The Transformational Approach to
Program Development

Alberto Pettorossi Maurizio Proiettf, and Valerio Senni

L DISP, University of Rome Tor Vergata, Via del Politecnicd-D0133 Rome, ltaly
{pettorossi, senni }@li sp. uni roma2.it
2 1ASI-CNR, Viale Manzoni 30, 1-00185 Rome, Italy
proietti @asi.cnr.it

Abstract. We present an overview of the program transformation tegles
which have been proposed over the past twenty-five yeargindhtext of logic
programming. We consider the approach based on rules atdgts. First, we
present the transformation rules and we address the issteiofcorrectness.
Then, we present the transformation strategies and, threame examples, we
illustrate their use for improving program efficiency viaethlimination of un-
necessary variables, the reduction of nondeterminism,tlamdise of program
specialization. We also describe the use of the transfaomatethodology for
the synthesis of logic programs from first-order specifaragi Finally, we illus-
trate some transformational techniques for verifyingfinster properties of logic
programs and their application to model checking for finitd mfinite state con-
current systems.

1 Introduction

When deriving programs from specifications there are, amaithgrs, two main ob-
jectives to achieve: (i) program correctness, and (ii) pogefficiency. Unfortunately,
these two objectives are often in contrast with each othificiént programs may be
rather intricate and their correctness proofs may be goiteptex and long.

In order to overcome this difficulty, one can use the so cgliedjram transfor-
mation methodology by which starting from the given formal speeificns, one de-
rives efficient programs by applying a sequenceafsformation ruleseach of which
preserves correctness. The transformation methodolqugricularly appealing when
programs are written in a declarative language such as ddmatlanguage or a logic
language. In those cases, in fact, (i) the formal specifoatare formulas which can
easily be translated into an initial program which is, the@yect by construction, and
(ii) the transformation rules can be viewed as correctnessapving deduction rules in
a suitable logic.

In order to get final programs which are more efficient thanrhi&l ones, we need
to apply the transformation rules according to suitdkd@sformation strategiesrhis
particular approach to program transformation, calledrthes+ strategiesapproach,
has been first advocated in the seminal paper by Burstall anlihDton [17] in the case
of functional programs. Then, as we will indicate at the bagig of the next section, it

has been adapted to logic programs [31,64], constraint legigrams [22,40], and the
so-called functional-logic languages [1].

The program transformation methodology can also be usgukfformingprogram
synthesigsee, for instance, [41] and also [5] for a recent surveyjhat case the ini-
tial program is the declarative specification of a problem ge derived, transformed
program is the encoding of an efficient algorithm for solvingt problem.

In recent years program transformation has also been usadeatinique fopro-
gram verification It has been shown that via program transformation, one cavep
properties of programs [47] and also performdel checkindor finite or infinite state
systems [25].

In this paper we will focus our attention on the use of the progtransformation
methodology for the development of logic programs and wemalinly refer to the con-
tributions coming from that area. In Section 2 we will prestie most popular trans-
formation rules, such asnfoldingandfolding, and we will mention some correctness
results for those rules in various logic languages. In 8a®iwe will describe some of
the strategies that can be used to guide the applicatioreafaéimsformation rules for
improving program efficiency. In Sections 4 and 5 we will gmreissome transforma-
tional methods for program synthesis and program veriticatrinally, in Section 6 we
will discuss some future research directions in programstiamation.

2 Transformation Rules

Various sets of program transformation rules have beengsexpin the literature for
several declarative programming languages. In their lax#lrpaper [64] Tamaki and
Sato considered definite logic programs and presented & setngformation rules,
including definition unfolding folding, goal replacementandclause deletionUnder
suitable restrictions, these rules arerrect w.r.t. the least Herbrand model seman-
tics [64]. Indeed, if from progran®, we derive progranP, by several applications

of the transformation rules, then under certain condititresleast Herbrand model is
preserved, that isM (Py) = M (P,), where byM (P) we denote the least Herbrand
model of the progran®. In the subsequent years, Tamaki and Sato’s approach has bee
extended in several directions as we now indicate.

(1) Transformation rules for other logic-based prograngtémguages, besides definite
logic programs, have been considered. For instance, \sarides have been presented
for transforming: (i) general logic programs wittegation[58], (ii) constraint logic
programs [22,26,40], (iii) concurrent constraint logiograms [23,24], (iv) constraint
handling rules [62], and functional-logic programs [1].

(2) The correctness of the transformation rules w.r.t.orgisemantics of logic lan-
guages has been proved. In particular, it has been shownutheéer suitable condi-
tions, the unfolding and folding transformation rules gree: (i) the set of answer
substitutions computed by SLD-resolution [6], (ii) the seqce of answer substitutions
computed according to the Prolog operational semantids (@i termination proper-
ties such as finite failure [58] and left-termination [11Jniwersal termination [7], and
acyclicity [12], (iv) various semantics of general logiograms, such as the Clark com-
pletion [30], the perfect models of stratified programs &), the stable models [57],

the well-founded models [59], and Kunen'’s and Fitting'sdgxvalued models [10]. Sys-
tematic approaches for proving the correctness of thefsamstion rules based on the
notions ofsemantic kernedndargumentation semanticBave been proposed in [4] and
[65], respectively.

(3) The set of transformation rules has been extended dithadding extra rules such
asnegative unfoldingndnegative folding26,60], andsimultaneous replacemeji0],
or by relaxing the conditions under which we can apply thealurules [48,53].

Now we present a set of transformation rules for locallytsteal programs [40,45,60].
We will use these rules in the program transformations dlesdiin Sections 3, 4, and 5.

Given a locally stratified progran®, throughout the paper by/(P) we denote
the perfect model of’ [2], which is equal to the least Herbrand model in the case of
definite logic programs. Given any conjunctiéhof one or more literals, byars(C)
we denote the set of variables occurringlin A similar notation will also be used for
sets of conjunctions of literals. When applying the transfation rules we will feel
free to rewrite clauses by: (i) renaming their variableg] i) rearranging the order
and removing repeated occurrences of literals occurriniggi bodies.

The transformation rules are used to construct a sequijce. , P, of programs,
called atransformation sequencdhe construction of that sequence is done as fol-
lows. Suppose that we have constructed the transformatiguenicel, . . ., Py, for
0 < k <n—1. Then the next prograrf;, in the transformation sequence is derived
from programP;, by the application of a transformation rule among the foltaywules
R1-R9.

Rule R1 is thedefinition introductiorrule which is applied for introducing a new
predicate definition by one or more clauses.

R1. Definition Introduction. Let us considem (>1) clauses of the form:
01 :newp(X1,...,Xp) < B1, ..., Oy :newp(Xy,...,Xp) < Bn

where: (i)newp is a predicate symbol not occurring{#, . .., Py}, (i) X1,..., X3

are distinct variables occurring By, . .., B, }, (iii) every predicate symbol occur-
ringin {B,..., By} also occurs inP,. The set{4y,...,d,,} of clauses is called the
definitionof newp.

By definition introductionfrom programpP;, we derive the progranP;,; = Py U
{61,...,0m}. Fork >0, Defs, denotes the set of clauses introduced by the definition
rule during the transformation sequerég . . ., Px. In particularDefs = {}.

Theunfoldingrule consists in: (i) replacing an atorh occurring in the body of a
clause by a suitable instance of the disjunction of the Isodii¢he clauses whose heads
unify with A, and (ii) applying suitable boolean laws for deriving clesisThere are
two unfolding rules: (1) theositive unfoldingand (2) thenegative unfoldingcorre-
sponding to the case whereoccurs positively or negatively, respectively, in the body
of the clause to be unfolded.

R2. Positive Unfolding.Lety : H «— Gp A A A Gr be a clause in prografi, and
let P be a variant of?, without variables in common with. Let

71:K1<_Bla 7A/me<_Bm (mZO)

be all clauses of, such that, fori = 1,...,m, A is unifiable with K;, with most
general unifiery;.

By unfolding~y w.r.t. A we derive the clauses, ..., n,,, where fori = 1,...,m, n;
is (H «— G A B; A Ggr)¥;. From P, we derive the progran®?,+; = (P, — {v}) U
{7717 s 777”7}

Theexistential variable®f a clausey are the variables occurring in the body-of
and not in its head.

R3. Negative Unfolding.Let~y : H «— G A—A A Gg be a clause in prograify, and
let P/ be a variant ofP, without variables in common with. Let

AT K1<_Bla sy Ymot Km<_Bm (mZO)
be all clauses of prograr®, such thatA is unifiable with K1, ..., K,,, with most
general unifierg, . .., ¥, respectively. Assume that:
1. A=K =---=K,,9,, thatis, fori = 1,...,m, Ais an instance of;,
2. fori =1,...,m,~; has no existential variables, and

3. fromGp A—(B191 V...V B,9,) AGr we get alogically equivalent disjunction
Q1 V...V Q, of goals, withr > 0, by first pushing- inside and then pushing
outside.

By unfoldingy w.r.t. = A we derive the clauses, ..., n., wherefori =1,... 7,7, is
H « Q;. From P, we derive the new prografi; 1 = (P, — {v}) U {n1,...,n-}.

Thefoldingrule consists in replacing instances of the bodies of theselawhich are
the definition of a predicate by the corresponding head. Aarfifolding, we have both
the positive folding rule and the negative folding rule, éieging on whether folding is
applied to positive or negative occurrences of (conjumatiaf) literals. Note that by the
positive folding rule we may replace (> 1) clauses by one clause only.

R4. Positive Folding.Let vy, . .., v, with m > 1, be clauses i, and letDefs, be a

variant ofDefs, without variables in common withy, ..., v,,. Let the definition of a
predicate irDefs, consist of then clauses

0: K~ By, ..., 6m: K — B,
where, fori = 1,...,m, B; is a non-empty conjunction of literals. Suppose that there

exists a substitution such that, fori = 1,...,m, clausey; is of the formH «—
G, N B;9 A Ggr and, for every variableX € vars(B;) — vars(K), the following
conditions hold: ()X is a variable not occurring ifH, G, Gr}, and (i) X does
not occur in the ternY’ ¢, for any variableY” occurring inB; and different fromX.

By folding~, ..., 7, usingdy, ..., d,, we derive the clausg: H <+ Gy A K9 A GRg.
From P, we derive the program®; 1 = (P — {71,...,¥m}) U {n}.

R5. Negative Folding.Let v be a clause inP, and letDefg be a variant oDefs,
without variables in common with. Suppose that there exists a predicat®gfs,
whose definition consists of a single cladse K «— A, whereA is an atom. Suppose
also that there exists a substitutigrsuch that clause is of the form:H «— G A
—A9 A Gg andvars(K) = vars(A).

By folding v usingd we derive the clausg: H — G A =K9 A Gg. From P, we
derive the progran®,+; = (P, —{v}) U {n}.

The followingclause deletiomule allows us to remove from?, a redundant clause,
that is, a clausey such thatM (P,) = M (P, —{~}). Since the problem of testing
whether or notV (P,) = M (P,—{~}) is undecidable, we will consider some sufficient
conditions based on decidable properties. These suffica@mditions are based on the
notions ofsubsumedlause, clauswith false bodyanduselesslause, which we now
define.

A clause~ is subsumedy a clause of the fornif — G, if v is of the form
(H «— G1 A G2)v for some substitutiolt and conjunction of literal&'». A clausehas
a false bodyf it is of the form H «— Gy A A A=A A Ga.

The set ofuseless predicatda a programP is the maximal set/ of predicates
occurring inP such that a predicateis in U iff every clausey with head predicateg
is of the formp(...) — G1 A g(...) A G2 for someg in U. A clause in a progran®
is uselesdf the predicate of its head is uselessih For example, in the following
program:

p(X) — q(X) A —r(X)

q(X) < p(X)

r(a) —
p andgq are useless predicates, whilés not useless.

R6. Clause DeletionLet~y be a clause iP;. By clause deletiomve derive the program
Py+1 = P, — {7} if one of the following three cases occurs:

R6s ~ is subsumed by a clause iy — {~};
R6f. v has a false body;
R6u. v is useless irP;.

The following goal replacementule allows us to replace a conjunction of literals oc-
curring in the body of a clause by an equivalent conjunctiditerals.

R7. Goal ReplacementLet~: H «— G; A Q A G2 be a clause itP;. Suppose that for
some conjunctiom of literals we have:

M(Py) EVX:.. VX, (3Y7...3Y,Q < 3Z,...3Z, R)
where: () {X1,...,Xu} = vars({H,G1,G2}), (i) {Y1,...,Y,} = vars(Q)—
{X1,..., X}, and (i)y{Z1,...,Zw} = vars(R) — {X1,..., Xu}.
Then bygoal replacemerfrom v we derive the clausg H < G1 A RA G5. From Py,
we derive the new progra,+1 = (P, — {v}) U {n}.

The followingequality introductiorrule R8i allows us to substitute a variable for a
term occurring in a clause, by adding an equality in the bddgeclause. Thequality
eliminationrule R8e can be viewed as the inverse of rule R8i.

R8. Equality Introduction and Elimination. Let v be a clause of the formiH «
Body){X/t}, such that the variabl& does not occur irt and leté be the clause:
H —X=t A Body.

R8i. By equality introductiorwe derive clausé from clausey. If vy occurs inPy then
we derive the new prograf, 1 = (P, — {v}) U {d}.

R8e.By equality eliminatiorwe derive clause from claused. If 6 occurs inPy then
we derive the new prograf, 1 = (P, — {§}) U {7}

Theclause splittingule allows us to reason by cases according to the truth wdlue
a given atom.

R9. Clause Splitting.Let~ : H < G be a clause irP, and A be an atom. Then from
clausey we derive the two clauseg: H «— A A G and~y: H «— —-A A G. From P,
we derive the new progratf, 11 = (P, — {v}) U {71,712}

We say that a transformation sequen@g. .., P, is correct (w.r.t. the perfect
model semantics), i, U Defs, and P, are locally stratified and/ (P, U Defs,) =
M (P,). Note that, since we can introduce new predicate symbolsmguule R1, it
may be the case that for a correct transformation sequenbaved/ (Py) # M (P,).

Transformation sequences constructed by an unrestrisgdfithe transformation
rules may not be correct. Consider, for instance, the progra

Fo: P—q q
The perfect model of is M (Py) ={p, ¢} andM (Py) = p < q. Thus, we may apply
the goal replacement rule R7 and replad®y p in p < q. We derive the new program:

IS P—Dp q—

The transformation sequend®, P, is not correct, becaus@/(P;) = {q} and, thus,
M(Py)# M(Py). Indeed,P, succeeds for the goal while P, does not terminatéor
the goalp.

One can show that the correctness of a transformation seguerguaranteed if
termination is preserved, that is, if the initial programmeates then also the final
program terminates. Now we will state a sufficient conditfon the correctness of
the transformation rules R1-R9 based on the notiolefotermination[3]. An LDNF
derivationis an SLDNF derivation constructed by using te#most selection rulgs].

Definition 1. A programP is calledleft terminatingf all LDNF derivations ofP start-
ing from a ground goal, are finite.

The following Theorem 1 which follows from results presehie [3,9], states that
if we consider a transformation sequence of locally stetifinon-floundering [3,39]
programs, then the preservation of left termination guaesithe preservation of the
perfect model.

Theorem 1 (Correctness of the Transformation Rules)Let P, ..., P, be a trans-
formation sequence such that, foe=0, ..., n, program P, is locally stratified, non-
floundering, and left terminating. Thevl (P, U Defs,) =M (P,).

In Theorem 1 we referred to the notion of left terminationwéwer, weaker notions
of termination may be considered and in [36], for instankeerd is a correctness result
for definite programs based esistential termination

Theorem 1 is theoretically relevant because it relates teectness of a trans-
formation sequence and the preservation of left terminatitowever, this result is of
limited use in practice for two reasons: (1) left terminatis an undecidable property
(as well as the properties of being locally stratified and-flonndering), and (2) left
termination (or other notions of termination) may be todnetve, especially in the
cases where logic programs are used as specifications.

In Section 5 we will show some examples of transformationarftarminating pro-
grams in the context of program verification and model chegkCorrectness results
w.r.t. the perfect model semantics which do not make expl&e of termination prop-
erties can be found in [26,40,52,58,60]. For lack of spaceeoveot report those results
here.

3 Transformation Strategies

In order to construct a transformation sequefge . . , P, such that the final program
P,, is more efficient than the initial prograi,, we need to apply suitable procedures,
calledtransformation strategies

In this section we will describe some of the strategies whiave been proposed in
the literature. In particular, we will present: (i) a stiggefor eliminating unnecessary
variables[50], (ii) a strategy foreducing nondeterminisii26], and (iii) a strategy for
performingprogram specializatiof46].

Several other strategies for transforming logic programsetbeen proposed. For
instance, (i) the strategy for derivirigil recursiveprograms [20], (ii) the strategy for
compiling control[13], and (iii) the strategy fochanging data representatioasd, in
particular, for replacing ordinary lists ldifference-list§68].

3.1 Eliminating Unnecessary Variables

Logic programs written in a declarative style often make ofexistential variables
(see Section 2) anohultiple variablesthat is, variables with multiple occurrences in
the body of a clause. Existential variables and multipléaides are collectively called
unnecessary variablegn the practice of logic programming, multiple occurrenoé
existential variables are often used for storing interraediesults, while multiple oc-
currences of non-existential variables are often useddéinihg predicates which per-
form multiple traversals of the input data structure.

The strategy presented in [50] has the objective of elinmigatinnecessary vari-
ables, thereby avoiding both the construction of intermdiesults and the multiple
traversal of data structures. This strategy is relatedea#forestatiorj67] and thetu-
pling [43] strategies, which were introduced for the case of fiometl programs, and it
is also related tgonjunctive partial deductiof19] which is a technique for eliminating
unnecessary variables that follows th&rtial deduction[37] approach, instead of the
rules+ strategiesapproach.

Now we show an example of application of the strategy for iglating unnecessary
variables.

Example 1 (Two Players Impartial Gam&onsider two players sitting at a table. On
the table there is a heap of matches. The two players plaghateemoves and each
move consists in taking away either one (move 1) or two mat¢heve 2) from the
table. A player wins if after the opponent’s move, he finds retahes on the table.
Let us introduce the predicaten (N, M) which holds iff eitherN =0 or there areV
matches on the table and the player who has to move, wins binmatove M.

Given a natural numbe¥, the following programGame computes a move/, if it
exists, such thawin (N, M) holds.

1. win(N, M) < nat(N) A move(M) Aw(N,M) 5. nat(0) «+

2. w(0,M) « 6. nat(s(N)) < nat(N)
3. w(s(N),1) « —w(N,1) A ~w(N,?2) 7. move(l) «—

4. w(s(s(N)),2) « —w(N,1) A ~w(N,?2) 8. move(2) «

The variableM occurs twice in the body of clause 1. Likewise, the variaBleccurs
twice in the body of clauses 1, 3, and 4. In particular, thetiplgl occurrences oV

in clauses 3 and 4 leads to a computation wif2") time complexity for any query
win(n, M), wheren is a natural number and/ is a variable. We want to improve
the efficiency of the above progra@ameby eliminating the multiple occurrences of
variables. The strategy which allows us to do so consistsiitération of the following
two phases (see [50] for details).

Unfold phase: We apply the unfolding rule one or more times staftiogy clause 1,
thereby deriving a séf of clauses;

Define-Foldphase: For each clausen U with multiple occurrences of variables in its
body, we introduce a suitable new cladday rule R1, and we fold usingd so that the
derived clause has no multiple occurrences of variables in its body.

For each new clause introduced during frefine-Foldphase, we perform one more
iteration of theUnfoldandDefine-Foldphases. We store in a set, call@efs all clauses
introduced during everefine-Foldphase and we introduce a new cladsanly if we
cannot apply the folding rule by using a clause already lgghanto the seDefs

Let us see this strategy for eliminating the multiple ocenoes of variables in ac-
tion in our example.

First Iteration.

Unfold. We apply the positive unfolding rule to clause 1 w.r.t. thign@st atom in its
body and we derive the following two clauses:

9. win(0, M) «— move(M) A w(0, M)

10. win(s(N), M) « nat(N) A move(M) A w(s(N), M)

By several applications of the positive unfolding rule nfrolauses 9 and 10 we derive:
11. win(0, M) — move(M)

12. win(s(N),1) < nat(N) A ~w(N,1) A ~w(N,2)

13. win(s(N),2) — nat(N) Aw(s(N),2)

Define-Fold We eliminate the multiple occurrences of the variabldrom the bodies
of clauses 12 and 13 by applying the definition introductiole IR1 and the positive
folding rule R4 as follows. By rule R1 we introduce the foliog two clauses:

14. newl(N) < nat(N) A ~w(N, 1) A ~w(N,2)

15. new2(N) < nat(N) Aw(s(N), 2)

and by folding clauses 12 and 13 using clauses 14 and 15 atasgdg we derive:

16. win(s(N),1) < newl(N)

17. win(s(N),2) «— new2(N)

without multiple occurrences of variables in their bodigewever, in the bodies of
clauses 14 and 15 there are multiple occurrences of vasialle, in order to eliminate
them, we have to perform one more iteration of thefold and Define-Foldphases
starting from those two clauses.

Second Iteration

Unfold. By unfolding clause 14 w.r.t. the leftmost atom in its bodw, derive:

18. new1(0) «— —w(0,1) A —w(0,2)

19. newl(s(N)) < nat(N) A —~w(s(N),1) A —w(s(N), 2)

By negative unfolding, clause 18 is deleted becau&® 1) (and alsow(0, 2)) holds
(see clause 2). From clause 19, by negative unfolding wauts(V), 1), we derive:

20. newl(s(N)) « nat(N) Aw(N,1) A ~w(s(N),2)

21. newl(s(N)) « nat(N) Aw(N,2) A ~w(s(N),2)

Define-Fold By applying rule R1, we introduce the following two clauses:

22. new3(N) « nat(N) Aw(N,1) A ~w(s(N),2)

23. newd(N) « nat(N) Aw(N,2) A ~w(s(N),2)

By folding clauses 20 and 21 using clauses 22 and 23, respBbgtive derive:

24. newl(s(N)) < new3(N)

25. newl(s(N)) «— newd(N)

without multiple occurrences of variables in their bodi®sce in the clauses 22 and
23 introduced by rule R1, there are multiple occurrencesaatibles, we continue the
execution of the strategy starting from these two clausegedsave done above starting
from clauses 14 and 15. After some more iterations of Winéold and Define-Fold

phases we derive the following final progradamer without multiple occurrences of
variables.

11. win(0, N) < move(N) 26. new2(s(N)) < newl(N)
16. win(s(N),1) < newl(N) 27. new3(0) «—
17. win(s(N),2) < new2(N) 28. new4(0) «—
24. newl(s(N)) < new3(N) 29. new4(s(N)) <« new5(N)
25. newl(s(N)) < newd(N) 30. newb5(s(N)) < newl(N)

It can be verified that for the program derivation we have nomgleted, the local
stratification, non-floundering, and left termination citisehs of Theorem 1 are all sat-
isfied. In particular, the final prografamey, is a left terminatinggdefiniteprogram
(and, hence, locally stratified and non-floundering). TAd$Game) =M (Gamer).

ProgramGamey, runs in nondeterministiO(n) time for any query of the form
win(n, M). In the next section we will present the transformation frmegramGame ,
into a program running in deterministig(n) time.

3.2 Reducing Nondeterminism

In this section we will present theeterminization strategf26] which can be applied
for improving the efficiency of logic programs by reducing tondeterminism of their
computations. We will see this strategy in action by apmytrio the prograntGameyp,
we have derived at the end of the previous section.

Example 2 (Two Players Impartial Game, Continudd)e programGame, is nonde-
terministic because, for any given queryn (n, M), wheren is a ground term denoting
a natural number, SLD-resolution may generate a call wraahifiable with the head
of more than one program clause. For instance >0, the initial callwin(n, M) uni-
fies with the heads of both clause 16 and clause 17. In oth@asiehese two clauses
arenot mutually exclusivevith respect to calls of the forrwin(n, M), wheren is a
ground term.

Non-mutually exclusive clauses can be avoided by transfaymprogramGame,
as follows. By the equality introduction rule R8i, from ctas 16 and 17 we derive:
31. win(s(N), M) — M =1 A newl(N)

32. win(s(N), M) «— M =2 A new2(N)

By applying the definition introduction rule, we introduéetfollowing two clauses:

33. newb(N, M) — M =1A newl(N)

34. newb(N, M) — M =2 A new2(N)

By folding clauses 31 and 32 using clauses 33 and 34 we derive:

35. win(s(N), M) < new6(N, M)

The predicatevin is defined by the two clauses 11 and 35 which are mutually sixeu
w.r.t. calls of the formwin(n, M). Indeed, for any given ground term there is at most
one clause if{11, 35} whose head is unifiable within (n, M).

Now we are left with the problem of transforming the two clesi83 and 34 in-
troduced by rule R1, into a set of mutually exclusive claysest. calls of the form
new6(n, M), wheren is a ground term). The Determinization strategy proceads si
larly to the strategy for eliminating unnecessary varialpleesented in Section 3.1, by it-
erating arlJnfold phase followed by ®efine-Foldohase. During thBefine-Foldohase
we derive mutually exclusive clauses by introducing nevdmates possibly defined by
more than one claus@vhile in the strategy for eliminating unnecessary vagstgach
new predicate is defined by precisely one clause).

Let us now see how the Determinization strategy proceedgiorain our example.
For lack of space, we present the first iteration only.

First Iteration.

Unfold. By positive unfolding, from clauses 33 and 34 we derive:

36. newb(s(N), M) «— M =1A new3(N)

37. newb(s(N), M) — M =1 A newd(N)

38. newb(s(N), M) — M =2 A newl(N)

Define-Fold Clauses 36, 37, and 38 amet mutually exclusiveBy the definition intro-
duction rule we introduce the following three clauses:

39. new7(N, M) — M =1 A new3(N)
40. newT7(N, M) «— M =1 A newd(N)
41. newT(N, M) «— M =2 A newl(N)

By folding clauses 36, 37, and 38 using clauses 39, 40, andceddenve:
42.newb(s(N), M) «— new7(N, M)

10

Clause 42 constitutes a set of mutually exclusive clausesd@6 (because it is one
clause only). In order to transform the newly introducedisés 39, 40, and 41 into
mutually exclusive clauses, we continue the execution @Dkterminization strategy
and, after several iterations we derive the following pavgGame p:

11. win(0, M) «— move(M)

35. win(s(N), M) «— new6(N, M)

42. newb(s(N), M) «— newT7(N, M) 45. new8(0, M) «— M =2
43. new7(0, M) — M=1 46. new8(s(N), M) — new9(N, M)
44, newT(s(N), M) — new8(N, M) 47. new9(s(N), M) — newT7(N, M)

ProgramGame p is left terminating and all conditions of Theorem 1 are $@ik Thus,
M (Game) =M (Gamep). Moreover, progranGame p is a set of mutually exclusive
clauses and computes the winning move, for any natural numbe O(n) determin-
istic time.

3.3 Program Specialization

Programs are often written in a parametric form so that tleeyhe reused in different
contexts, and when a parametric program is reused, one matytevanprove its per-
formance by taking advantage of the new context of use. Timigavement can often
be realized by applying a transformation methodology.ecgdrogram specialization
(see [29,32,37] for introductions).

The most used technique for program specializatipaitial evaluationalso called
partial deductionin the case of logic programs, where it has been first proplog s3]
(see also [14,15,28,38,55,61,63,66] for early work on shisject). Essentially, partial
deduction can be performed by applying the transformatidesrR1 (definition in-
troduction), R2 (positive unfolding), R4 (positive foldjjy and R5 (negative folding)
presented in Section 2 with the following restriction: byeriR1 we can introduce a
new clause of the formewp (X, ..., X)) < A, whered is an atom and(y, ..., X},
are the variables occurring i#. This restriction limits also folding, as rules R4 and R5
are applied using clauses introduced by rule R1.

Program specialization techniques which make use of mosegal rules, such as
unrestricted definition introduction (and, hence, unietgd folding) and goal replace-
ment have been first proposed in [8]. Here we will present aamgte of application
of the specialization strategy introduced in [46], whichiesds partial deduction by
also eliminating unnecessary variables and reducing nermdeism. In our example
we will derive a specialized pattern matcher for a givengrattstarting from a given
parametric pattern matcher. In this example we will use taind logic programs. As
already mentioned, the extension of the transformatioesrtd the case of constraint
logic programs has been studied in [22,26,40].

Example 3 (Constrained Matching)e define a matching relation between two strings
of numbers called, respectively, thattern P and thestring S. We say that the pattern
P matcheghe stringS, and we writem(P, S), iff P =[p1,...,p,] andinS there is

a substring? = [q1, - ..,qn] Such thatfori=1,...,n, p; < ¢.. (Much more complex
matchers can be considered by allowing a matching relatitioclwcan be defined by
any constraint logic program.)

11

The following constraint logic programdatch can be taken as the specification of
our parametric pattern matcher for the pattéxn
L.m(P,S)—app(B,C,S) A app(A,Q, B) A leq(P, Q)
2. app([], Vs, Vs)
3. app([X|Xs), Ys, [X|Zs)) — app(Xs, Ys, Zs)

4. leq([],[]) <
5.1leq([X|Xs],[Y|Ys]) « X <Y Aleq(Xs, Ys)

Suppose that we want to specialize this pattern matcher @¢ospecific pattern
P = [1,0,2]. The specialization strategy we now apply has the sametstaias the
strategies presented in Sections 3.1 and 3.2. The improusrgained through the ap-
plication of the specialization strategy are due to the fiaat this strategy: (i) makes
some precalculations which depend on the specific paffesn|1,0,2], (i) eliminates
unnecessary variables, and (iii) reduces nondetermimsnalready mentioned, these
improvements are possible because we use more powerfsidramation rules with re-
spect to partial deduction (which would only perform thegadeulations of Point (i)).

The specialization strategy starts off by introducing hiéofving clause which de-
fines the specialized matching relation,,:

6. msp(S) — m([1,0,2], 5)

Now we iterateUnfold and Define-Foldphases. The main difference with the applica-
tions of the strategies presented in Sections 3.1 and 3.Pevihat, in order to get mu-
tually exclusive clauses, before applying the definitidndduction rule and the folding
rule, we will apply the clause splitting rule R9 wheneveradea

First Iteration

Unfold. We unfold clause 6 w.r.t. the atom([1,0,2],5). We derive:
7. mgp(S) « app(B,C, S) A app(4, Q, B) A leq([1,0,2], Q)

Define-FoldIn order to fold clause 7, we introduce the following defioiti
8. newl(S) « app(B,C,S) A app(4,Q, B) A leq(]1,0,2], Q)

Then we fold clause 7 and we derive:

9. mgp(S) «— newl(S)

Now the strategy continues by transforming the newly inticetl clause 8.

Second Iteration
Unfold. We unfold clause 8 w.r.t. the atorappandleqg and we get:

10. newl([X|Xs])— 1< X A app(Q, C, Xs) A leq([0,2], Q)
11. newl([X|Xs])«— app(B,C, Xs) A app(A, Q, B) A leq([1,0,2],Q)

Clause Splittingln order to derive mutually exclusive clauses, thereby cattunonde-
terminism, we apply the clause splitting rule to clause Ylsdparating the cases when
1 < X and whenl > X (thatis,—(1 < X)). We get:

12. newl([X|Xs])«—1<X A app(B,C, Xs) A app(A,
A

Q, B) N leq([1,0,2], Q)
13. newl([X|Xs])«—1>X A app(B,C, Xs) A app(A,Q, B Q

0,2
) A leg([1,0,2], Q)

)

12

Define-FoldIn order to fold clauses 10 and 12 we introduce the following tlauses
defining the predicateew?2:
14. new2(Xs) «— app(Q, C, Xs) A leg([0,2], Q)
15. new2(Xs) — app(B,C,Xs) A app(A,Q,B) A leq([1,0,2],Q)
Then we fold clauses 10 and 12 by using the two clauses 14 aadd %e also fold
clause 13 by using clause 8. We derive the following clauses:
16. newl([X|Xs]) «— 1< X A new2(Xs)
17. newl([X|Xs]) < 1>X A newl(Xs)
Note that these two clauses: (i) are specialized w.r.t. if@rination that the first el-
ement of the pattern is 1, (ii) have no unnecessary varigbles (iii) are mutually
exclusive because of the constraihts X and1 > X.

Now the program transformation strategy continues by foamgng clauses 14 and
15, which define predicateew?2. After a few more iterations of th&lnfold, Clause
Splitting andDefine-Foldohases, we derive the following specialized progtdliatch,, :

9. mgp(S) «— newl(S)

16. newl([X|Xs]) — 1< X A new2(Xs)
17. newl([X|Xs]) — 1>X A newl(Xs)
18. new2([X|Xs]) «— 1< X A new3(Xs)
19. new2([X|Xs]) «— 0< X A1>X A newd(Xs)
20. new2([X|Xs]) < 0> X A newl(Xs)
21. new3([X|Xs]) «— 2< X A newb(Xs)
22. newd([X|Xs]) «— 1< X A2> X A new3(Xs)
23.new3([X|Xs]) — 0<X A1>X A newd(Xs)
24. new3([X|Xs]) < 0> X A newl(Xs)
25. newd([X|Xs]) <« 2< X A new6(Xs)
26. newd([X|Xs]) — 1< X A2>X A new2(Xs)
27. newd([X|Xs]) «— 1> X A newl(Xs)
28. new5([X|Xs]) —
29. new6([X|Xs]) —
This final programMatchs, has no occurrences of unnecessary variables and is de-
terministic in the sense that at most one clause can be dpilieng the evaluation
of any ground goal. The efficiency dflatchs, is very high because it behaves like a
deterministic finite automaton (see Figure 1) as the Knutrld-Pratt matcher.

4 Program Synthesis

Program synthesis is a technique for the automatic deoivaif programs from their
formal specifications (see, for instance, [41] for the daion of functional programs
and[16,27,31] for the derivation of logic programs fromtfiosder logic specifications).

In this section we present a transformational approachagram synthesis [26,56].
By following this approach, the synthesis ofeffficientiogic program from a first order
logic specification can be performed in two steps: first (1)tka@slate the specifica-
tion into a possibly inefficient logic program by applyingthioyd-Topor transforma-
tion [39], and then (2) we derive an efficient program by applying transformation
rules and strategies described in Sections 2 and 3.

13

1>X 0>X 1<X/\2>X

<
4— new?2 — n€w3 newo
0>
1>X ISXA2>X||0SXALI>X/0<XAN1>X
2<X

newG

Fig. 1. The finite automaton corresponding to the progréfaich,, made out of clauses 9 and
16-29. The initial state isew1 and the final states areew5 andnew6.

The transformational program synthesis approach will sgmted through the
N-queens example. This example also illustrates that polvprbgramming tech-
niques such as recursion and backtracking, which are ofesepted in the literature
for solving theN-queens problem, can indeed be automatically derived Ingfoama-
tion.

Example 4 [V-queens)We are required to plac (> 0) queens on avV x N chess
board, so that no two queens attack each other, that is, thaytlie on the same
row, column, or diagonal. By using the fact that no two questauld lie on the same
column, the positions of th&/ queens on the chess board can be denoted by the list
L = [i1,...,in] such that, fon <k <N, i is the row where the queen on colurrs
placed.
A specification of the solutioh for the N-queens problem is given by the following

first-order formula:
board(N, L) = g4ef nat(N) A nat _list(L) A length(L, N) A

VX (member(X,L) — in(X,1,N)) A

VYAVBYKYM

(1<K ANK<M A occurs(A, K, L) A\ occurs(B,M,L))

— (A#BANA-B#M—-KANB—-A#M-K))
where the various predicates that occubinrd (N, L), are defined by the following
constraint logic progran®:

nat(0) «—

nat(N) «— N=M+1AM>0A nat(M)

nat_list([]) —

nat_list([H|T]) < nat(H) A nat_list(T)

length([],0) —

length([H|T],N) — N=M+1A M >0 A length(T, M)
member(X,[H|T|) «— X=H

member(X, [H|T]) «— member(X,T)

in(X,M,N) — X=NAM<N

in(X,M,N) — N=K+1AM<KAin(X,M,K)
occurs(X,I,[H|T]) — I=1NX=H

occurs(X, J,[H|T)) «— J=I+1ANI>1A occurs(X,1,T)

14

In this programP we have that: (iyn (X, M, N) iff M <X <N, and (ii) occurs(X, I,
[a1,...,ay]) iff X =a; andI =1i. Now, we would like to synthesize a constraint logic
programR which computes a predicatgieens(N, L) such that, for everyNV and L,
the following property holds:

M(R) & queens(N, L) iff M(P) | board(N, L) (@)
where byM (R) and M (P) we denote the perfect model of the programsnd P,
respectively. By applying the technique presented in [2€]start off from the formula
queens(N, L) < board(N, L) (Whereboard(N, L) is the first order formula defined
above) and, by applying a variant of the Lloyd-Topor transfation, we derive the
following stratified progrant:
queens(N, L) «— nat(N) A nat_list(L) A length(L, N) A ~auz1(L, N) A ~auz2(L)
auxl(L, N) « member(X, L) A —in(X,1,N)
auz2(L) — 1< KANK<MA—-(A#BANA-B#M—-KAB-A#M—K) A

occurs(A, K, L) A occurs(B, M, L)
It can be shown that this variant of the LIoyd-Topor transfation preserves the perfect
model semantics and, thus, we have that, for evéndL:

M(PUF) = queens(N, L) iff M(P) |= board(N,L).

The derived progran® U F' is not satisfactory from a computational point of view,

when using LDNF resolution. Indeed, for a query of the farmens(n, L), wheren

is a nonnegative integer ardis a variable, progran® U F' works by first generating

a valuel for the list L and then testing whether or nbingth(l,n) A —auzl(l,n) A

—auz2(l) holds. This generate-and-test behavior is very inefficewtit may also lead

to nontermination. Thus, the process of program synthasisegds by applying the

definition, unfolding, folding, and goal replacement tfanshation rules, according to

a strategy similar to the ones we have described in SectiawitB,the objective of

deriving a more efficient program. We derive the followindinige programpR:

queens(N, L) — new2(N, L,0)

new2(N,[],K) — N=K

new2(N, [H|T|,K) «— N>K+1A new2(N,T,K+1) A new3(H,T, N,0)

new3(A,[], N, M) — in(A,1,N) A nat(A)

new3(A, [B|T|,N,M) — A#BANA—B#M+1 ANB—A#M+1 A nat(B) A
new3(A, T, N, M+1)

together with the clauses listed above which define the padeliin andnat.

Since the transformation rules preserve the perfect maaehastics, for everyv
and L, we have thatM (R) = queens(N, L) iff M(P U F) = queens(N, L) and,
thus, Property«) holds. It can be shown that prografnterminates for all queries of
the formgqueens(n, L). ProgramR computes a solution for th¥-queens problem in a
clever way: each time a new queen is placed on the board,prortests whether or
not that queen attacks any other queen already placed oménd.b

5 Program Verification

Proofs of program properties are often needed during pnoglevelopment for check-
ing the correctness of software components with respedtdio $pecifications. It has

15

been shown that the transformation rules introduced ir6f[an be used for proving
several kinds of program properties, such as equivaleriédeactions defined by recur-
sive equation programs [34], equivalences of predicatisatkby logic programs [44],
first-order properties of predicates defined by constraigitlprograms [47], and tem-
poral properties of concurrent systems [25,54].

In this section we see the use of program transformationrfmripg program prop-
erties specified either by first-order logic formulas or ymperal logic formulas.

5.1 The Unfold/Fold Proof Method

Through a simple example taken from [47], now we illustratmethod, calledun-
fold/fold proof methodwhich uses the program transformation methodology fovpro
ing first-order properties of constraint logic programsn€ider the following constraint
logic programMemberwhich defines the membership relation between an element and
a list of elements:

member(X,[Y|L]) — X=Y list([]) <

member(X, [Y|L]) < member(X, L) list([H|T)) « list(T)

Suppose we want to show that every finite list of numbers hagaer bound, that is,
we want to prove the following formula:

VL (list(L) — U VX (member(X,L) — X <U)) (8)
The unfold/fold proof method works in two steps, which amaikir to the two steps
of the transformational synthesis approach presenteddatic®es. In the first step, the
formulag is transformed into a set of clauses by applying a variarheiioyd-Topor
transformation, thereby deriving the following program:

P1: prop < —p

p «— list(L) A —q(L)

q(L) « lst(L) A —r(L,U)

r(L,U)—X>U A list(L) A member(X, L)
The predicaterop is equivalent tgs in the sense that/ (Member) = G iff M (Member
UP1) = prop. The correctness of this transformation can be checkeddizirgy that
M(Member) | B < —3L(list(L) A —~(3U (list(L) A—(3X (X > U A list(L) A
member(X, L))))).

In the second step, we eliminate tedstential variable®ccurring inP1 (see Sec-
tion 2 for a definition) by applying the transformation séigy for eliminating unnec-
essary variables presented in Section 3.1. We derive thenfiolg programP2 which
defines the predicatarop:

P2: prop «— —p P D1 p1 < p1

Now, P2 is a propositional program and hadimite perfect model, which i§prop}.
Since it can be shown that all transformations we have pmddrpreserve the perfect
model, we have that/(Member) = g iff M(P2) = prop and, therefore, we have
completed the proof of becauserop belongs taM/ (P2).

The expert reader will note that the unfold/fold proof methvee have now illus-
trated, can be viewed as an extension to constraint logigranes of thequantifier
eliminationmethod, which has well-known applications in the field ofcemiated theo-
rem proving (see [51] for a brief survey).

16

5.2 Infinite-State Model Checking

As indicated in [18], the behavior of a concurrent systenh élralves over time accord-
ing to a given protocol can be modeled astate transition systenthat is, (i) a set5' of
states (ii) aninitial state sy € S, and (iii) atransition relationt C S x .S. We assume
that the transition relationis total, that is, for every state € S there exists at least
one states’ € S, called asuccessor statef s, such that(s, s") holds. Acomputation
pathstarting from a state; (not necessarily, the initial state) is anfinite sequence of
statess; so ... such that, for every>1, there is a transition from; to s; 1, that is,
t(Sl‘, Sl‘+1) holds.

The properties of the evolution over time, that is, the cotapon paths, of a concur-
rent system can be specified by using a formula of a tempaya tmlledComputation
Tree Logic(or CTL, for short [18]). The formulas of CTL are built from avgn set
of elementary propertieeach of which may or may not hold in a particular state, by
using: (i) the connectivesiot andand, (ii) the quantifiers along a computation path:
g (‘for all states on the path’ or ‘globally’)f (‘there exists a state on the path’ or ‘in
the future’),z (‘next time’), andwu (‘until’), and (iii) the quantifiers over computation
paths:q (‘for all paths’) ande (‘there exists a path’). Quantified formulas are written in
a compact form and, for instance, we will writgg(F') andag(F'), instead of(f(F))
anda(g(F)), respectively.

Very efficient algorithms and tools exist for verifying teorpl properties ofinite
state transition systemghat is, systems where the sebf states is finite [18]. How-
ever, many concurrent systems cannot be modeled by finfeetsasition systems. The
problem of verifying CTL properties dffinite state transition systems is, unfortunately,
undecidable and, thus, it cannot be tackled by traditionadehchecking techniques.
For this reason various methods based on automated thesosinghave been pro-
posed for extending model checking so to deal with infiniteessystems (see [21] for
a method based on constraint logic programming). Due to hbgeamentioned unde-
cidability limitation, all these methods are necessarilyomplete.

Now we present a method for verifying temporal propertiegfiofte or infinite)
state transition systems which is based on transformag@miques for constraint logic
programs [25]. As an example we consider Bakeryprotocol [35] and we verify that
it satisfies thenutual exclusiorandstarvation freedonproperties.

Let us consider two agentd and B which want to access a shared resource in
a mutually exclusive way by using the Bakery protocol. Tretesof the agent is
represented by a pajri1, A2), whereAl, called thecontrol stateis an element of the
set{t,w,u} (wheret, w, andu stand forthink, wait, anduse respectively) andi2,
called thecounter is a natural number. Analogously, the state of ageis represented
by a pair(B1, B2). The stateof the system consisting of the two agentsand B,
whose states aréA1, A2) and (B1, B2), respectively, is represented by the 4-tuple
(A1, A2, B1, B2). The transition relation of the two agent system from an old state
OldS to a new stateVewsS, is defined as follows:

t(0ldS, NewS) < t4(0IldS, NewS)
t(0ldS, NewS) «— tg(0ldS, NewS)

where the transition relatioty for the agentd is given by the following clauses whose
bodies are conjunctions of constraints (see also Figure 2):

17

A2:=0

(A2:=B2+1 A2< B2V B2=0 W
((think, A2, B1, BQH(wait, A2, Bl1, B2>]—>((use, A2, B1, B2>]

Fig. 2. The Bakery protocol: a graphical representation of thesitam relationts for the
agentA. The assignmenk := e on the arc from a state to a states. tells us that the value of
the variableX in s2 is the value of the expressienin s;. The boolean expressidnon the arc
from a states; to a states; tells us that the transition fromy to s, takes place ifb holds.

ta((t, A2, B1, B2), (w, A21, B1, B2)) « A21=B2+1

ta((w, A2, B1, B2), (u, A2, B1, B2)) «— A2< B2

ta((w, A2, B1, B2), (u, A2, B1, B2)) « B2=0

ta((u, A2, B1, B2), (t, A21, B1, B2)) « A21=0

The following similar clauses define the transition relatig for the agent3:
tp((Al, A2, t, B2), (Al, A2, w, B21)) « B21=A2+1

tp((Al, A2, w, B2), (A1, A2, u, B2)) « B2< A2

ts((Al, A2, w, B2), (A1, A2, u, B2)) « A2=0

tp((Al, A2, u, B2), (A1, A2,t, B21)) « B21=0

Note that the system has an infinite number of states, becausgers may increase in
an unbounded way.

The temporal properties of a transition system are spedifjatkefining a predicate
sat(S, P) which holds if and only if the temporal formul is true at the stat®'. For
instance, the following clauses define the predicatésS, P) for the cases wher® is:
(i) an elementary formul&’, (ii) a formula of the formnot(F"), (iii) a formula of the
form and(Fi, F»), and (iv) a formula of the formaf (F'):
sat(S, F) «— elem(S, F)
sat(S, not(F)) < —sat(S, F)
sat(X, and(Fy, F3)) < sat(X, F1) A sat(X, F»)
sat(S, ef (F)) « sat(S, F)
sat(S, ef (F)) « t(S,T) A sat(T, ef (F))
whereelem (S, F') holds iff F' is an elementary property which is true at stateln
particular, for the Bakery protocol we have the followinguse:
elem({u, A2, u, B2), unsafe) «—
that is,unsafeholds at a state where both ageAtandB are in the control state, that
is, both agents use the shared resource at the same time.\&/ghlagsat (S, ef (F'))
holds iff there exists a computation pattstarting from states' and there exists a state
S’ on7 such thatF is true atS’.

The mutual exclusion property holds for the Bakery protdfdblere is no computa-
tion path starting from the initial state such that at a statthis path theinsafeproperty
holds. Thus, the mutual exclusion property holdsdf({¢, 0, ¢,0), not(ef (unsafe)))
belongs to the perfect modél (P,,..), where: (i){¢,0, t,0) is the initial state of the
system and (ii)P,,.; is the program consisting of the clauses for the predidates,
tg, sat andelemdefined above.

18

In order to show thatat((t,0, t,0), not(ef (unsafe))) € M(Py.es), We introduce
a new predicatenez defined by the following clause:

mez — sat((t,0,t,0), not(ef (unsafe))) (1)

and we transform the prograf,.., U {u} into a new progran®) which contains a
clause of the formmexz < (see [25] for details). This transformation is performed
by applying the definition, unfolding, and folding rules anting to a strategy similar
to the specialization strategy presented in Section 3&,ith a strategy that derives
specialized clauses for the evaluation of the predigate. From the correctness of the
transformation rules we have thaez € M(Q) iff mez € M (P U{ps}) and, hence,
sat({t,0,t,0), not(ef (unsafe))) € M(Pmes), that is, the mutual exclusion property
holds.

By applying the same methodology we can also provestaeyation freedonprop-
erty for the Bakery protocol. This property ensures thatgang sayA, which requests
the shared resource, will eventually get it. This propestgxpressed by the CTL for-
mula: ag(wa — af(ua)), which is equivalent tonot(ef (and(wa, not(af(ua))))).
The clauses defining the elementary propertigandu 4 are:

elem({w, A2, B1, B2}, wa) <
elem({u, A2, B1, B2),ua) «—

The clauses defining the predicatg (.S, P) for the case wher® is a CTL formula of
the formaf (F') are:

sat(X, af (F)) « sat(X, F)

sat(X, af (F))« ts(X, Ys) A sat_all(Ys, af (F))
sat_all([], F)

sat-all([X|Xs], F)«— sat(X, F) A sat_all(Xs, F)

wherets(X, Ys) holds iff Ys is a list of all the successor states of the stdteFor
instance, one of the clauses defining predi¢aia our Bakery example is:

ts((t, A2, t, B2), [(w, A21, t, B2), (t, A2, w, B21)]) « A21=B2+1 A B21=A2+1

which says that the state, A2, t, B2) has two successor statés!, A21, t, B2), with
A21=B2+1, and(t, A2, w, B21), with B21 = A2+1.

Let Py; denote the program obtained by addindg}g., the clauses defining: (i) the
elementary properties, andu4, (ii) the predicatets, (iii) the atomsat(X, of (F)),
and (iv) the predicateat_all. In order to verify the starvation freedom property we
introduce the clause:

sf — sat((t,0,t,0), not(ef (and(wa, not(af(ua)))))) (o)

and, by applying the definition, unfolding, and folding mibccording to the specializa-
tion strategy, we transform the prografy U{c} into a new progranik which contains
a clause of the formf —.

Note that the derivations needed for verifying the mutualesion and the starva-
tion freedom properties can be done in a fully automatic wayding the experimental
constraint logic program transformation system MAP [42].

19

6 Conclusions and Future Directions

We have presented the program transformation methodoludjwa have demonstrated
that it is very effective for: (i) the derivation of correafeware modules from their for-
mal specifications, and (i) the proof of properties of pags. Since program transfor-
mation preserves correctness and improves efficiencyyérg useful for constructing
software products which are provably correct and whose éintespace performance is
very high.

During the past twenty-five years the research communitially has given a very
relevant contribution to the program transformation fiehdl,amore in general, to the
field of logic-based program development. The extent ofabigtribution is witnessed
by the numerous scientific papers, a small fraction of whiabhehbeen mentioned in
this brief survey.

The contribution of the Italian research community has bésen carried out through
the participation in several national and internationaéegch projects which included
as an important topic the transformation methodology ofdggograms. In particu-
lar, we would like to mention the following projects: (i) ERA Alpes (1984-89),
(ii) Compulog | and Compulog Il (1989-95), (iii) the INTAS éject ‘Efficient Sym-
bolic Computing’ (1994-98), (iv) the Network of Excellenoa Computational Logic,
(v) the Humal Capital and Mobility Project ‘Logic Programr8iesis and Transfor-
mation’ (1993-96), (vi) the Italian ‘Progetto Finalizzalioformatica 1’ (1989-93),
(vii) the ANATRA Project ‘Strumenti per I'analisi e la tramfmazione dei programmf’
(1994-95), (viii) ‘Programmazione Logica: Strumenti peabsi e trasformazione di
programmi, Tecniche di ingegneria del software, Esterigion vincoli, concorrenza
ed oggetti’ (1995-96), (ix) Progetto Speciale ‘Verificaahsi e trasformazione di pro-
grammi logici’ (1998-99), and (x) ‘Tecniche formali per lpexifica, I'analisi, la ver-
ifica, la sintesi e la trasformazione di sistemi softwaréd98—-2000). These projects
were supported by the European Union, the Italian Minisfrigducation, University,
and Research (MIUR), and the Italian National Research €Ib(@NR).

All these projects gave to the research community in Italalimable opportuni-
ties to cooperate with other scientific groups in Europetrengithen their theoretical
background on logic programming and to produce powerfuksys and tools for logic
program development, logic program analysis, knowledgessentation and manipu-
lation using logic. Research teams in Bologna, Padua, R@ae, and Venice, among
others, grew considerably strong through those projecislair expertise and compe-
tence spread all over the international community and gimee, their high reputation
has been widely recognized.

Finally, the Italian research community has also given & k&evant contribution to
the organization and the scientific success of the variouings dedicated to the dis-
semination of research in logic program transformatioohsas the series of Workshops
and Symposia on Logic-Based Program Synthesis and Tranafion (LOPSTR), held
annually since 1991, and on Partial Evaluation and SemsaBidsed Program Manipu-
lation (PEPM).

Now, looking at the directions for future research, we wdikd to point out that,
in order to make program transformation even more effectieneed to increase the

20

level of automation of the transformation strategies fagpam improvement, program
synthesis, and program verification. Furthermore, thesgegfies should be incorpo-
rated into powerful tools for program development.

Another important direction for future research is the exglion of new areas of
application of the transformation methodology. In this gawe have described the use
of program transformation for verifying temporal propestdf infinite state concurrent
systems. Similar techniques could also be devised forwegfother kinds of prop-
erties and other classes of systems, such as security pespef distributed systems,
safety properties of hybrid systems, and protocol confoweaf multiagent systems.
A more challenging issue is the fully automatic synthesisaffware systems which
are guaranteed to satisfy some given properties specifititebyesigner.

7 Acknowledgements

We would like to thank the members of GULP, the Italian Asation for Logic Pro-
gramming, who throughout all these years have been for useatt gcientific support
and encouragement. Their cooperation and friendship ayenwvech appreciated.

Many thanks also to Agostino Dovier and Enrico Pontellitedi of this book, for
their invitation to present the contributions of the pragraansformation methodology
in the field of logic programming.

References

1. M. Alpuente, M. Falaschi, G. Moreno, and G. Vidal. A trarshation system for lazy
functional logic programs. In A. Middeldorp and T. Sato,teds, Proceedings of the 4th
Fuji International Symposium on Functional and Logic Pragming, FLOPS'99Lecture
Notes in Computer Science 631, pages 147-162. Spring&agydi999.

2. K. R. Apt and R. N. Bol. Logic programming and negation: Aw&y. Journal of Logic
Programming 19, 20:9-71, 1994,

3. K. R. Apt and D. Pedreschi. Reasoning about terminatigruoé logic programsinforma-
tion and Computation106:109-157, 1993.

4. C. Aravindan and P. M. Dung. On the correctness of unfold/ffransformation of normal
and extended logic programdournal of Logic Programming24(3):201-217, 1995.

5. D. Basin, Y. Deville, P. Flener, A. Hamfelt, and J.F. Ndes Synthesis of programs in
computational logic. In M. Bruynooghe and K.-K. Lau, edg#dProgram Development in
Computational LogicSpringer-Verlag, 2004.

6. A. Bossi and N. Cocco. Basic transformation operationgkvpreserve computed answer
substitutions of logic programsournal of Logic Programmingl6(1&2):47—-87, 1993.

7. A.Bossiand N. Cocco. Preserving universal terminatiooutgh unfold/fold. IrProceedings
ALP '94, Lecture Notes in Computer Science 850, pages 269-286nB&894. Springer-
Verlag.

8. A. Bossi, N. Cocco, and S. Dulli. A method for specializingic programs ACM Transac-
tions on Programming Languages and Systet§2):253—-302, April 1990.

9. A.Bossi, N. Cocco, and S. Etalle. Transforming normagpams by replacement. In A. Pet-
torossi, editor,Proceedings 3rd International Workshop on Meta-Prograngnin Logic,
Meta '92, Uppsala, Swedehecture Notes in Computer Science 649, pages 265-279nBerl
1992. Springer-Verlag.

21

10

11.

12.

13.

14.

15.

16.

17.
18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

A. Bossi, N. Cocco, and S. Etalle. Simultaneous replacgnm normal programsJournal

of Logic and Computatigré(1):79-120, 1996.

A. Bossi, N. Cocco, and S. Etalle. Transforming leftiigrating programs: The reordering
problem. In M. Proietti, editor-ogic Program Synthesis and Transformation, Proceedings
LOPSTR '95, Arnhem, The Netherlandecture Notes in Computer Science 1048, pages
33-45, Berlin, 1996. Springer-Verlag.

A. Bossi and S. Etalle. Transforming acyclic prograt@M Transactions on Programming
Languages and Systemi$(4):1081-1096, July 1994.

M. Bruynooghe, D. De Schreye, and B. Krekels. Compiliagtml. Journal of Logic Pro-
gramming 6:135-162, 1989.

M. Bugliesi, E. Lamma, and P. Mello. Partial evaluation liierarchies of logic theories.
In S. Debray and M. Hermenegildo, editoksigic Programming: Proceedings of the 1990
North American Conference, Austin, Texas, October 1p8@es 359-376. The MIT Press,
1990.

M. Bugliesi and F. Rossi. Partial evaluation in Prolognm® Improvements about Cut. In
E. L. Lusk and R. A. Overbeek, editorspgic Programming: Proceedings of the North
American Conference 1989, Cleveland, Ohio, October 1p&§es 645—-660. The MIT Press,
1989.

A. Bundy, A. Smaill, and G. Wiggins. The synthesis of togiograms from inductive proofs.
In J. W. Lloyd, editor,Computational Logic, Symposium Proceedings, Brusselgeiiber
199Q pages 135-149, Berlin, 1990. Springer-Verlag.

R. M. Burstall and J. Darlington. A transformation systéor developing recursive pro-
grams.Journal of the ACM24(1):44—-67, January 1977.

E. M. Clarke, O. Grumberg, and D. Pelddodel CheckingMIT Press, 1999.

D. De Schreye, R. Gluck, J. Jgrgensen, M. Leuschel, Btevis, and M. H. Sgrensen. Con-
junctive partial deduction: Foundations, control, algoris, and experimentsJournal of
Logic Programming41(2-3):231-277, 1999.

S. K. Debray. Optimizing almost-tail-recursive Projmggrams. InProceedings IFIP In-
ternational Conference on Functional Programming Langesgnd Computer Architecture,
Nancy, FranceLecture Notes in Computer Science 201, pages 204-21ndaprerlag,
1985.

G. Delzanno and A. Podelski. Constraint-based deduativdel checking.International
Journal on Software Tools for Technology Trans&{8):250-270, 2001.

S. Etalle and M. Gabbrielli. Transformations of CLP mledu Theoretical Computer Sci-
ence 166:101-146, 1996.

S. Etalle, M. Gabbrielli, and E. Marchiori. A transfortioa system for CLP with dynamic
scheduling and CCP. IREPM 97, pages 137-150. ACM Press, 1997.

S. Etalle, M. Gabbrielli, and M. C. Meo. Transformatiaiscp programsACM Transac-
tions on Programming Languages and Syste2363):304—-395, 2001.

F. Fioravanti, A. Pettorossi, and M. Proietti. Verifgi€TL properties of infinite state sys-
tems by specializing constraint logic programs.Pitoceedings of the ACM Sigplan Work-
shop on Verification and Computational Logic VCL'01, Flarer(ltaly), Technical Report
DSSE-TR-2001-3, pages 85-96. University of Southamptdf),2001.

F. Fioravanti, A. Pettorossi, and M. Proietti. Transfation rules for locally stratified con-
straint logic programs. In K.-K. Lau and M. Bruynooghe, edit Program Development in
Computational LogicLecture Notes in Computer Science 3049, pages 292—-34hgepr
Verlag, 2004.

P. Flener, K.-K. Lau, M. Ornaghi, and J. Richardson. Astret formalization of correct
schemas for program synthesiaurnal of Symbolic ComputatipB80(1):93-127, 2000.

J. P. Gallagher. Transforming programs by specialigitegpreters. IrProceedings Seventh
European Conference on Atrtificial Intelligence, ECAI,§&ges 109-122, 1986.

22

29

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44.

45.

46.

47.

48.

. J. P. Gallagher. Tutorial on specialisation of logiogueans. InProceedings of the 1993 ACM
SIGPLAN Symposium on Partial Evaluation and Semantics @Bsagram Manipulation,
PEPM '93, Copenhagen, Denmankages 88—-98. ACM Press, 1993.

P. A. Gardner and J. C. Shepherdson. Unfold/fold tramsftions of logic programs. In J.-
L. Lassez and G. Plotkin, editor€omputational Logic, Essays in Honor of Alan Robinson
pages 565-583. MIT, 1991.

C. J. Hogger. Derivation of logic progranidaurnal of the ACM28(2):372—-392, 1981.

N. D. Jones, C. K. Gomard, and P. Sestdfartial Evaluation and Automatic Program
Generation Prentice Hall, 1993.

H. J. Komorowski. Partial evaluation as a means for @rfeing data structures in an applica-
tive language: A theory and implementation in the case aiogrdn Ninth ACM Symposium
on Principles of Programming Languages, Albuquerque, Nexitb, USApages 255-267,
1982.

L. Kott. The McCarthy’s induction principle: ‘oldy’ bugoody’. Calcolg 19(1):59-69,
1982.

L. Lamport. A new solution of Dijkstra’s concurrent pragiming problem.Communica-
tions of the ACM17(8):453—-455, 1974.

K.-K. Lau, M. Ornaghi, A. Pettorossi, and M. Proietti. r@atness of logic program trans-
formation based on existential termination. In J. W. Llogditor, Proceedings of the 1995
International Logic Programming Symposium (ILPS '93ges 480-494. MIT Press, 1995.
M. Leuschel and M. Bruynooghe. Logic program specittisathrough partial deduction:
Control issuesTheory and Practice of Logic Programming(4&5):461-515, 2002.

G. Levi and G. Sardu. Partial evaluation of meta progrem@smultiple worlds logic lan-
guage.New Generation Computing(2&3):227-248, 1988.

J. W. Lloyd. Foundations of Logic ProgrammingSpringer-Verlag, Berlin, 1987. Second
Edition.

M. J. Maher. A transformation system for deductive dasabmodules with perfect model
semanticsTheoretical Computer Scienc&10:377-403, 1993.

Z. Manna and R. Waldinger. A deductive approach to pragsginthesis. ACM Toplas
2:90-121, 1980.

The MAP transformation system. http://www.iasi.ahwproietti/system.html, 1995-2010.
A. Pettorossi. A powerful strategy for deriving effidiggrograms by transformation. In
ACM Symposium on Lisp and Functional Programmipages 273-281. ACM Press, 1984.
A. Pettorossi and M. Proietti. Synthesis and transftionaof logic programs using un-
fold/fold proofs. Journal of Logic Programming41(2&3):197-230, 1999.

A. Pettorossi and M. Proietti. Perfect model checkirgywifold/fold transformations. In
J. W. Lloyd, editor,Proceedings of the First International Conference on Cotational
Logic (CL 2000), London, UK, 24-28 Juylyecture Notes in Artificial Intelligence 1861,
pages 613-628. Springer-Verlag, 2000.

A. Pettorossi, M. Proietti, and S. Renault. Derivatidrefficient logic programs by spe-
cialization and reduction of nondeterminisntigher-Order and Symbolic Computation
18(1-2):121-210, 2005.

A. Pettorossi, M. Proietti, and V. Senni. Proving prdijesr of constraint logic programs
by eliminating existential variables. In S. Etalle and Mu3zczyhski, editordRroceedings
of the 22nd International Conference on Logic Programmil@_p '06), Lecture Notes in
Computer Science 4079, pages 179-195. Springer-Verl@6, 20

A. Pettorossi, M. Proietti, and V. Senni. Automatic estness proofs for logic program
transformations. In V. Dahl and I. Niemela, editoPspceedings of the 23rd International
Conference on Logic Programming (ICLP 'QTecture Notes in Computer Science 4670,
pages 364-379, 2007.

23

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

M. Proietti and A. Pettorossi. Semantics preservingstiamation rules for Prolog. 1h991
ACM SIGPLAN Symposium on Partial Evaluation and Semantise® Program Manipu-
lation, PEPM '91, Yale University, New Haven, Connecti¢l§A pages 274-284. ACM
Press, 1991.

M. Proietti and A. Pettorossi. Unfolding-definitionlding, in this order, for avoiding un-
necessary variables in logic prograrifieoretical Computer Scienck42(1):89-124, 1995.
M. O. Rabin. Decidable theories. In Jon Barwise, editandbook of Mathematical Logic
pages 595-629. North-Holland, 1977.

A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnad,laV. Ramakrishnan. Beyond
Tamaki-Sato style unfold/fold transformations for nornhagic programs. International
Journal on Foundations of Computer Scient8(3):387-403, 2002.

A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnad, la V. Ramakrishnan. An
unfold/fold transformation framework for definite logicqgrams. ACM Transactions on
Programming Languages and Syste2&:264-509, 2004.

A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnak, Ramakrishnan, and S. A.
Smolka. Verification of parameterized systems using logigam transformations. IRro-
ceedings of the Sixth International Conference on ToolsAdgdrithms for the Construction
and Analysis of Systems, TACAS 2000, Berlin, Gerriaegture Notes in Computer Science
1785, pages 172—-187. Springer, 2000.

S. Safra and E. Shapiro. Meta interpreters for real. 1d.Hugler, editor,Proceedings
Information Processing 86pages 271-278. North-Holland, 1986.

T. Sato and H. Tamaki. Transformational logic programtisgsis. InProceedings of the
International Conference on Fifth Generation Computert&ys pages 195-201. ICOT,
1984.

H. Seki. A comparative study of the well-founded and ttadle model semantics: Trans-
formation’s viewpoint. InProceedings of the Workshop on Logic Programming and Non-
monotonic Logicpages 115-123. Cornell University, 1990.

H. Seki. Unfold/fold transformation of stratified pragns. Theoretical Computer Science
86:107-139, 1991.

H. Seki. Unfold/fold transformation of general logiograms for well-founded semantics.
Journal of Logic Programmingl6(1&2):5-23, 1993.

H. Seki. On inductive and coinductive proofs via unffutll transformations. IiProceedings
of the 15th International Symposium on Logic Based Progrgntt@sis and Transformation
(LOPSTR '09) Springer-Verlag, 2009.

L. Sterling and R. D. Beer. Incremental flavour-mixingrata-interpreters for expert system
construction. IrProceedings 3rd International Symposium on Logic ProgramgprSalt Lake
City, Utah, USApages 20-27. IEEE Press, 1986.

P. Tacchella, M. Gabbrielli, and M. C. Meo. Unfolding itHR. In Proceedings of the 9th
International ACM SIGPLAN Conference on Principles and d®ie of Declarative Pro-
gramming (PPDP '07)pages 179-186, 2007.

A. Takeuchi and K. Furukawa. Partial evaluation of Pggbwograms and its application
to meta-programming. In H. J. Kugler, editétoceedings of Information Processing ;86
pages 415-420. North-Holland, 1986.

H. Tamaki and T. Sato. Unfold/fold transformation ofitogrograms. In SA. Tarnlund, ed-
itor, Proceedings of the Second International Conference ondfegigramming (ICLP’84)
pages 127-138, Uppsala, Sweden, 1984. Uppsala University.

F. Toni and R. Kowalski. An argumentation-theoretic rapph to logic program transfor-
mation. In M. Proietti, editorl.ogic Program Synthesis and Transformation, Proceedings
LOPSTR '95, Arnhem, The Netherlandsecture Notes in Computer Science 1048, pages
61-75. Springer-Verlag, 1996.

24

66. R. Venken. A Prolog meta-interpretation for partialleation and its application to source-
to-source transformation and query optimization. In T. @8, editorProceedings of ECAI
‘84, pages 91-100. North-Holland, 1984.

67. P. L. Wadler. Deforestation: Transforming programslimieate trees. Theoretical Com-
puter Science73:231-248, 1990.

68. J. Zhang and P. W. Grant. An automatic difference-lestg¢formation algorithm for Prolog.
In Proceedings 1988 European Conference on Atrtificial Irdelice, ECAI '88pages 320—
325. Pitman, 1988.

25

