
vars(Ci) ∩ vars(Di) = ∅ and {Q,Mi} ∩ vars(Di) = ∅, and therefore, Qϑϕiτi = Qτi = r and
Miϑϕiτi = Miτi = Uiϕi. Thus, by (†5), we have that

M(P 0 ∪Defsn) |= (Q≥Mi+zi ∧ p1(bi,Mi))ϑϕiτi

and, since M(P 0 ∪Defsn) is a fixpoint of TP 0∪Defs
n

, we have that

M(P 0 ∪Defsn) |= q(a,Q)ϑϕiτi

Thus, by using (†5), the fact that (N0 ≥ r+N2 +wi ∧ p2(t2, N2))ϕi is a ground goal, and the
identity r = Qτi = Qϕiτi, we have that

M(P 0 ∪Defsn) |= (N0≥Q+N2+wi ∧ q(aϑ,Q) ∧ p2(t2, N2))ϕiτi

Now, let us consider the ground clauseEη where η is the substitution ϕiτi. We have just proved
that M(P 0 ∪Defsn) |= bd(Eη). Moreover, hd(Eη) = Eϕi (because Eϕi is a ground clause)
= p0(t0, N0)ϕi = hd(Ciϕi).

Proof. [Proof of Lemma 4.3.]

Point (i). M(P0 ∪Defsn) |= {C,D} ⇒ {D} follows directly from Definition 2.1.

Point (ii). For reasons of simplicity we assume that C is of the form p0(t0ϑ)← p1(t1ϑ) ∧ p2(t2)
and D is of the form p0(t0)← p1(t1). Therefore,C is of the form p0(t0ϑ,N0)← N0≥N1 +N2 +
w ∧ p1(t1ϑ,N1) ∧ p2(t2, N2) andD is of the form p0(t0, N0) ← N0≥N1 + z ∧ p1(t1, N1), where
w = σ(γk(C)) and z = σ(γk(D)) (recall that σ is a solution of Cfinal).

In order to prove that M(P 0 ∪Defsn) |= {C,D} ⇐ {D}, by Definition 2.1 it is enough to show
that for every ground instanceCϕ ofC such that M(P 0∪Defsn) |= bd(Cϕ), there exists a ground
instanceDψ ofD such that hd(Dψ) = hd(Cϕ) and M(P 0 ∪Defsn) |= bd(Dψ).

Let Cϕ be a ground clause such that M(P 0 ∪Defsn) |= (N0 ≥N1 + N2 + w ∧ p1(t1ϑ,N1) ∧
p2(t2, N2))ϕ. We have that z≤w. Indeed, by construction the inequality γk(D)≤γk(C) belongs
to Ck+1, hence it belongs to Cfinal, and σ is a solution of Cfinal. Since N2 ≥ 0 and ϑ binds
neither N0 nor N1, we have that M(P 0 ∪Defsn) |= (N0 ≥ N1 + z ∧ p1(t1, N1))ϑϕ. Hence,
hd(Dϑϕ) = hd(Cϑϕ) and M(P 0 ∪Defsn) |= bd(Dϑϕ).

Proofs for Section 5 (Goal Replacement)

In the proof of Lemma 5.2 we will use the following property.

Lemma A.1. Let P0 7→ · · · 7→ Pn be a transformation sequence and let 1 ≤ k ≤ n. For every
closed formula ϕ such that all predicate symbols occurring in ϕ also occur in P0 ∪ Defsk, we
have that M(P0 ∪Defsk) |= ϕ iff M(P0 ∪Defsn) |= ϕ.

Proof. It is a straightforward consequence of the following two facts: (1) by the definition of
Rule 1 the predicate symbols occurring in P0 ∪ Defsk do not depend on the head predicates
of the clauses in Defsn − Defsk, and (2) the least Herbrand model semantics satisfies the
relevance property [Dix95], that is, for all ground atoms A, A ∈ M(P ) iff A ∈ M(rel(P,A)),
where rel(P,A) is the set of clauses in P on whose head predicates the predicate of A depends.

Lemma A.1 also holds for weighted programs.
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Proof. [Proof of Lemma 5.2.] For reasons of simplicity we assume that: (1) C is of the form
p0(t0)← p1(t) ∧ q(u), and (2) the replacement law λ is of the form p1(X) ⇛ p2(X). Thus, the
clause D derived from C by applying λ is of the form p0(t0) ← p2(t) ∧ q(u). The extension to
the general case where predicates have an arbitrary arity and bodies of clauses have an arbitrary
number of atoms is straightforward.

Point (i). In order to prove M(P0 ∪Defsn) |= {C} ⇒ {D}, by Definition 2.1 we will show that,
for every ground instance Dψ of D such that M(P0 ∪ Defsn) |= bd(Dψ), the clause Cψ is a
ground instance of C such that hd(Cψ) = hd(Dψ) and M(P0 ∪Defsn) |= bd(Cψ).

Let Dψ be a ground instance of D such that M(P0 ∪ Defsn) |= (p2(t) ∧ q(u))ψ. Hence,
M(P0 ∪ Defsn) |= p2(tψ), where tψ is a ground term. Since the replacement law p1(X) ⇛

p2(X) holds in P 0 ∪Defsk[C ], by Condition (i) of Definition 5.1 and by Lemma A.1, we have
that: M(P0 ∪ Defsn) |= p1(tψ) ← p2(tψ). Therefore, M(P0 ∪ Defsn) |= p1(tψ) and, hence,
M(P0 ∪Defsn) |= (p1(t) ∧ q(u))ψ.

Thus, Cψ is a ground instance of C such that: hd(Cψ) = p0(t0ψ) = hd(Dψ) and, as shown
above, M(P0 ∪Defsn) |= bd(Cψ).

Point (ii). Recall that, for any solution σ of Cfinal, we denote the weighted program (P 0 ∪
Defsn)[σ] by P 0 ∪Defsn, and the weighted clausesC[σ] andD[σ] byC andD, respectively. We
have to show that M(P 0 ∪Defsn) |= {C} ⇐ {D}, where: (1)C is of the form p0(t0, N0)← N0≥
N1+N2 +w ∧ p1(t,N1) ∧ q(u,N2), (2) w = σ(γk(C)), (3)D is of the form p0(t0, N0) ← N0 ≥
N1+N2+z ∧ p2(t,N1) ∧ q(u,N2), and (4) z = σ(γk+1(D)). By Definition 2.1, it will suffice to
prove that, for every ground instanceCϕ ofC such that M(P 0∪Defsn) |= bd(Cϕ), the clauseDϕ
is a ground instance ofD such that hd(Dϕ) = hd(Cϕ) and M(P 0 ∪Defsn) |= bd(Dϕ).

LetCϕ be a ground instance ofC such that

M(P 0 ∪Defsn) |= (N0≥N1+N2+w ∧ p1(t,N1) ∧ q(u,N2))ϕ.

We have that z ≤ w. Indeed, by the definition of the goal replacement rule, the inequality
γk+1(D) ≤ γk(C) belongs to Ck+1, hence it belongs to Cfinal, and σ is a solution of Cfinal.
Since the replacement law λ holds in (P 0 ∪Defsk)[C ] and C ⊆ Cfinal, by Condition (ii) of
Definition 5.1, we have that M(P 0 ∪Defsk) |= p1(t,N1)ϕ → p2(t,N1)ϕ. By Lemma A.1, we
also have that M(P 0 ∪Defsn) |= p1(t,N1)ϕ → p2(t,N1)ϕ. Therefore, M(P 0 ∪Defsn) |= (N0 ≥
N1+N2+w ∧ p2(t,N1) ∧ q(u,N2))ϕ.

Thus,Dϕ is a ground instance of D such that: hd(Dϕ) = p0(t0, N0)ϕ = hd(Cϕ) and, as shown
above, M(P 0 ∪Defsn) |= bd(Dϕ).

Proofs for Section 6 (The Weighted Unfold/Fold Proof Method)

For the proof of Theorem 6.6 we need the following Lemmata A.2 and A.3, which are the
converses of Lemmata 4.2 (ii) and 5.2 (ii), respectively.

Lemma A.2. Let P0 7→ · · · 7→ Pn be a transformation sequence and let 1 ≤ k < n. Let
C1, . . . , Cm be clauses in Pk, let D1, . . . ,Dm be clauses in P0 ∪Defsk, and let E be the clause in
Pk+1 derived by folding C1, . . . , Cm using D1, . . . ,Dm, as described in Rule 3. Suppose also that
the application of the folding rule is symmetric. Then:

(i) M(P 0 ∪Defsn) |= {C1, . . . ,Cm} ⇒ {E}

Proof. The proof is similar to the one of Lemma 4.2, by using also the fact that folding is
symmetric and, thus, for i = 1, . . . ,m, γk+1(E) = γk(Ci)− δk(Di).
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Lemma A.3. Let P0 7→ · · · 7→ Pn be a transformation sequence and let 1 ≤ k < n. Let C
be a clause in Pk and D be the clause in Pk+1 derived by applying a replacement law λ that
holds in (P 0 ∪Defsk)[C ], as described in Rule 5. Suppose also that the application of the goal
replacement rule is symmetric. Then:

(i) M(P 0 ∪Defsn) |= {C} ⇒ {D}.

Proof. The proof is similar to the one of Lemma 5.2, by using also the fact that goal replace-
ment is symmetric and, thus, γk+1(D) = γk(C).

Now, we are ready to prove Theorem 6.6.

Proof. [Proof of Theorem 6.6.] Let P0 7→· · · 7→Pn be a symmetric transformation sequence and
let Cfinal be its associated correctness constraint system, which is satisfiable by hypothesis. We
have shown in Sections 4 and 5 that the following properties hold for any transformation sequence
constructed by using the definition introduction, unfolding, folding, and goal replacement rules:

(P2) M(P 0 ∪Defsn) |=P 0 ∪Defsn ⇐Pn, and

(P3)Pn is decreasing.

Thus, (P2) and (P3) also hold for symmetric transformation sequences. Now, we show that also
the following property holds:

(P4) M(P 0 ∪Defsn) |=P k ∪ (Defsn−Defsk)⇒P k+1 ∪ (Defsn−Defsk+1).

We reason by cases on the transformation rule applied to derive Pk+1 from Pk, as follows.

(Case 1) If Pk+1 is derived from Pk by applying the definition introduction rule then Pk ∪
(Defsn −Defsk) = Pk+1 ∪ (Defsn −Defsk+1) and, therefore, Property (P4) trivially holds.

(Case 2) If Pk+1 is derived from Pk by applying the unfolding rule, then Pk+1 = (Pk − {C}) ∪
{D1, . . . ,Dm} and Defsk = Defsk+1. Hence, Property (P4) follows from Lemma 4.1 and mono-
tonicity of ⇒.

(Case 3) If Pk+1 is derived from Pk by a symmetric application of the folding rule, then Pk+1 =
(Pk−{C1, . . . , Cm})∪{E} and Defsk = Defsk+1. Hence, Property (P4) follows from Lemma A.2
and monotonicity of ⇒.

(Case 4) If Pk+1 is derived from Pk by a symmetric application of the goal replacement rule,
then Pk+1 = Pk − {C} and Defsk = Defsk+1. Hence, Property (P4) follows from Lemma A.3
and monotonicity of ⇒.

By the transitivity of ⇒ and by Property (P4), we get

(P5) M(P 0 ∪Defsn) |=P 0 ∪Defsn ⇒Pn

Moreover, sincePn =Pn[σ], where σ is a solution of Cfinal, we have thatPn is decreasing and,
by Lemma 2.10, it is univocal. Thus, by Corollary 2.5, M(P 0 ∪Defsn) = M(P n).

In order to prove the soundness of the weighted unfold/fold proof method, that is, Theorem 6.7,
we need the following lemma.

Lemma A.4. Let P be a program, γ1, γ2 be weight functions for P , and σ1, σ2 be valuations
such that, for every clause C ∈ P , σ1(γ1(C)) ≥ σ2(γ2(C)). Then M(P [σ1]) ⊆M(P [σ2]).

Proof. [Proof of Lemma A.4.] For i = 1, 2, let Ti denote the immediate consequence operator
TP [σi]

. We have that, for i = 1, 2, M(P [σi]) = Ti ↑ ω. We will prove that T1 ↑ ω ⊆ T2 ↑ ω, by
showing that, for all α < ω, T1 ↑α ⊆ T2 ↑α. We proceed by induction on α.

Basis. We have that T1 ↑0 = T2 ↑0 = ∅.
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Inductive Step. We assume that T1 ↑α ⊆ T2 ↑α and p(t, n) ∈ T1 ↑(α+1), where t is any (tuple
of) ground term(s) and n is any nonnegative integer. Then there exists a clause C ∈ P such
that: (i) C[σ1] has a ground instance of the form p(t, n)← n≥n1 + · · ·+ nk +w1 ∧ p1(t1, n1) ∧
. . .∧pk(tk, nk), where w1 = σ1(γ1(C)), (ii) n≥n1 + · · ·+nk +w1 holds and, (iii) for i = 1, . . . , k,
pi(ti, ni) ∈ T1 ↑α. Hence, by hypothesis, n≥n1 + · · · + nk + w2, where w2 = σ2(γ2(C)) and, by
the inductive hypothesis, for i = 1, . . . , k, pi(ti, ni) ∈ T2 ↑α. Thus, p(t, n) ∈ T2 ↑(α + 1).

Now we can prove the soundness of the weighted unfold/fold proof method.

Proof. [Proof of Theorem 6.7.] Point (i). AssumeP [C ] ⊢UF p1(X) ⇛ p2(X). By Definition 5.1
we have to show the following two properties:

(i.1) M(P ) |= ∀X(p1(X)← p2(X)), and

(i.2) for every solution σ of C , M(P [σ]) |= ∀X∀N (p1(X,N)→ p2(X,N)).

Point (i.1). Let t be a tuple of ground terms. We assume that M(P ) |= p2(t)). We have to
show that M(P ) |= p1(t). Since P is of the form T ∪ {D1,D2} and the predicate p2 does not
depend on the head of D1, we have that M(T ∪{D2}) |= p2(t). By Condition (1) of the weighted
unfold/fold proof method and by Theorem 5.3, we have that M(R) |= p2(t). By Condition (2)
of the weighted unfold/fold proof method and by Lemma 6.2, we have that M(Q) |= p1(t).
By Condition (1) of the weighted unfold/fold proof method and by Theorem 5.3, we have that
M(T ∪ {D1}) |= p1(t). Since D1 is the unique clause with head predicate p1 in T ∪ {D1}, we
have that M(T ) |= p1(t) and, thus, M(P ) |= p1(t).

Point (i.2). Let t be a tuple of ground terms, n be a nonnegative integer, and σ be a solution of
C (we assume that the domain of σ contains all unknowns associated with clauses appearing in
T ∪ {D1} 7→ · · · 7→Q or T ∪ {D2} 7→ · · · 7→R). We assume that M(P [σ]) |= p1(t, n). We have to
show that M(P [σ]) |= p2(t, n).

Since P = T ∪ {D1,D2} and p1 does not depend on the head predicate of D2 (that is,
p2), we have that M((T ∪ {D1})[σ]) |= p1(t, n). Let DefsQ be the set of clauses introduced
by Rule 1 during the transformation sequence T ∪ {D1} 7→ · · · 7→ Q. The set of constraints
associated with T ∪ {D1} ∪ DefsQ is empty and every valuation is a solution of the empty set
of constraints. Thus, M((T ∪ {D1} ∪DefsQ)[σ]) |= p1(t, n). Since by hypothesis CQ (which is a
subset of C ) is satisfiable and σ is a solution of CQ, the weighted programQ[σ] is decreasing.
By Lemmata 4.1–5.2, we have that M((T ∪ {D1} ∪DefsQ)[σ]) |= (T ∪ {D1} ∪DefsQ)[σ] ⇐Q[σ]
and, therefore, by Theorem 2.4, M((T ∪{D1}∪DefsQ)[σ]) ⊆M(Q[σ]). Then M(Q[σ]) |= p1(t, n).
By hypothesis Q is syntactically equivalent to R and since σ is a solution of C , by Step (B.1)
of the weighted unfold/fold proof method we have that, for every clause C ∈ Q, σ(γQ(C)) ≥
σ(γR(ρ(C))). Let us consider the weight function γ′Q such that, for every C ∈ Q, γ′Q = γR(ρ(C)),
and let σQ and σR be the restrictions of σ to the set of unknowns occurring in the range of
γQ and γR, respectively. We have that σQ(γQ(C)) ≥ σR(γ′Q(C)) and hence, by Lemma A.4,

M(Q[σQ]) ⊆ M(Q[σR]). Since ρ(Q[σR]) =R[σR] and ρ(p1) = p2, by Lemma 6.2 we have that
M(Q[σR]) |= p1(t, n) iff M(R[σR]) |= p2(t, n). Thus, sinceQ[σQ] =Q[σ] and R[σR] =R[σ], we
get that M(R[σ]) |= p2(t, n). By Condition (3) of the weighted unfold/fold method and by
Theorem 6.6, M((T ∪ {D2} ∪DefsR)[σ]) |= p2(t, n) and, since p2 does not depend on the head
predicates of the clauses in DefsR, we have that M((T ∪ {D2})[σ]) |= p2(t, n). Finally, since p2

does not depend on the head predicate of D1 (that is, p1), we have that M(P )[σ] |= p2(t, n).

Point (ii). By Point (i) and by Definition 6.4 it is enough to show that if P [C ] ⊢UF p1(X)⇚⇛p2(X)
thenP [C ] ⊢UF p2(X)⇛ p1(X), that is, it is enough to show that if Steps (A) and (B.2) of the
weighted unfold/fold proof method can be performed for two suitable programs Q and R, then
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Steps (A) and (B.1) can be performed by interchanging Q and R. This can be shown by using
the following properties:
(A1) any predicate renaming ρ from Q to R whose existence is stipulated in Condition (2), has

an inverse ρ−1 from R to Q,
(A2) by the assumption made at Step (B.2), T ∪ {D1} 7→· · · 7→Q is symmetric, and
(A3) for every clause C ∈ R we have that {γR(C)≥ γQ(ρ−1(C)) | C ∈ Q} ∪ CQ ∪ CR, because
by Step (B.2) we have that {γQ(C)=γR(ρ(C)) | C∈Q} ∪ CQ ∪ CR.

B. Comparing MAP and SCOUT through an Example

The SCOUT transformation system implements the transformation method presented in [RKR04]
by associating with each clause a measure consisting of a pair of tuples of integers. The use of
tuples is related to a stratification of the program to be transformed, that is, the i-th component
of the tuple is a measure referring to the i-th stratum of the program. The use of pairs is rele-
vant when a set of n (≥ 2) clauses is folded by another set of n clauses, thereby deriving a single
clause. More details can be found in [RKR04]. Here we only present an example where SCOUT
is not able to prove the correctness of a folding step, while the MAP transformation system,
based on the approach presented in this paper, easily proves the correctness of that step.

In our example we have one stratum only and, hence, clause measures consist of pairs of
integers (that is, pairs of 1-tuples). Moreover, we want to fold one clause only and, thus, the
use of pairs of integers is actually not needed. However, we will use those pairs for compliance
with SCOUT.

Let us consider the following program, where every clause is annotated by the pair 〈1, 1〉, as
prescribed by the SCOUT system for the initial program of any transformation sequence.

1. p(a)← p(b) 〈1, 1〉
2. p(c)← p(b) 〈1, 1〉
3. p(b)← 〈1, 1〉

Suppose that we want to fold clause 1 using clause 2 and derive the clause:

4. p(a)← p(c)

The transformation sequence constructed by the above folding step is totally correct. However,
SCOUT disallows that step because it does not satisfy the applicability condition for the folding
rule. Indeed, in this example folding is allowed only if the second component of the measure of
clause 2 is strictly less than the first component of the measure of clause 1.

On the other hand, the MAP system proves that the transformation sequence constructed by
folding clause 1 using clause 2 is totally correct. Indeed, the following set of constraints, where
ui is the unknown associated with clause i,

{u2 ≥ 1, u3 ≥ 1, u4 ≥ 1, u4 ≤ u1 − u2}

is satisfiable.


