
Semantics and Controllability of
Time-Aware Business Processes

E. De Angelis (1), F. Fioravanti (1), M.C. Meo (1)

 A. Pettorossi (2), M. Proietti (3)

(1) DEC, University “G. d’Annunzio” of Chieti-Pescara, Italy

(2) DICII, University of Rome Tor Vergata, Rome, Italy
(3) CNR-IASI, Rome, Italy

-- in memory of Professor Helena Rasiowa --

Concurrency Specification & Programming 2017
25-27 September 2017, Warsaw (Poland)

l  Business processes are ‘graphs’ for coordinating the activities of
an organization towards a business goal.

l  An example: Purchase Order . A customer adds items to the
shopping cart and pays. Then, the vendor issues and sends the
invoice, and in parallel, prepares and delivers the order.

 There is no information on the durations of tasks.

Business Processes

CS&P 2017 - Warsaw (Poland)

start end

[1,6] [1,2]

[1,2] [1,3]

[1,2]

[2,4]

[1,3]

Time-Aware Business Processes

l  Information on the duration: Intervals : d ∈ [dmin, dmax] ⊂ N

CS&P 2017 - Warsaw (Poland)

l  Time-Reachability: checking whether or not to go from s to e takes
less than k units of time.

Two problems :

[1,6] [1,2]

[1,2] [1,3]

[1,2]

[2,4]

[1,3]

Time-Aware Business Processes

CS&P 2017 - Warsaw (Poland)

l  Time-Reachability: checking whether or not to go from s to e takes
less than k units of time.

l  Controllability: finding the durations of some controllable tasks
 so that a given time-reachability property holds.

controllable

controllable

Two problems :

l  Information on the duration: Intervals : d ∈ [dmin, dmax] ⊂ N

Graphical notation for modeling organizational processes.
BPMN is a standard.
l  Tasks : atomic activities

l  Events : something that happens

l  Gateways: either branching or merging

l  Flows : order of execution (drawn as arrows)

Business Process Modeling and Notation
(BPMN)

start end

s e

CS&P 2017 - Warsaw (Poland)

task1

CS&P 2017 - Warsaw (Poland)

Branch Gateways
l  single incoming flow, multiple outgoing flows

l  exclusive branch gateway (XOR)

-  upon activation of the incoming flow
exactly one outgoing flow
is activated

l  parallel branch gateway (AND)

-  upon activation of the incoming flow
all outgoing flows
are activated

CS&P 2017 - Warsaw (Poland)

Branch Gateways
l  single incoming flow, multiple outgoing flows

l  exclusive branch gateway (XOR)

-  upon activation of the incoming flow
exactly one outgoing flow
is activated

l  parallel branch gateway (AND)

-  upon activation of the incoming flow
all outgoing flows
are activated

CS&P 2017 - Warsaw (Poland)

Branch Gateways
l  single incoming flow, multiple outgoing flows

l  exclusive branch gateway (XOR)

-  upon activation of the incoming flow
exactly one outgoing flow
is activated

l  parallel branch gateway (AND)

-  upon activation of the incoming flow
all outgoing flows
are activated

Merge Gateways
l  multiple incoming flows, single outgoing flow

l  exclusive merge gateway (XOR)

-  the outgoing flow is activated
upon activation of
one of the incoming flows

l  parallel merge gateway (AND)

-  the outgoing flow is activated
upon activation
of all the incoming flows

CS&P 2017 - Warsaw (Poland)

Merge Gateways
l  multiple incoming flows, single outgoing flow

l  exclusive merge gateway (XOR)

-  the outgoing flow is activated
upon activation of
one of the incoming flows

l  parallel merge gateway (AND)

-  the outgoing flow is activated
upon activation
of all the incoming flows

CS&P 2017 - Warsaw (Poland)

Merge Gateways
l  multiple incoming flows, single outgoing flow

l  exclusive merge gateway (XOR)

-  the outgoing flow is activated
upon activation of
one of the incoming flows

l  parallel merge gateway (AND)

-  the outgoing flow is activated
upon activation
of all the incoming flows

CS&P 2017 - Warsaw (Poland)

CS&P 2017 - Warsaw (Poland)

Semantics of time-aware BPMN

l  Transition relation between states: < F,t > → < F’,t’ >

l  F : a set of fluents (i.e., a set of properties that hold at time point t)

- begins(x) x begins its execution (enactment)
- enacting(x,r) x is executing with r residual time to completion
- completes(x) x completes its execution
- enables(x,y) x enables its successor y

 x, y denote either tasks, or events, or gateways

l  seq(x,y) there is an arrow from x to y

l  t : time point (i.e., a non-negative integer)

 duration(x,d) the duration of x is d

CS&P 2017 - Warsaw (Poland)

Semantics of time-aware BPMN

completes(x)

begins(x)

enacting(x, r) with 0 ≤ r ≤ d

r

task(x) ←

duration(x, d) ← 3 ≤ d ≤ 4
 x is

d

- durations of events and gateways are assumed to be 0

CS&P 2017 - Warsaw (Poland)

Semantics of time-aware BPMN

Instantaneous transition:

begins(x) enacting(x, d)

< F,t > → < F’,t >

CS&P 2017 - Warsaw (Poland)

Semantics of time-aware BPMN

enacting(x,0) completes(x)

< F,t > → < F’,t > Instantaneous transition:

CS&P 2017 - Warsaw (Poland)

Semantics of time-aware BPMN

(S2) If the parallel branch x completes,
 then x enables istantaneously all successors s of x

x

< F,t > → < F’,t > Instantaneous transitions:

CS&P 2017 - Warsaw (Poland)

Semantics of time-aware BPMN

(S2) If the parallel branch x completes,
 then x enables istantaneously all successors s of x

x

< F,t > → < F’,t > Instantaneous transitions:

CS&P 2017 - Warsaw (Poland)

Semantics of time-aware BPMN

Instantaneous transitions:

(S4) If all predecessors p of the parallel merge x enable x,
 then the execution of x begins istantaneously.

x

< F,t > → < F’,t >

CS&P 2017 - Warsaw (Poland)

Semantics of time-aware BPMN

Instantaneous transitions:

(S4) If all predecessors p of the parallel merge x enable x,
 then the execution of x begins istantaneously.

x

< F,t > → < F’,t >

CS&P 2017 - Warsaw (Poland)

Semantics of time-aware BPMN

The time-elapsing transition:

Time elapses when no istantaneous transition can occur.

All enacting tasks proceed in parallel for a time equal to the
minimum of all residual times.

< F,t > → < F’,t’ >

CS&P 2017 - Warsaw (Poland)

Semantics of time-aware BPMN

F = { enacting(a, 5),
 enacting(b, 3) }

F = { enacting(a, 2),
 enacting(b, 0) }

at time: T at time: T+3

< F,t > → < F’,t’ >

CS&P 2017 - Warsaw (Poland)

Reachability

 State <F,t > is reachable iff
 for some durations in the given intervals,

<{begins(start)},0> →* <F,t >

CS&P 2017 - Warsaw (Poland)

Semantics in action

<{begins(start)},0> →* <{begins(g1)}, 0>
 (S1) → <{enacting(g1,0)}, 0> % duration(g1,0)
 (S6) → <{completes(g1)}, 0>
 (S2) → <{enables(g1,a),enables(g1,b)}, 0>
 (S5) → <{begins(a),enables(g1,b)}, 0>
 (S1) → <{enacting(a,2),enables(g1,b)}, 0> % 2 in [1,2] for a
 (S5 S1) →2 <{enacting(a,2),enacting(b,2)}, 0> % 2 in [2,3] for b
 (S7) → <{enacting(a,0),enacting(b,0)}, 2>
 (S6 S6) →2 <{completes(a),completes(b)}, 2>
 (S3 S3) →2 <{enables(a,g2),enables(b,g2)}, 2>
 (S4) → <{begins(g2)}, 2>
 →* <{completes(end)}, 2>

 s e

a

b g1 g2

[1,2]

[2,3]

CS&P 2017 - Warsaw (Poland)

Weak Controllability
l  Assume:

-  some tasks are controllable (e.g., internal to the organization)
-  some tasks are uncontrollable (e.g., external to the organization)

l  Weak Controllabilty: For all durations of the uncontrollable tasks (within
the given time intervals), we can determine durations of the controllable
tasks (within the given time intervals), s.t. a state can be reached and a
given time constraint is satisfied.

constraint: 3 ≤ Ttotal ≤ 7
a solution: if Dpur=1 then Dcc=Dcol=2 else Dcc=Dcol=1

 s e

cc_charge

collect_items

purchase

[1,5]

[1,3]

[1,2]
uncontrollable

controllable

controllable

CS&P 2017 - Warsaw (Poland)

Strong Controllability
 Weak Controllabilty may not be useful when some uncontrollable
 tasks occur after controllable ones.

l  Strong Controllability: We can determine durations of the
controllable tasks (within the given time intervals) s.t., for all
durations of the uncontrollable tasks (within the given time
intervals), a state can be reached and a given time constraint is
satisfied.

l  The exact duration of the delivery is not known when packaging.

 constraint: 4 ≤ Ttotal ≤ 7
 a solution: 1 ≤ Dpack ≤ 2

packaging s e

[1,4]

controllable uncontrollable

[3,5]
delivery

CS&P 2017 - Warsaw (Poland)

Solving Controllability Problems
using Constrained Horn Clauses (CHCs)

l  Constrained Horn Clauses: H ← c, A1,…,An

l  Use Constrained Horn Clauses to:

(1) Encode the semantics of time-aware business processes

(2) Encode reachability and controllability properties.

(3) Transformation of CHCs

(4) Applying algorithms for controllability by using CHC solvers,
 (i.e., tools for Satisfiability Modulo Theory specialized to CHCs
 over integers).

CS&P 2017 - Warsaw (Poland)

(1) Encoding of the semantics
< F,t > → < F’,t > Instantaneous transition:

begins(x) enacting(x, d)

CS&P 2017 - Warsaw (Poland)

(1) Encoding of the semantics
< F,t > → < F’,t > Instantaneous transition:

begins(x) enacting(x, d)

CS&P 2017 - Warsaw (Poland)

(1) Encoding of the semantics
< F,t > → < F’,t > Instantaneous transition:

begins(x) enacting(x, d)

where U,C are tuples of uncontrollable and controllable durations, resp.

CS&P 2017 - Warsaw (Poland)

CHC intepreter of time-aware BPMN

CS&P 2017 - Warsaw (Poland)

(1) Encoding of the semantics

reach: reflexive, transitive closure of the transition relation tr

 R1: reach(S,S,U,C) ←
 R2: reach(S0,S2,U,C) ← tr (S0,S1,U,C), reach(S1,S2,U,C)

CS&P 2017 - Warsaw (Poland)

(2) Encoding Reachability

l  Reachability Property.

RP : reachProp(U,C) ← c(T,U,C), reach(init, fin(T),U,C)
 where c(T,U,C) is a constraint

l  Initial state. init : < {begins(start)}, 0 >

l  Final state. fin(T) : < {completes(end)}, T >

Let Sem be the CHC encoding of semantics:

 C1-C7 (for tr) and R1-R2 (for reach).
Let LIA be the theory of Linear Integer Arithmetics.

l  Weak Controllability

Sem ∪ {RP} U LIA ∀U. adm(U) → ∃C reachProp(U,C)

 where adm(U) iff the durations in U belong to the given intervals

l  Strong Controllability

Sem ∪ {RP} U LIA ∃C. ∀U. adm(U) → reachProp(U,C)

CS&P 2017 - Warsaw (Poland)

(2) Encoding Controllability

⊨

⊨

CS&P 2017 - Warsaw (Poland)

(3) Program Transformation

l  Validity of Weak and Strong Controllabilities:

-  cannot be proved by CHC solvers over LIA (e.g., Z3), because of the
complex terms (such as those denoting sets) and the findall predicate in
Sem

-  cannot be proved by CLP systems, because of ∃-∀ and ∀-∃
-  solvers and CLP systems have termination problems due to recursive

reach.

CS&P 2017 - Warsaw (Poland)

l  Constrained Horn Clauses: H ← c, A1,…,An

l  Use Constrained Horn Clauses to:

(1) Encode the semantics of time-aware business processes

(2) Encode reachability and controllability properties.

(3) Transformation of CHCs

(4) Applying algorithms for controllability by using CHC solvers,
 (i.e., tools for Satisfiability Modulo Theory specialized to CHCs
 over integers).

Solving Controllability Problems
using Constrained Horn Clauses (CHCs)

CS&P 2017 - Warsaw (Poland)

(3) Program Transformation

l  We transform Sem ∪ {RP} for removing complex terms/findall and
derive equisatisfiable function-free, linear-recursive clauses:

 p(X) ← c, q(Y)
 where X,Y are tuples of variables and c is a constraint in LIA

CS&P 2017 - Warsaw (Poland)

RI: Removal of the Interpreter
•  Transformation rules: unfolding, definition, folding, clause removal

•  Removal of the Interpreter (RI strategy): specialization of Sem with
respect to the given business process and the given property RP

l  Sem ∪ { RP } ISP s.t., for all u,c ∈ N

Sem ∪ { RP } U LIA reachProp(u,c) iff ISP reachProp(u,c)

l  ISP is a set of function-free, linear-recursive clauses.

RI

⊨ ⊨

CS&P 2017 - Warsaw (Poland)

Removal of the Interpreter (example)

event(start) ← task(a1) ← par_branch(g1) ← ...
seq(start, g1) ← seq(g1, g2) ← seq(g1, b) ←...

uncontrollable(a1) ← controllable(a2) ← controllable(b) ←
duration(g1, D) ← D = 0 duration(a1, D) ← 2 ≤ D ≤ 4
duration(a2, D) ← 1 ≤ D ≤ 2 duration(b, D) ← 5 ≤ D ≤ 6 …

RP: reachProp(A1,(A2,B)) ← true, reach(init,fin(T), A1,(A2,B))

Weak Controllability: ∀A1. 2 ≤ A1≤ 4 → ∃A2,B. reachProp(A1,(A2,B))

CS&P 2017 - Warsaw (Poland)

Removal of the Interpreter (example)

l  Fully automatic transformation using VeriMAP [DFPP-15].
 We get ISP :

reachProp(A1, (A2,B)) ← A=A1, B=B1, A1≥2, A1≤4, B≥5, B≤6,

 new2(A, B1, F, G, A1, A2, B)
new2(A,B1,C,D,A1,A2,B) ← H=A+C, I=B1−A, J=0, A≥1, I≥0, A+I≥1,

 new2(J, I, H, D, A1, A2, B)
new2(A,B1,C,D,A1,A2,B) ← H=B1+C, I=A−B1, J=0, A≥1, I≥0, A−I≥1,

 new2(I,J,H,D,A1,A2,B)
new2(A,B1,C,D,A1,A2,B) ← H=A2, A=0, H≥1, H≤2, new5(H,B1,C,D,A1,A2,B)
new5(A,B1,C,C,A1,A2,B) ← A=0, B1=0
new5(A,B1,C,D,A1,A2,B) ← H=A+C, I=B1−A, J=0, A≥1, I≥0, A+I≥1, new5(J,I,H,D,A1,A2,B)
new5(A,B1,C,D,A1,A2,B) ← H=B1+C, I=A−B1, J=0, A≥1, I≥0, A−I≥1, new5(I,J,H,D,A1,A2,B)
new5(A,B1,C,D,A1,A2,B) ← H=A1, A=0, H≥2, H≤4, new2(H,B1,C,D,A1,A2,B)

l  Function-free, linear recursive CHCs over the integers.

 But,... the CHC solver Z3 is still unable to prove Weak Controllability
 because of the recursive predicates new2 and new5.

 (1) Generate a disjunction a(U,C) of constraints

 (2) Check whether or not LIA ∀U. adm(U) → ∃C. a(U,C)

l  Assume a sound and complete LIA-constraint solver: SOLVE.

For any set ISP of clauses and query Q: c, A1,…,An
where c is a LIA constraint,

 SOLVE(ISP ,Q) returns

-  a satisfiable constraint a s.t. ISP U LIA ∀(a → Q), if any,

-  false, otherwise

In particular, if SOLVE(ISP , reachProp(U,C)) = a(U,C), then

 ISP U LIA ∀U,C. (a(U,C) → reachProp(U,C))

 CS&P 2017 - Warsaw (Poland)

(4) Weak Controllability Algorithm

⊨

⊨

⊨

 ISP : q(X) ← r(X)

 r(X) ← X>0

 SOLVE(ISP , q(X)) returns the constraint X>0

 Indeed, ISP U LIA ∀X (X>0 → q(X))

(4) Weak Controllability Algorithm

⊨

CS&P 2017 - Warsaw (Poland)

(4) Weak Controllability Algorithm

a(U,C) := false;
do {

 Q := (reachProp(U,C) ∧ ∀C. ¬a(U,C));
 if (SOLVE(ISP, Q) = false) return false;
 a(U,C) := a(U,C) ∨ SOLVE(ISP,Q);

} while (LIA ∀U. adm(U) → ∃C. a(U,C));
return a(U,C);

⊨

CS&P 2017 - Warsaw (Poland)

(4) Weak Controllability Algorithm

a(U,C) := false;
do {

 Q := (reachProp(U,C) ∧ ∀C. ¬a(U,C));
 if (SOLVE(ISP, Q) = false) return false;
 a(U,C) := a(U,C) ∨ SOLVE(ISP,Q);

} while (LIA ∀U. adm(U) → ∃C. a(U,C));
return a(U,C);

⊨

CS&P 2017 - Warsaw (Poland)

(4) Weak Controllability Algorithm

 By definition of SOLVE, the do-while constructs a sequence
 < a1(U,C), ..., an(U,C) > of disjoint constraints such that
 ∀U,C. a1(U,C) → reachProp(U,C)
 ∧ ... ∧

 an(U,C) → reachProp(U,C)

 that is, ∀U,C. (a1(U,C) ∨ ... ∨ an(U,C)) → reachProp(U,C)

CS&P 2017 - Warsaw (Poland)

(4) Weak Controllability Algorithm

 By definition of SOLVE, the do-while constructs a sequence
 < a1(U,C), ..., an(U,C) > of disjoint constraints such that
 ∀U,C. a1(U,C) → reachProp(U,C)
 ∧ ... ∧

 an(U,C) → reachProp(U,C)

 that is, ∀U,C. (a1(U,C) ∨ ... ∨ an(U,C)) → reachProp(U,C) (1)

 Moreover, at termination of the do-while:

 ∀U. adm(U) → ∃C. (a1(U,C) ∨ ... ∨ an(U,C)) (2)

 From (1) and (2), by transitivity we get:
 ∀U. adm(U) → ∃C. reachProp(U,C) (weak controllability)
 as desired.

CS&P 2017 - Warsaw (Poland)

(4) Weak Controllability Algorithm

a(U,C) := false;
do {

 Q := (reachProp(U,C) ∧∀C. ¬a(U,C));
 if (SOLVE(ISP, Q) = false) return false;

 a(U,C) := a(U,C) ∨ SOLVE(ISP, Q);
} while (LIA ∀U. adm(U) → ∃C. a(U,C));
return a(U,C);

⊨

1) SOLVE(ISP, reachProp(A1, (A2, B)) ∧ ¬ false)
returns a1(A1, A2, B), which is B−2≤A1≤4 ∧ A2=B−A1 ∧ 5≤B≤6.
LIA ∀A1. 2≤A1≤4 → ∃A2,B. a1(A1, A2, B)

⊨

(4) Weak Controllability Algorithm

CS&P 2017 - Warsaw (Poland)

1) SOLVE(ISP, reachProp(A1, (A2, B)) ∧ ¬ false)
returns a1(A1, A2, B), which is B−2≤A1≤4 ∧ A2=B−A1 ∧ 5≤B≤6.
LIA ∀A1. 2≤A1≤4 → ∃A2,B. a1(A1, A2, B)

2) SOLVE(ISP, reachProp(A1, (A2, B)) ∧∀A2,B. ¬ a1(A1, A2, B))
returns a2(A1, A2, B), which is A1=2 ∧ A2=1 ∧ B=6.
LIA ∀A1. 2≤A1≤4 → ∃A2,B. (a1(A1, A2, B) ∨ a2(A1, A2, B))

⊨

⊨

a(U,C) := false;
do {

 Q := (reachProp(U,C) ∧∀C. ¬a(U,C));
 if (SOLVE(ISP, Q) = false) return false;

 a(U,C) := a(U,C) ∨ SOLVE(ISP, Q);
} while (LIA ∀U. adm(U) → ∃C. a(U,C));
return a(U,C);

⊨

CS&P 2017 - Warsaw (Poland)

(4) Strong Controllability Algorithm

a(U,C) := false
do {

 Q := (reachProp(U,C) ∧ ¬a(U,C));
 if (SOLVE(ISP, Q) = false) return false;
 a(U,C) := a(U,C) ∨ SOLVE(ISP, Q);

} while (LIA ∃C.∀U. adm(U) → a(U,C));
return a(U,C);

⊨

CS&P 2017 - Warsaw (Poland)

Implementation

l  Different tools have been used:

-  VeriMAP transformation system for RI (Removal of the Interpreter)
-  SICStus Prolog: Computation of answer constraints
-  Z3: SMT solver for checking quantified LIA formulas

CS&P 2017 - Warsaw (Poland)

Experimental evaluation

 Experimentation on various examples:

-  Purchase order [DFMPP 2016]

-  Request Day-Off Approval [Huai et al. 2010]

-  STEMI: Emergency Department Admission [Combi et al. 2009]

-  STEMI: Emergency Department + Coronary Care Unit
Admission [Combi et al. 2012]

CS&P 2017 - Warsaw (Poland)

Conclusions
l  Controllability was introduced in various contexts

[Vidal-Fargier 1999, Combi-Posenato 2009, Cimatti et al. 2015,
 Zavatteri et al. 2017]
l  We presented a flexible framework for reasoning about controllability

-  parametric with respect to the semantics and the property
-  use of satisfiability-preserving CHC transformations
-  use of state-of-the-art CHC solvers and CLP systems

l  Possible future developments:
-  Larger fragment of BPMN: timers, interrupting events, ...
-  Data [Montali et al. 2013, Deutsch 2014, ...]
-  Ontologies for tasks, ...

Many thanks for the invitation

... and many thanks also to Professor Rasiowa.
 She has a special place in my heart.

CS&P 2017 - Warsaw (Poland)

 The end.

CS&P 2017 - Warsaw (Poland)

