
Verifying Controllability of
Time-Aware

Business Processes

E. De Angelis (1), F. Fioravanti (1), M.C. Meo (1)

 A. Pettorossi (2), M. Proietti (3)

(1) DEC, University ”G. d’Annunzio” of Chieti-Pescara, Italy
(2) DICII, University of Rome Tor Vergata, Rome, Italy

(3) CNR-IASI, Rome, Italy

RuleML+RR 2017 London (UK) July 12, 2017

12 July 2017 RuleML+RR 2017 2

Business Processes

● A process that coordinates the activities of an
organization towards a business goal

● Purchase Order: A customer adds one or more items to
the shopping cart and pays. Then, the vendor sends the
invoice and delivers the order

● No quantitative time information (e.g., durations of tasks)

12 July 2017 RuleML+RR 2017 3

Time-aware Business Processes

● Specify intervals of task duration: D ∈ [dmin, dmax] ⊂ ℕ

[1,6] [1,2]

[1,2] [1,3]

[1,2]

[2,4]

[1,3]

● Reachability property: The time to reach ‘end’ from ‘start’
is less than K

● Controllability property: It is possible to determine the
durations of some (controllable) tasks so that a given
reachability property holds

12 July 2017 RuleML+RR 2017 4

● Graphical language for modeling organizational
processes: activities, events, and their composition

(OMG standard)

● Tasks: atomic activities

● Events: something that ‘happens’

● Sequence flow: order of execution

● Gateways: branching/merging flows

Business Process Modeling and Notation
(BPMN)

start end

12 July 2017 RuleML+RR 2017 5

Branch gateways

● single incoming flow, multiple outgoing flows

● exclusive branch gateway (XOR)

– upon activation
of the incoming flow
exactly one outgoing flow
is activated

● parallel branch gateway (AND)

– upon activation
of the incoming flow
all outgoing flows
are activated

12 July 2017 RuleML+RR 2017 6

Merge gateways

● multiple incoming flows, single outgoing flow

● exclusive merge gateway (XOR)

– the outgoing flow is activated
upon activation of
one of the incoming flows

● parallel merge gateway (AND)

– the outgoing flow is activated
upon activation
of all the incoming flows

12 July 2017 RuleML+RR 2017 7

Semantics of time-aware BPMN

● Transition relation → between states <F,t>

● t time point: non-negative integer

● F set of fluents: properties that hold at time point t

– begins(x): x begins its execution (enactment)

– enacting(x,r): x is enacting,
r residual time to completion

– completes(x): x completes its execution

– enables(x,y): x enables its successor y

x,y denote flow objects (tasks, events, or gateways)

● seq(x,y): there is a sequence flow from x to y

● duration(x,d): the duration of x is d

12 July 2017 RuleML+RR 2017 8

Semantics of time-aware BPMN

● Instantaneous transitions

● (S
2
) If the parallel branch x completes,

then x enables istantaneously all successors of x

12 July 2017 RuleML+RR 2017 9

Semantics of time-aware BPMN

● Instantaneous transitions

● (S
4
) If all predecessors of the parallel merge x enable x,

then the execution of x begins istantaneously

12 July 2017 RuleML+RR 2017 10

Semantics of time-aware BPMN

● Time elapsing transition

● Time elapses when no istantaneous transition can occur. All
enacting tasks proceed in parallel for a time equal to the
minimum of all residual times.

12 July 2017 RuleML+RR 2017 11

Reachability

● State <F,t> is reachable iff, for some durations in the given
intervals,

<{begins(start)},0> →* <F,t>

12 July 2017 RuleML+RR 2017 12

An example of enactment

<{begins(start)},0> →* <{begins(g1)}, 0>
(S

1
) → <{enacting(g1,0)}, 0> % duration(g1,0)

(S
6
) → <{completes(g1)}, 0>

(S
2
) → <{enables(g1,a),enables(g1,b)}, 0>

(S
5
) → <{begins(a),enables(g1,b)}, 0>

(S
1
) → <{enacting(a,2),enables(g1,b)}, 0> % 2 in [1,2]

(S
5
S

1
) →2 <{enacting(a,2),enacting(b,2)}, 0> % 2 in [2,3]

(S
7
) → <{enacting(a,0),enacting(b,0)}, 2>

(S
6
S

6
) →2 <{completes(a),completes(b)}, 2>

(S
3
S

3
) →2 <{enables(a,g2),enables(b,g2)}, 2>

(S
4
) → <{begins(g2)}, 2>

→* <{completes(end)}, 2>

start end

a

bg1 g2

[1,2]

[2,3]

12 July 2017 RuleML+RR 2017 13

Weak Controllability

● Assume:

– Some tasks are controllable (e.g., internal to the organization)

– Some tasks are uncontrollable (e.g., external to the organization)

● WC: For all durations of the uncontrollable tasks (within the given time
intervals), we can determine durations of the controllable tasks (within
the given time intervals), s.t. a state can be reached and a given time
constraint holds

●

constraint: 3 ≤ T
total

 ≤ 7

a solution: if D
pu

=1 then D
cc

=D
ci
=2 else D

cc
=D

ci
=1

start end

cc_charge

collect_items

purchase

[1,5]

[1,3]

[1,2]
uncontrollable

controllable

controllable

12 July 2017 RuleML+RR 2017 14

Strong Controllability

● WC may not be useful when some uncontrollable tasks occur
after controllable ones

● SC: We can determine durations of the controllable tasks
(within the given time intervals) s.t., for all durations of the
uncontrollable tasks (within the given time intervals), a state can
be reached and a given time constraint holds

● The exact duration of the delivery is not known when packaging

constraint: 4 ≤ T
total

 ≤ 7

a solution: 1 ≤ D
packaging

 ≤ 2

start endpackaging

[1,4]

controllable uncontrollable

[3,5]

delivery

12 July 2017 RuleML+RR 2017 15

Solving Controllability Problems
with Constrained Horn Clauses

● Constrained Horn Clauses (aka CLP): H ← c, A
1
,…,A

n

● Use Constrained Horn Clauses to:

1) Encode the semantics of time-aware BPs;

2) Encode reachability and controllability problems;

3) Solve controllability problems by applying CHC solvers (i.e.,
tools for Satisfiability Modulo Theory specialized to CHCs over
integers).

12 July 2017 RuleML+RR 2017 16

1) CHC encoding of the semantic rules

where U,C, are tuples of uncontrollable and controllable durations,
resp.

12 July 2017 RuleML+RR 2017 17

CHC interpreter for time-aware BPMN

12 July 2017 RuleML+RR 2017 18

2.1) Encoding reachability

● Reachability:

R1: reach(S,S,U,C) ←
R2: reach(S0,S2,U,C) ← tr(S0,S1,U,C), reach(S1,S2,U,C)

● Reachability Property:

RP: reachProp(U,C) ← c(T,U,C), reach(init,fin(T),U,C)

where c(T,U,C) is a constraint

● Initial state init: <{begins(start)},0>,

● Final state fin(T): <{completes(end)},T>

● Similarly for non final states

12 July 2017 RuleML+RR 2017 19

2.2) Encoding controllability

● CHCs Sem encoding of semantics of a BP: clauses C1-
C7,R1,R2

● Theory of Linear Integer Arithmetics (LIA)

● Weak Controllability:

Sem ∪ {RP} U LIA ⊨ ∀U. adm(U) → ∃C reachProp(U,C)

where adm(U) iff the durations in U belong to the given intervals

● Strong Controllability:

Sem ∪ {RP} U LIA ⊨ ∃C∀U. adm(U) → reachProp(U,C)

12 July 2017 RuleML+RR 2017 20

3) Applying CHC solvers

● Validity of WC and SC properties:

– cannot be proved by CHC solvers over LIA (e.g., Z3), because
of complex terms (e.g., {.}), findall predicate in the interpreter

– cannot be proved by CLP systems, because of ∃∀ and ∀∃

– both may have termination problems with recursive reach

● Transform Sem ∪ {RP} for removing complex terms/findall and
derive equisatisfiable function-free, linear-recursive clauses

p(X) ← c, q(Y)

where X,Y are tuples of variables and c is a constraint in LIA

12 July 2017 RuleML+RR 2017 21

Removal of the interpreter

● Rule-based transformation strategy

– Transformation rules: unfolding, definition, folding, clause
removal

– Strategy: specialization of the interpreter Sem with respect to
the specific business process and the specific property RP

● Sem ∪ {RP} I
SP

 s.t., for all u,c ∈ℕ

Sem ∪ {RP} U LIA ⊨ reachProp(u,c) iff I
SP

 ⊨ reachProp(u,c)

● I
SP

 is a set of function-free, linear-recursive clauses

RI

12 July 2017 RuleML+RR 2017 22

Removal of the Interpreter: Example

task(a1) ← event(start) ← par_branch(g1) ← ...
seq(start, g1) ← seq(g1, b) ← ...
uncontrollable(a1) ← controllable(a2) ← controllable(b) ←
duration(a1, D) ← 2 ≤ D ≤ 4 duration(a2, D) ← 1 ≤ D ≤ 2
duration(b, D) ← 5 ≤ D ≤ 6 duration(g1, D) ← D = 0 …

RP: reachProp(A1,A2,B) ← reach(init,fin(T),A1,A2,B)

WC: ∀A1. 2 ≤ A1 ≤ 4 → ∃A2,B. reachProp(A1,A2,B)

12 July 2017 RuleML+RR 2017 23

... Example

● Fully automatic transformation using VeriMAP [DFPP-15]

reachProp(A1,A2,B) ← A=A1, B=B1, A1≥2, A1≤4, B≥5, B≤6,
new2(A, B1, F, G, A1, A2, B)

new2(A,B1,C,D,A1,A2,B) ← H=A+C, I=B1−A, J=0, A≥1, I≥0, A+I≥1,
new2(J, I, H, D, A1, A2, B)

new2(A,B1,C,D,A1,A2,B) ← H=B1+C, I=A−B1, J=0, A≥1, I≥0, A−I≥1,
new2(I,J,H,D,A1,A2,B)

new2(A,B1,C,D,A1,A2,B) ← H=A2, A=0, H≥1, H≤2, new5(H,B1,C,D,A1,A2,B)
new5(A,B1,C,C,A1,A2,B) ← A=0, B1=0
new5(A,B1,C,D,A1,A2,B) ← H=A+C, I=B1−A, J=0, A≥1, I≥0, A+I≥1, new5(J,I,H,D,A1,A2,B)
new5(A,B1,C,D,A1,A2,B) ← H=B1+C, I=A−B1, J=0, A≥1, I≥0, A−I≥1, new5(I,J,H,D,A1,A2,B)
new5(A,B1,C,D,A1,A2,B) ← H=A1, A=0, H≥2, H≤4, new2(H,B1,C,D,A1,A2,B)

● Function-free, linear recursive CHCs over the integers

● The CHC solver Z3 is still unable to prove WC because of ∀ over
the recursively defined predicates new2 and new5

12 July 2017 RuleML+RR 2017 24

Controllability Algorithms

● Reduce verification to solving quantified non-recursive LIA
formulas

● We assume we have a solver SOLVE. For any set P of clauses
and query Q: c, A

1
,…,A

n
,

SOLVE(P,Q) returns

– a satisfiable answer constraint a s.t. P U LIA ⊨ ∀(a → Q), if any

– false, otherwise

12 July 2017 RuleML+RR 2017 25

WC Algorithm

a(U, C) := false
do {

Q := (reachProp(U, C) C. ∧ ∀ ¬a(U, C));
if (SOLVE(I

SP
, Q) = false) return false;

a(U, C) := a(U, C) SOLVE(∨ I
SP

, Q);
} while (LIA ⊭ U. adm(U) → C. a(U, C)∀ ∃)
return a(U, C);

12 July 2017 RuleML+RR 2017 26

WC Algorithm

a(U, C) := false
do {

Q := (reachProp(U, C) C. ∧ ∀ ¬a(U, C));
if (SOLVE(I

SP
, Q) = false) return false;

a(U, C) := a(U, C) SOLVE(∨ I
SP

, Q);
} while (LIA ⊭ U. adm(U) → C. a(U, C)∀ ∃)
return a(U, C);

1) SOLVE(P, reachProp(A1, A2, B) ¬false) = ∧
a1(A1, A2, B): B−2≤A1≤4 A2=B−A1 5≤B≤6∧ ∧

LIA ⊭ A1. 2≤A1≤4 → A2,B. a1(A1, A2, B)∀ ∃

12 July 2017 RuleML+RR 2017 27

WC Algorithm

a(U, C) := false
do {

Q := (reachProp(U, C) C. ∧ ∀ ¬a(U, C));
if (SOLVE(I

SP
, Q) = false) return false;

a(U, C) := a(U, C) SOLVE(∨ I
SP

, Q);
} while (LIA ⊭ U. adm(U) → C. a(U, C)∀ ∃)
return a(U, C);

1) SOLVE(P, reachProp(A1, A2, B) ¬false) = ∧
a1(A1, A2, B): B−2≤A1≤4 A2=B−A1 5≤B≤6∧ ∧

LIA ⊭ A1. 2≤A1≤4 → A2,B. a1(A1, A2, B)∀ ∃

2) SOLVE(P, reachProp(A1, A2, B) A2,B. ¬a1(A1, A2, B)) = ∧ ∀
a2(A1, A2, B): A1=2 A2=1 B=6∧ ∧

LIA ⊨ A1. 2≤A1≤4 → A2,B. (a1(A1, A2, B) a2(A1, A2, B))∀ ∃ ∨

12 July 2017 RuleML+RR 2017 28

SC Algorithm

a(U, C) := false
do {

Q := (reachProp(U, C) ∧ ¬a(U, C));
if (SOLVE(I

SP
, Q) = false) return false;

a(U, C) := a(U, C) SOLVE(∨ I
SP

, Q);
} while (LIA ⊭ C U. adm(U) → a(U, C)∃ ∀)
return a(U, C);

12 July 2017 RuleML+RR 2017 29

Implementation

● Different tools have been used to implement the technique:

– VeriMAP transformation system: Removal of the Interpreter

– SICStus Prolog: Computation of answer constraints

– Z3 SMT solver: Checking quantified LIA formulas

● Integration is underway

12 July 2017 RuleML+RR 2017 30

Experimental evaluation

 ● Experimentation in progress on various examples

– Purchase order [DFMPP 2016]

– Request Day-Off Approval [Huai et al. 2010]

– STEMI: Emergency Department Admission [Combi et al.
2009]

– STEMI: Emergency Department + Coronary Care Unit
Admission [Combi et al. 2012]

12 July 2017 RuleML+RR 2017 31

Conclusions

● Controllability introduced in various contexts [VidalFargier-
99,CimattiEtAl-15,CombiPosenato-09]

● This talk: Flexible framework for reasoning about the
controllability of time-aware BPs

– Parametric w.r.t. the semantics and property

– Satisfiability-preserving CHC transformations

– State-of-the-art CHC solvers and CLP systems

● Future developments

– larger fragment of BPMN (timer events)

– data (Montali, Deutsch, ...)

– Ontologies (Semantic BP models)

12 July 2017 RuleML+RR 2017 32

The end

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

