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l  Business processes are ‘graphs’ for coordinating the activities of     
an organization towards a business goal. 

l  An example: Purchase Order . A customer adds items to the 
shopping cart and pays. Then, the vendor issues and sends the 
invoice, and in parallel, prepares and delivers the order. 

 
 
 
 

 
   There is no information on the durations of tasks.  

Business Processes 
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start end 
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[1,2] [1,3] 

[1,2] 

[2,4] 

[1,3] 

Time-Aware Business Processes 

l  Information on the duration: Intervals :    d ∈ [dmin, dmax] ⊂ N 
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l  Time-Reachability: checking whether or not to go from  s  to  e  takes           
less than k units of time.

Two problems : 
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Time-Aware Business Processes 
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l  Time-Reachability: checking whether or not to go from  s  to  e  takes           
less than k units of time.

l  Controllability: finding the durations of some controllable tasks  
    so that a given time-reachability property holds. 

controllable 

controllable 

Two problems : 

l  Information on the duration: Intervals :    d ∈ [dmin, dmax] ⊂ N 



 
Graphical notation for modeling organizational  processes.  
BPMN is a standard.  
l  Tasks : atomic activities 

        
l  Events : something that happens 

 

l  Gateways: either branching or merging  
 

l  Flows : order of execution (drawn as arrows) 

Business Process Modeling and Notation 
(BPMN)  

start end 

s e
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task1 
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Branch Gateways 
l  single incoming flow, multiple outgoing flows 

l  exclusive branch gateway  (XOR) 

-  upon activation of the incoming flow 
exactly one outgoing flow  
is activated 

 
l  parallel branch gateway    (AND) 

-  upon activation of the incoming flow 
all outgoing flows  
are activated 
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Branch Gateways 
l  single incoming flow, multiple outgoing flows 

l  exclusive branch gateway  (XOR) 

-  upon activation of the incoming flow 
exactly one outgoing flow  
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l  parallel branch gateway    (AND) 

-  upon activation of the incoming flow 
all outgoing flows  
are activated 



Merge Gateways 
l  multiple incoming flows, single outgoing flow 

l  exclusive merge gateway   (XOR) 

-  the outgoing flow is activated 
upon activation of  
one of the incoming flows 
 

l  parallel merge gateway    (AND) 

-  the outgoing flow is activated 
upon activation 
of all the incoming flows 
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Semantics of time-aware BPMN 

l  Transition relation between states:  < F,t > →  < F’,t’ > 

l  F : a set of fluents (i.e., a set of properties that hold at time point t) 

- begins(x)          x begins its execution (enactment) 
- enacting(x,r)     x is executing with r residual time to completion 
- completes(x)     x completes its execution 
- enables(x,y)     x enables its successor y  

                                    x, y denote either tasks, or events, or gateways 

l  seq(x,y)              there is an arrow from x to y 

l  t  : time point  (i.e., a non-negative integer) 

   duration(x,d)             the duration of x is d 



CS&P 2017 - Warsaw (Poland) 

Semantics of time-aware BPMN 

completes(x) 
 
  

 
 
 

begins(x) 
 
 
 

 
 
 
 
 
 
  
 
 
 

enacting(x, r)  with 0 ≤ r ≤ d
 

r 

task(x) ←

duration(x, d) ← 3 ≤ d ≤ 4
 x  is  

d 

- durations of events and gateways are assumed to be 0 
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Semantics of time-aware BPMN 

Instantaneous transition: 

begins(x)                        enacting(x, d) 
 
 
 

 
 
 
 
 
 
 
 
 
 

< F,t > →  < F’,t > 
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Semantics of time-aware BPMN 

enacting(x,0)                        completes(x) 
 
 
 

 
 
 
 
 
 
 
 
 
 

< F,t > →  < F’,t > Instantaneous transition: 
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Semantics of time-aware BPMN 

(S2) If the parallel branch x completes,  
       then x enables istantaneously all successors s of x  

x 

< F,t > →  < F’,t > Instantaneous transitions: 
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Semantics of time-aware BPMN 

(S2) If the parallel branch x completes,  
       then x enables istantaneously all successors s of x  
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< F,t > →  < F’,t > Instantaneous transitions: 
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Semantics of time-aware BPMN 

Instantaneous transitions: 

(S4) If all predecessors p of the parallel merge x enable x, 
       then the execution of x begins istantaneously. 

x 

< F,t > →  < F’,t > 
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Semantics of time-aware BPMN 

Instantaneous transitions: 

(S4) If all predecessors p of the parallel merge x enable x, 
       then the execution of x begins istantaneously. 

x 

< F,t > →  < F’,t > 
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Semantics of time-aware BPMN 

The time-elapsing transition: 

 

 

 

 

 

 

Time elapses when no istantaneous transition can occur.  

All enacting tasks proceed in parallel for a time equal to the 
minimum of all residual times. 

< F,t > →  < F’,t’ > 
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Semantics of time-aware BPMN 

F = { enacting(a, 5),      
          enacting(b, 3) }

F = { enacting(a, 2),      
         enacting(b, 0) }

at time: T at time: T+3

< F,t > →  < F’,t’ > 
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Reachability 

   State <F,t > is reachable iff  
    for some durations in the given intervals, 

<{begins(start)},0> →* <F,t > 
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Semantics in action 

<{begins(start)},0>    →*  <{begins(g1)}, 0> 
    (S1)     →  <{enacting(g1,0)}, 0>           % duration(g1,0) 
    (S6)     →  <{completes(g1)}, 0> 
    (S2)     →  <{enables(g1,a),enables(g1,b)}, 0> 
    (S5)     →  <{begins(a),enables(g1,b)}, 0> 
    (S1)     →  <{enacting(a,2),enables(g1,b)}, 0>      % 2 in [1,2]  for a    
    (S5 S1) →2  <{enacting(a,2),enacting(b,2)}, 0>     % 2 in [2,3]  for b 
             (S7)     →  <{enacting(a,0),enacting(b,0)}, 2> 
   (S6 S6)  →2  <{completes(a),completes(b)}, 2> 
   (S3 S3)  →2  <{enables(a,g2),enables(b,g2)}, 2> 
   (S4)     →  <{begins(g2)}, 2> 
      →*  <{completes(end)}, 2> 
  

   s   e 

a 

b g1 g2 

[1,2] 

[2,3] 
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Weak Controllability 
l  Assume: 

-  some tasks are controllable (e.g., internal to the organization) 
-  some tasks are uncontrollable (e.g., external to the organization) 

l  Weak Controllabilty: For all durations of the uncontrollable tasks (within 
the given time intervals), we can determine durations of the controllable 
tasks (within the given time intervals), s.t. a state can be reached and a 
given time constraint is satisfied. 

 

 
constraint:  3 ≤ Ttotal ≤ 7 
a solution:  if Dpur=1 then Dcc=Dcol=2 else Dcc=Dcol=1  

   s    e 

cc_charge 

collect_items 

purchase 

[1,5] 

[1,3] 

[1,2] 
uncontrollable 

controllable 

controllable 
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Strong Controllability 
   Weak Controllabilty may not be useful when some uncontrollable    
   tasks occur after controllable ones. 

l  Strong Controllability: We can determine durations of the 
controllable tasks (within the given time intervals) s.t., for all 
durations of the uncontrollable tasks (within the given time 
intervals), a state can be reached and a given time constraint is 
satisfied. 

l  The exact duration of the delivery is not known when packaging.  
 
 

 
 
     constraint:   4 ≤ Ttotal ≤ 7 
     a solution:   1 ≤ Dpack ≤ 2 
 

 

packaging    s   e 

[1,4] 

controllable uncontrollable 

[3,5] 
delivery 
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Solving Controllability Problems  
using Constrained Horn Clauses (CHCs) 

l  Constrained Horn Clauses: H ← c, A1,…,An 

l  Use Constrained Horn Clauses to: 

(1) Encode the semantics of time-aware business processes 

(2) Encode reachability and controllability properties.  
 
(3) Transformation of CHCs 

(4) Applying algorithms for controllability by using CHC solvers,       
     (i.e., tools for Satisfiability Modulo Theory specialized to CHCs 
      over integers).  
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(1) Encoding of the semantics 
< F,t > →  < F’,t > Instantaneous transition: 

begins(x)                        enacting(x, d) 
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(1) Encoding of the semantics 
< F,t > →  < F’,t > Instantaneous transition: 

begins(x)                        enacting(x, d) 
 
 
 

 
 
 
 
 
 
 
 
 
 

where U,C are tuples of uncontrollable and controllable durations, resp. 
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CHC intepreter of time-aware BPMN 
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(1) Encoding of the semantics 

reach: reflexive, transitive closure of the transition relation tr 

    R1:    reach(S,S,U,C) ←  
    R2:    reach(S0,S2,U,C) ← tr (S0,S1,U,C), reach(S1,S2,U,C) 
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(2) Encoding Reachability 

l  Reachability Property. 

RP :  reachProp(U,C) ← c(T,U,C),   reach(init, fin(T),U,C) 
                            where c(T,U,C) is a constraint 
 

l  Initial state. init :     < {begins(start)}, 0 >  

l  Final state. fin(T) :  < {completes(end)}, T > 



Let  Sem  be the CHC encoding of semantics: 

        C1-C7 (for tr) and  R1-R2 (for reach).        
Let  LIA  be the theory of Linear Integer Arithmetics. 

l  Weak Controllability 

Sem ∪ {RP} U LIA       ∀U. adm(U) → ∃C reachProp(U,C) 

         where adm(U) iff the durations in U belong to the given intervals 

l  Strong Controllability 

Sem ∪ {RP} U LIA       ∃C. ∀U. adm(U) → reachProp(U,C) 
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(2) Encoding Controllability 

⊨ 

⊨ 
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(3) Program Transformation 

l  Validity of Weak and Strong Controllabilities:  

-  cannot be proved by CHC solvers over LIA (e.g., Z3), because of the 
complex terms (such as those denoting sets) and the findall predicate in 
Sem 

-  cannot be proved by CLP systems, because of ∃-∀ and ∀-∃ 
-  solvers and CLP systems have termination problems due to recursive 

reach. 
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l  Constrained Horn Clauses: H ← c, A1,…,An 

l  Use Constrained Horn Clauses to: 

(1) Encode the semantics of time-aware business processes 

(2) Encode reachability and controllability properties.  
 
(3) Transformation of CHCs 

(4) Applying algorithms for controllability by using CHC solvers,       
     (i.e., tools for Satisfiability Modulo Theory specialized to CHCs 
      over integers).  

Solving Controllability Problems  
using Constrained Horn Clauses (CHCs) 
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(3) Program Transformation 

l  We transform Sem ∪ {RP}  for removing complex terms/findall and 
derive equisatisfiable function-free, linear-recursive clauses: 

        p(X) ← c, q(Y) 
    where X,Y are tuples of variables and c is a constraint in LIA 
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RI: Removal of the Interpreter 
•  Transformation rules: unfolding, definition, folding, clause removal 

•  Removal of the Interpreter (RI strategy): specialization of Sem with 
respect to the given business process and the given property RP 

 
l  Sem ∪ { RP }              ISP   s.t., for all u,c ∈ N 

Sem ∪ { RP } U LIA     reachProp(u,c)   iff   ISP    reachProp(u,c) 
 

l  ISP is a set of function-free, linear-recursive clauses.                         

RI 

⊨ ⊨ 
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Removal of the Interpreter (example) 

event(start) ←    task(a1) ←   par_branch(g1) ←   ... 
seq(start, g1) ←  seq(g1, g2) ←  seq(g1, b) ←... 
   
uncontrollable(a1) ←   controllable(a2) ←   controllable(b) ← 
duration(g1, D) ← D = 0   duration(a1, D) ← 2 ≤ D ≤ 4    
duration(a2, D) ← 1 ≤ D ≤ 2  duration(b, D) ← 5 ≤ D ≤ 6  … 
 
RP:  reachProp(A1,(A2,B)) ← true, reach(init,fin(T ), A1,(A2,B)) 
 
Weak Controllability:  ∀A1. 2 ≤ A1≤ 4 → ∃A2,B. reachProp(A1,(A2,B)) 
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Removal of the Interpreter (example) 

l  Fully automatic transformation using VeriMAP [DFPP-15].  
   We get ISP : 
 
reachProp(A1, (A2,B)) ← A=A1, B=B1, A1≥2, A1≤4, B≥5, B≤6, 

     new2(A, B1, F, G, A1, A2, B) 
new2(A,B1,C,D,A1,A2,B) ← H=A+C, I=B1−A, J=0, A≥1, I≥0, A+I≥1, 

     new2(J, I, H, D, A1, A2, B) 
new2(A,B1,C,D,A1,A2,B) ← H=B1+C, I=A−B1, J=0, A≥1, I≥0, A−I≥1, 

     new2(I,J,H,D,A1,A2,B) 
new2(A,B1,C,D,A1,A2,B) ← H=A2, A=0, H≥1, H≤2, new5(H,B1,C,D,A1,A2,B) 
new5(A,B1,C,C,A1,A2,B) ← A=0, B1=0 
new5(A,B1,C,D,A1,A2,B) ← H=A+C, I=B1−A, J=0, A≥1, I≥0, A+I≥1, new5(J,I,H,D,A1,A2,B) 
new5(A,B1,C,D,A1,A2,B) ← H=B1+C, I=A−B1, J=0, A≥1, I≥0, A−I≥1, new5(I,J,H,D,A1,A2,B) 
new5(A,B1,C,D,A1,A2,B) ← H=A1, A=0, H≥2, H≤4, new2(H,B1,C,D,A1,A2,B) 
 
l  Function-free, linear recursive CHCs over the integers. 

  But,... the CHC solver Z3 is still unable to prove Weak Controllability      
  because of the recursive predicates new2 and new5. 
 
       



   (1) Generate a disjunction a(U,C) of constraints 

   (2) Check whether or not   LIA     ∀U. adm(U) → ∃C. a(U,C) 
 
l  Assume a sound and complete LIA-constraint solver: SOLVE.                   

For any set ISP of clauses and query Q:  c, A1,…,An                                      
where c is a LIA constraint, 

    SOLVE(ISP ,Q) returns 

-  a satisfiable constraint a s.t. ISP  U LIA      ∀(a → Q),   if any, 

-  false, otherwise  

In particular, if SOLVE(ISP , reachProp(U,C)) = a(U,C), then 

                           ISP  U LIA      ∀U,C. (a(U,C) → reachProp(U,C)) 

  CS&P 2017 - Warsaw (Poland) 

(4)  Weak Controllability Algorithm 

⊨ 

⊨ 

⊨ 



     ISP :    q(X) ← r(X) 

               r(X) ← X>0 

 

    SOLVE(ISP , q(X))  returns the constraint  X>0 

                           Indeed, ISP U LIA        ∀X  (X>0 → q(X)) 

 

(4)  Weak Controllability Algorithm 

⊨ 
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(4)  Weak Controllability Algorithm 

a(U,C) := false; 
do { 

 Q := (reachProp(U,C) ∧ ∀C. ¬a(U,C)); 
 if (SOLVE(ISP, Q) = false)  return  false; 
 a(U,C) := a(U,C) ∨ SOLVE(ISP,Q); 

} while (LIA     ∀U. adm(U) → ∃C. a(U,C)); 
return a(U,C); 

⊨ 
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(4)  Weak Controllability Algorithm 
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(4)  Weak Controllability Algorithm 

   By definition of SOLVE, the do-while constructs a sequence  
   < a1(U,C), ..., an(U,C) > of disjoint constraints such that   
                  ∀U,C.  a1(U,C) → reachProp(U,C) 
          ∧   ...   ∧ 

        an(U,C) → reachProp(U,C) 
 
   that is,  ∀U,C.  (a1(U,C) ∨ ... ∨ an(U,C)) → reachProp(U,C) 
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(4)  Weak Controllability Algorithm 

   By definition of SOLVE, the do-while constructs a sequence  
   < a1(U,C), ..., an(U,C) > of disjoint constraints such that   
                  ∀U,C.  a1(U,C) → reachProp(U,C) 
          ∧   ...   ∧ 

        an(U,C) → reachProp(U,C) 
 
   that is,  ∀U,C.  (a1(U,C) ∨ ... ∨ an(U,C)) → reachProp(U,C)      (1) 
 
   Moreover, at termination of the do-while:  

  ∀U. adm(U) → ∃C. (a1(U,C) ∨ ... ∨ an(U,C))              (2) 
 
   From (1) and (2), by transitivity we get: 
   ∀U. adm(U) → ∃C. reachProp(U,C)       (weak controllability) 
   as desired.    
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(4)  Weak Controllability Algorithm 

a(U,C) := false; 
do { 

 Q := (reachProp(U,C) ∧∀C. ¬a(U,C)); 
 if (SOLVE(ISP, Q) = false)  return  false; 

         a(U,C) := a(U,C) ∨ SOLVE(ISP, Q); 
} while (LIA     ∀U. adm(U) → ∃C. a(U,C)); 
return a(U,C); 

⊨ 

1) SOLVE(ISP, reachProp(A1, (A2, B)) ∧ ¬ false)                              
returns  a1(A1, A2, B),   which is   B−2≤A1≤4 ∧ A2=B−A1 ∧ 5≤B≤6. 
LIA     ∀A1. 2≤A1≤4 → ∃A2,B. a1(A1, A2, B) 
  
⊨ 



(4)  Weak Controllability Algorithm 
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1) SOLVE(ISP, reachProp(A1, (A2, B)) ∧ ¬ false)                              
returns  a1(A1, A2, B),   which is   B−2≤A1≤4 ∧ A2=B−A1 ∧ 5≤B≤6. 
LIA     ∀A1. 2≤A1≤4 → ∃A2,B. a1(A1, A2, B) 
  

2) SOLVE(ISP, reachProp(A1, (A2, B)) ∧∀A2,B. ¬ a1(A1, A2, B))  
returns  a2(A1, A2, B),   which is    A1=2 ∧ A2=1 ∧ B=6. 
LIA      ∀A1. 2≤A1≤4 → ∃A2,B. (a1(A1, A2, B) ∨ a2(A1, A2, B)) 

⊨ 

⊨ 

a(U,C) := false; 
do { 

 Q := (reachProp(U,C) ∧∀C. ¬a(U,C)); 
 if (SOLVE(ISP, Q) = false)  return  false; 

         a(U,C) := a(U,C) ∨ SOLVE(ISP, Q); 
} while (LIA     ∀U. adm(U) → ∃C. a(U,C)); 
return a(U,C); 

⊨ 
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(4) Strong Controllability Algorithm 

a(U,C) := false 
do { 

 Q := (reachProp(U,C) ∧ ¬a(U,C)); 
 if (SOLVE(ISP, Q) = false)  return  false; 
 a(U,C) := a(U,C) ∨ SOLVE(ISP, Q); 

} while (LIA     ∃C.∀U. adm(U) → a(U,C)); 
return a(U,C); 

⊨ 
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Implementation 

l  Different tools have been used: 

-  VeriMAP transformation system for RI (Removal of the Interpreter) 
-  SICStus Prolog: Computation of answer constraints 
-  Z3: SMT solver for checking quantified LIA formulas 
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Experimental evaluation 

     Experimentation on various examples: 

-  Purchase order [DFMPP 2016] 

-  Request Day-Off Approval [Huai et al. 2010] 

-  STEMI: Emergency Department Admission [Combi et al. 2009] 

-  STEMI: Emergency Department + Coronary Care Unit 
Admission [Combi et al. 2012] 
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Conclusions 
l  Controllability was introduced in various contexts                                 

[Vidal-Fargier 1999,  Combi-Posenato 2009,  Cimatti et al. 2015,   
     Zavatteri et al. 2017] 
l  We presented a flexible framework for reasoning about controllability  

-  parametric with respect to the semantics and the property 
-  use of satisfiability-preserving CHC transformations 
-  use of state-of-the-art CHC solvers and CLP systems 
 

l  Possible future developments: 
-  Larger fragment of BPMN:   timers, interrupting events, ... 
-  Data     [Montali et al. 2013, Deutsch 2014, ...]  
-  Ontologies    for tasks, ... 
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 The end. 
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