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Business Processes

● A process that coordinates the activities of an 
organization towards a business goal

● Purchase Order: A customer adds one or more items to 
the shopping cart and pays. Then, the vendor sends the 
invoice and delivers the order

● No quantitative time information (e.g., durations of tasks)
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Time-aware Business Processes

● Specify intervals of task duration: D ∈ [dmin, dmax] ⊂ ℕ

[1,6] [1,2]

[1,2] [1,3]

[1,2]

[2,4]

[1,3]

● Reachability property: The time to reach ‘end’ from ‘start’ 
is less than K

● Controllability property: It is possible to determine the 
durations of some (controllable) tasks so that a given 
reachability property holds 
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● Graphical language for modeling organizational 
processes: activities, events, and their composition

(OMG standard) 

● Tasks: atomic activities

● Events: something that ‘happens’

● Sequence flow: order of execution

● Gateways: branching/merging flows
 

Business Process Modeling and Notation 
(BPMN) 

start end
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Branch gateways

● single incoming flow, multiple outgoing flows

● exclusive branch gateway  (XOR)

– upon activation 
of the incoming flow
exactly one outgoing flow 
is activated

● parallel branch gateway    (AND)

– upon activation
of the incoming flow
all outgoing flows 
are activated
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Merge gateways

● multiple incoming flows, single outgoing flow

● exclusive merge gateway   (XOR)

– the outgoing flow is activated
upon activation of 
one of the incoming flows

● parallel merge gateway    (AND)

– the outgoing flow is activated
upon activation
of all the incoming flows
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Semantics of time-aware BPMN

● Transition relation → between states  <F,t>

● t  time point:  non-negative integer

● F set of fluents:  properties that hold at time point t

– begins(x):      x begins its execution (enactment)

– enacting(x,r): x is enacting,   
r residual time to completion

– completes(x): x completes its execution

– enables(x,y): x enables its successor y 

x,y denote flow objects (tasks, events, or gateways) 

● seq(x,y): there is a sequence flow from x to y

● duration(x,d):  the duration of x is d
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Semantics of time-aware BPMN

●   Instantaneous transitions

● (S
2
) If the parallel branch x completes, 

then x enables istantaneously all successors of x 
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Semantics of time-aware BPMN

●   Instantaneous transitions

● (S
4
) If all predecessors of the parallel merge x enable x,

then the execution of x begins istantaneously
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Semantics of time-aware BPMN

● Time elapsing transition

● Time elapses when no istantaneous transition can occur. All 
enacting tasks proceed in parallel for a time equal to the 
minimum of all residual times.
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Reachability

● State <F,t> is reachable iff, for some durations in the given 
intervals,

<{begins(start)},0> →* <F,t>
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An example of enactment

<{begins(start)},0> →* <{begins(g1)}, 0>
(S

1
) → <{enacting(g1,0)}, 0> % duration(g1,0)

(S
6
) → <{completes(g1)}, 0>

(S
2
) → <{enables(g1,a),enables(g1,b)}, 0>

(S
5
) → <{begins(a),enables(g1,b)}, 0>

(S
1
) → <{enacting(a,2),enables(g1,b)}, 0> % 2 in [1,2]

(S
5
S

1
) →2 <{enacting(a,2),enacting(b,2)}, 0> % 2 in [2,3]

(S
7
) → <{enacting(a,0),enacting(b,0)}, 2>

(S
6
S

6
) →2 <{completes(a),completes(b)}, 2>

(S
3
S

3
) →2 <{enables(a,g2),enables(b,g2)}, 2>

(S
4
) → <{begins(g2)}, 2>

→* <{completes(end)}, 2>

start end

a

bg1 g2

[1,2]

[2,3]
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Weak Controllability

● Assume:

– Some tasks are controllable (e.g., internal to the organization)

– Some tasks are uncontrollable (e.g., external to the organization)

● WC: For all durations of the uncontrollable tasks (within the given time 
intervals), we can determine durations of the controllable tasks (within 
the given time intervals), s.t. a state can be reached and a given time 
constraint holds

●

constraint: 3 ≤ T
total

 ≤ 7

a solution: if D
pu

=1 then D
cc

=D
ci
=2 else D

cc
=D

ci
=1 

start  end

cc_charge

collect_items

purchase

[1,5]

[1,3]

[1,2]
uncontrollable

controllable

controllable
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Strong Controllability

● WC may not be useful when some uncontrollable tasks occur 
after controllable ones

● SC: We can determine durations of the controllable tasks 
(within the given time intervals) s.t., for all durations of the 
uncontrollable tasks (within the given time intervals), a state can 
be reached and a given time constraint holds

● The exact duration of the delivery is not known when packaging 

constraint: 4 ≤ T
total

 ≤ 7

a solution:   1 ≤ D
packaging

 ≤ 2

start endpackaging

[1,4]

controllable uncontrollable

[3,5]

delivery
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Solving Controllability Problems 
with Constrained Horn Clauses

● Constrained Horn Clauses (aka CLP): H ← c, A
1
,…,A

n

● Use Constrained Horn Clauses to:

1) Encode the semantics of time-aware BPs;

2) Encode reachability and controllability problems;

3) Solve controllability problems by applying CHC solvers (i.e., 
tools for Satisfiability Modulo Theory specialized to CHCs over 
integers).
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1) CHC encoding of the semantic rules

where U,C, are tuples of uncontrollable and controllable durations, 
resp.
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CHC interpreter for time-aware BPMN
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2.1) Encoding reachability

● Reachability:

R1: reach(S,S,U,C) ← 
R2: reach(S0,S2,U,C) ← tr(S0,S1,U,C), reach(S1,S2,U,C)

● Reachability Property:

RP: reachProp(U,C) ← c(T,U,C), reach(init,fin(T),U,C)

where c(T,U,C) is a constraint

● Initial state init: <{begins(start)},0>, 

● Final state fin(T): <{completes(end)},T>

● Similarly for non final states
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2.2) Encoding controllability

● CHCs Sem encoding of semantics of a BP: clauses C1-
C7,R1,R2

● Theory of Linear Integer Arithmetics (LIA)

● Weak Controllability:

Sem ∪ {RP} U LIA ⊨ ∀U. adm(U) → ∃C reachProp(U,C)

where adm(U) iff the durations in U belong to the given intervals

● Strong Controllability:

Sem ∪ {RP} U LIA ⊨ ∃C∀U. adm(U) → reachProp(U,C)
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3) Applying CHC solvers

● Validity of WC and SC properties: 

– cannot be proved by CHC solvers over LIA (e.g., Z3), because 
of complex terms (e.g., {.}), findall predicate in the interpreter

– cannot be proved by CLP systems, because of ∃∀ and ∀∃

– both may have termination problems with recursive reach

● Transform Sem ∪ {RP} for removing complex terms/findall and 
derive equisatisfiable function-free, linear-recursive clauses

p(X) ← c, q(Y)

where X,Y are tuples of variables and c is a constraint in LIA
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Removal of the interpreter

● Rule-based transformation strategy

– Transformation rules: unfolding, definition, folding, clause 
removal

– Strategy: specialization of the interpreter Sem with respect to 
the specific business process and the specific property RP

● Sem ∪ {RP}              I
SP

   s.t., for all u,c ∈ℕ

Sem ∪ {RP} U LIA ⊨ reachProp(u,c)   iff   I
SP

 ⊨ reachProp(u,c)

● I
SP

 is a set of function-free, linear-recursive clauses

RI
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Removal of the Interpreter: Example

task(a1) ← event(start) ← par_branch(g1) ← ...
seq(start, g1) ← seq(g1, b) ← ...
uncontrollable(a1) ← controllable(a2) ← controllable(b) ←
duration(a1, D) ← 2 ≤ D ≤ 4  duration(a2, D) ← 1 ≤ D ≤ 2 
duration(b, D) ← 5 ≤ D ≤ 6 duration(g1, D) ← D = 0 …

RP: reachProp(A1,A2,B) ← reach(init,fin(T),A1,A2,B)

WC: ∀A1. 2 ≤ A1 ≤ 4 → ∃A2,B. reachProp(A1,A2,B)
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... Example 

● Fully automatic transformation using VeriMAP [DFPP-15]

reachProp(A1,A2,B) ← A=A1, B=B1, A1≥2, A1≤4, B≥5, B≤6,
new2(A, B1, F, G, A1, A2, B)

new2(A,B1,C,D,A1,A2,B) ← H=A+C, I=B1−A, J=0, A≥1, I≥0, A+I≥1,
new2(J, I, H, D, A1, A2, B)

new2(A,B1,C,D,A1,A2,B) ← H=B1+C, I=A−B1, J=0, A≥1, I≥0, A−I≥1,
new2(I,J,H,D,A1,A2,B)

new2(A,B1,C,D,A1,A2,B) ← H=A2, A=0, H≥1, H≤2, new5(H,B1,C,D,A1,A2,B)
new5(A,B1,C,C,A1,A2,B) ← A=0, B1=0
new5(A,B1,C,D,A1,A2,B) ← H=A+C, I=B1−A, J=0, A≥1, I≥0, A+I≥1, new5(J,I,H,D,A1,A2,B)
new5(A,B1,C,D,A1,A2,B) ← H=B1+C, I=A−B1, J=0, A≥1, I≥0, A−I≥1, new5(I,J,H,D,A1,A2,B)
new5(A,B1,C,D,A1,A2,B) ← H=A1, A=0, H≥2, H≤4, new2(H,B1,C,D,A1,A2,B)

● Function-free, linear recursive CHCs over the integers

● The CHC solver Z3 is still unable to prove WC because of ∀ over 
the recursively defined predicates new2 and new5  
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Controllability Algorithms

● Reduce verification to solving quantified non-recursive LIA 
formulas

● We assume we have a solver SOLVE. For any set P of clauses 
and query Q: c, A

1
,…,A

n
, 

SOLVE(P,Q) returns

– a satisfiable answer constraint a s.t. P U LIA ⊨ ∀(a → Q), if any

– false, otherwise
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WC Algorithm

a(U, C) := false
do {

Q := (reachProp(U, C)  C. ∧ ∀ ¬a(U, C));
if (SOLVE(I

SP
, Q) = false) return false;

a(U, C) := a(U, C)  SOLVE(∨ I
SP

, Q);
} while (LIA ⊭ U. adm(U) → C. a(U, C)∀ ∃ )
return a(U, C);
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WC Algorithm

a(U, C) := false
do {

Q := (reachProp(U, C)  C. ∧ ∀ ¬a(U, C));
if (SOLVE(I

SP
, Q) = false) return false;

a(U, C) := a(U, C)  SOLVE(∨ I
SP

, Q);
} while (LIA ⊭ U. adm(U) → C. a(U, C)∀ ∃ )
return a(U, C);

1) SOLVE(P, reachProp(A1, A2, B)  ¬false) = ∧
a1(A1, A2, B): B−2≤A1≤4  A2=B−A1  5≤B≤6∧ ∧

LIA  ⊭ A1. 2≤A1≤4 → A2,B. a1(A1, A2, B)∀ ∃
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WC Algorithm

a(U, C) := false
do {

Q := (reachProp(U, C)  C. ∧ ∀ ¬a(U, C));
if (SOLVE(I

SP
, Q) = false) return false;

a(U, C) := a(U, C)  SOLVE(∨ I
SP

, Q);
} while (LIA ⊭ U. adm(U) → C. a(U, C)∀ ∃ )
return a(U, C);

1) SOLVE(P, reachProp(A1, A2, B)  ¬false) = ∧
a1(A1, A2, B): B−2≤A1≤4  A2=B−A1  5≤B≤6∧ ∧

LIA  ⊭ A1. 2≤A1≤4 → A2,B. a1(A1, A2, B)∀ ∃

2) SOLVE(P, reachProp(A1, A2, B)  A2,B. ¬a1(A1, A2, B)) = ∧ ∀
a2(A1, A2, B): A1=2  A2=1  B=6∧ ∧

LIA ⊨ A1. 2≤A1≤4 → A2,B. (a1(A1, A2, B)  a2(A1, A2, B))∀ ∃ ∨
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SC Algorithm

a(U, C) := false
do {

Q := (reachProp(U, C)  ∧ ¬a(U, C));
if (SOLVE(I

SP
, Q) = false) return false;

a(U, C) := a(U, C)  SOLVE(∨ I
SP

, Q);
} while (LIA ⊭ C U. adm(U) → a(U, C)∃ ∀ )
return a(U, C);
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Implementation

● Different tools have been used to implement the technique:

– VeriMAP transformation system: Removal of the Interpreter

– SICStus Prolog: Computation of answer constraints

– Z3 SMT solver: Checking quantified LIA formulas

●  Integration is underway
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Experimental evaluation

 ● Experimentation in progress on various examples

– Purchase order [DFMPP 2016]

– Request Day-Off Approval [Huai et al. 2010]

– STEMI: Emergency Department Admission [Combi et al. 
2009]

– STEMI: Emergency Department + Coronary Care Unit 
Admission [Combi et al. 2012]
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Conclusions

● Controllability introduced in various contexts [VidalFargier-
99,CimattiEtAl-15,CombiPosenato-09]

● This talk: Flexible framework for reasoning about the 
controllability of time-aware BPs

– Parametric w.r.t. the semantics and property

– Satisfiability-preserving CHC transformations

– State-of-the-art CHC solvers and CLP systems

● Future developments

– larger fragment of BPMN (timer events)

– data      (Montali, Deutsch, ...) 

– Ontologies (Semantic BP models)
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The end

Thank you!
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