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Business Processes

● A BP is a set of activities and tasks that need to be 
accomplished to deliver a service or product

● Purchase Order: A customer adds one or more items to 
the shopping cart and pays. Then, the vendor sends the 
invoice and delivers the order

● No quantitative time information (e.g., durations of tasks)
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Time-Aware Business Processes

● Specify intervals of task duration: d ∈ [dmin, dmax] ⊂ ℕ

[1,6] [1,2]

[1,2] [1,3]

[1,2]

[2,4]

[1,3]

● Reachability property: The time to reach ‘end’ from ‘start’ 
satisfies a given constraint

● Controllability property: It is possible to determine the 
durations of some tasks so that a given reachability 
property holds 
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Weak Controllability

● Assume:

– Some tasks are controllable (e.g., internal to the organization)

– Some tasks are uncontrollable (e.g., external to the organization)

● WC: For all durations of the uncontrollable tasks (within the given time 
intervals), we can determine durations of the controllable tasks (within 
the given time intervals), s.t. the process can be completed and a 
given time constraint holds

●

WC: ∀ durations of get_req in [1,5], ∃ durations of process_req in 
[1,3] and record_req in [1,2], such that 3 ≤ t

total
 ≤ 7 

start  end

record_req

get_req

[1,5]

[1,3]

[1,2]
uncontrollable

controllable

controllable

process_req
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Strong Controllability

● WC may not be useful when some uncontrollable tasks occur 
after controllable ones

● SC: We can determine durations of the controllable tasks 
(within the given time intervals) s.t., for all durations of the 
uncontrollable tasks (within the given time intervals), the 
process can be completed and a given time constraint holds

● The exact duration of the delivery is not known when packaging 

∃ durations of packaging in [1,4] such that, ∀ durations of 
delivery in [3,5], the constraint 4 ≤ t

total
 ≤ 7 holds

start endpackaging

[1,4]

controllable uncontrollable

[3,5]

delivery
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Verifying Time-Aware BPs using 
Constrained Horn Clauses

Use Constrained Horn Clauses (aka CLP) to:

1) Encode the semantics of time-aware BPs;

2) Encode reachability and controllability problems;

3) Solve controllability problems by applying CHC solvers (i.e., 
tools for Satisfiability Modulo Theory specialized to CHCs over 
integers).

Time-Aware 
BP

Semantics 
+ Property

Solver

BPMN CHC SMT

True/False
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● Graphical language for modeling business processes: 
activities, events, and their order of execution

(OMG standard) 

● Tasks: atomic activities

● Events: something that ‘happens’

● Sequence flow: order of execution

● Gateways: branching/merging of flows
 

Business Process Modeling and Notation 
(BPMN) 

start end
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Branch Gateways

● single incoming flow, multiple outgoing flows

● exclusive branch gateway  (XOR)

– upon activation 
of the incoming flow
exactly one outgoing flow 
is instantaneously activated

● parallel branch gateway    (AND)

– upon activation
of the incoming flow
all outgoing flows 
are instantaneously activated
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Merge gateways

● multiple incoming flows, single outgoing flow

● exclusive merge gateway   (XOR)

– upon activation of
at least one of the incoming flows
the outgoing flow is 
instantaneously activated

● parallel merge gateway    (AND)

– upon activation
of all the incoming flows
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1) Semantics of Time-Aware BPMN

● Transition relation → between states  <F,t>

● t  time point:  non-negative integer

● F set of fluents:  properties that hold at time point t

– begins(x):      x begins its execution (enactment)

– enacting(x,r): x is enacting,   
r residual time to completion

– completes(x): x completes its execution

– enables(x,y): x enables its successor y 

x,y denote flow objects (tasks, events, or gateways) 

● seq(x,y): there is a sequence flow from x to y

● duration(x,d):  the duration of x is d
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completes(x) 
 
 

… Semantics of Time-Aware BPMN

enables(w,x)
begins(x) 
 

 

enacting(x,r)

r

d

task(w)  task(x)  
duration(x, d) dminddmax

● Instantaneous transitions:   <F,t> → <F’,t>, 
e.g.,  <{begins(x),…},t> → <{enacting(x,d),…},t> 

● Time-elapsing transitions:   <F,t> → <F’,t’>,
e.g., <{enacting(x,r),…},t> → <{enacting(x,0),…},t+r> 
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CHC Encoding of Semantics

Transition relation S1 → S2 encoded by a predicate

tr(S1,S2,U,C)

where U,C, are tuples of uncontrollable and controllable durations, 
respectively. 
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CHC Semantics of Time-Aware BPMN
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2.1) Encoding Reachability

● Reachability:

R1: reach(S,S,U,C) ← 
R2: reach(S0,S2,U,C) ← tr(S0,S1,U,C), reach(S1,S2,U,C)

● Reachability Property (for final state):

RP: reachProp(U,C) ← c(T,U,C), reach(init,fin(T),U,C)

where c(T,U,C) is a constraint on time and durations

● Initial state init: <{begins(start)},0>, 

● Final state fin(T): <{completes(end)},T>

● Similarly for non final states
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2.2) Encoding Controllability

● Sem: clauses C1-C7,R1,R2 encoding of semantics of a BP

● LIA: Theory of Linear Integer Arithmetic

● Weak Controllability:

Sem  {∪ RP} ∪ LIA  ⊨ ∀U. adm(U) → ∃C reachProp(U,C)

where adm(U) iff the durations in U belong to the given intervals

● Strong Controllability:

Sem  {∪ RP}  ∪ LIA ⊨ ∃C∀U. adm(U) → reachProp(U,C)
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3) Applying CHC Solvers

● Transform Sem  {∪ RP} for removing complex terms/findall and 
derive equisatisfiable function-free, linear-recursive clauses

p(X) ← c, q(Y)

where X,Y are tuples of variables and c is a constraint in LIA.
The transformation uses unfold/fold rules and specializes Sem to the 
specific business process and property RP 

● Apply algorithms that reduce verification to solving sequences of 
(∃∀ and ∀∃) quantified non-recursive LIA formulas
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Transformation: Example

task(a1) ← event(start) ← par_branch(g1) ← ...
seq(start, g1) ← seq(g1, b) ← ...
uncontrollable(a1) ← controllable(a2) ← controllable(b) ←
duration(a1, D) ← 2 ≤ D ≤ 4  duration(a2, D) ← 1 ≤ D ≤ 2 
duration(b, D) ← 5 ≤ D ≤ 6 duration(g1, D) ← D = 0 …

RP: reachProp(A1,A2,B) ← reach(init,fin(T),A1,A2,B)

WC: ∀A1. 2 ≤ A1 ≤ 4 → ∃A2,B. reachProp(A1,A2,B)
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... Example 

● Fully automatic transformation using VeriMAP [DFPP-15]

reachProp(A1,A2,B) ← A=A1, B=B1, A1≥2, A1≤4, B≥5, B≤6,
new2(A, B1, F, G, A1, A2, B)

new2(A,B1,C,D,A1,A2,B) ← H=A+C, I=B1−A, J=0, A≥1, I≥0, A+I≥1,
new2(J, I, H, D, A1, A2, B)

new2(A,B1,C,D,A1,A2,B) ← H=B1+C, I=A−B1, J=0, A≥1, I≥0, A−I≥1,
new2(I,J,H,D,A1,A2,B)

new2(A,B1,C,D,A1,A2,B) ← H=A2, A=0, H≥1, H≤2, new5(H,B1,C,D,A1,A2,B)
new5(A,B1,C,C,A1,A2,B) ← A=0, B1=0
new5(A,B1,C,D,A1,A2,B) ← H=A+C, I=B1−A, J=0, A≥1, I≥0, A+I≥1, new5(J,I,H,D,A1,A2,B)
new5(A,B1,C,D,A1,A2,B) ← H=B1+C, I=A−B1, J=0, A≥1, I≥0, A−I≥1, new5(I,J,H,D,A1,A2,B)
new5(A,B1,C,D,A1,A2,B) ← H=A1, A=0, H≥2, H≤4, new2(H,B1,C,D,A1,A2,B)

● Function-free, linear recursive CHCs over the integers
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CHC Solver

The controllbility algorithms use a solver SOLVE that, for any set P 
of clauses and query Q: c, A

1
,…,A

n
, 

SOLVE(P,Q) returns

– a satisfiable answer constraint a s.t. P ∪ LIA  ⊨ ∀(a → Q), if any

– false, otherwise
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Weak Controllability Algorithm

a(U,C) := false
do {

Q := (reachProp(U,C)  C. ∧ ∀ ¬a(U,C));
if (SOLVE(P,Q) = false) return false;
a(U,C) := a(U,C)  SOLVE(P,Q);∨

} while (LIA ⊭ U∀ . adm(U) → C∃ . a(U,C))
return a(U,C);

1) Generate a disjunction a(U,C) of answer constraints
2) Check if LIA ⊨ U∀ . adm(U) → C∃ . a(U,C) holds 
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Strong Controllability Algorithm

a(U,C) := false
do {

Q := (reachProp(U,C)  ∧ ¬a(U,C));
if (SOLVE(P,Q) = false) return false;
a(U,C) := a(U,C)  SOLVE(P,Q);∨

} while (LIA ⊭ C U∃ ∀ . adm(U) → a(U,C))
return a(U,C);

1) Generate a disjunction a(U,C) of answer constraints
2) Check if LIA ⊨ ∃C ∀U. adm(U) → a(U,C) holds 



27 Settembre 2017 CILC 2017 - Napoli 22

Implementation

● Different tools have been used to implement the technique:

– VeriMAPVeriMAP transformation system: Specialization of the 
Interpreter

– SICStus PrologSICStus Prolog: Computation of answer constraints

– Z3 SMT solverZ3 SMT solver: Checking quantified LIA formulas

●  Integration is underway
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Conclusions

● Controllability introduced in various contexts [VidalFargier-
99,CimattiEtAl-15,CombiPosenato-09,CombiEtAl-17]

● This talk: Flexible framework for reasoning about the 
controllability of time-aware BPs

– Parametric w.r.t. the semantics and property

– Satisfiability-preserving CHC transformations

– State-of-the-art CHC solvers and CLP systems

● Future developments

– larger fragment of BPMN (timer events)

– data (Deutsch, Montali, ...) 

– domain-specific semantics (Ontologies)
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