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1 Integrality of optimal Min-Cut LP solutions

Problem 1.1. Prove that an optimal solution of the Min-Cut linear program
is without loss of generality an integral solution. Hint: use the dual program
and the complementary slackness conditions.

Recall the Min-Cut LP for a graph G = (V,A) with capacities (ca)a∈A:

min
∑

(i,j)∈A

cij · dij

s.t. dij ≥ pi − pj ∀ (i, j) ∈ A
ps − pt ≥ 1

dij ≥ 0 ∀ (i, j) ∈ A
pi ≥ 0 ∀ i ∈ V.

(1)

Its dual is the Maximum Flow LP:

max fts

s.t. fij ≤ cij ∀ (i, j) ∈ A
f(δ−(i))− f(δ+(i)) ≤ 0 ∀ i ∈ V
fij ≥ 0 ∀ (i, j) ∈ A.

(2)

We have used the shorthands f(δ−(i)) and f(δ+(i)) for the flow entering and
leaving node i, respectively: f(δ−(i)) =

∑
j:(j,i)∈A fji, f(δ+(i)) =

∑
j:(i,j)∈A fij .
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Let f be an optimal solution of the dual (maximum flow) linear program.
We know that a feasible solution (d, p) of the Min-Cut LP is optimal if and only
if it also satisfies the complementary slackness conditions:

(dij > 0)⇒ (fij = cij) (3)

(fij > 0)⇒ (dij = pi − pj) (4)

(ps − pt > 1)⇒ (fts = 0) (5)

(f(δ−(i))− f(δ+(i)) < 0)⇒ (pi = 0) (6)

Consider the “residual graph” of f , which is obtained from G by only con-
sidering the arcs (i, j) such that fij < cij , plus the reverse arcs (j, i) such that
fij > 0.

If there is a path from s to t in the residual graph of f , then by slightly
increasing the flow along this path we get a new feasible flow of larger value.
But this is impossible since f is optimal. Therefore, there t is not reachable
from s in the residual graph of f .

We now define a solution (d, p) for the Min-Cut LP. Let X be the set of
nodes reachable from the node s in the residual graph of f . So s ∈ X, t /∈ X.
Now define pi = 1 if i ∈ X, pi = 0 if i /∈ X. Moreover, define dij = 1 if i ∈ X,
j /∈ X, and dij = 0 otherwise.

It is not difficult to check that all the constraints of the Min-Cut LP are
satisfied by (d, p). Therefore it is a feasible solution. Now consider the comple-
mentary slackness conditions:

• (3) is satisfied since if i ∈ X, j /∈ X then fij = cij , and for all other arcs
(i, j), dij = 0 (all arcs from X to X̄ are saturated by the flow);

• (4) is satisfied since if i /∈ X, j ∈ X then fij = 0, and for all other arcs
(i, j), dij = pi − pj (all reverse arcs from X̄ to X have no flow);

• (5) is satisfied simply because ps − pt = 1;

• (6) is satisfied simply because f(δ−(i)) = f(δ+(i)) for all i ∈ V (remember
that we have added an arc (t, s) to ensure flow conservation also at s and
t).

Therefore, (d, p) is a 0/1 optimal solution.

2 Existence of an integrality gap for Set Cover

Problem 2.1. Show an example where a fractional set cover is better than an
integral set cover.
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Recall the Set Cover ILP:

min
∑
S∈S

c(S) · xS∑
S:e∈S

xS ≥ 1 ∀ e ∈ U

xS ∈ {0, 1} ∀S ∈ S.

(7)

The LP relaxation is the following:

min
∑
S∈S

c(S) · xS∑
S:e∈S

xS ≥ 1 ∀ e ∈ U

xS ≥ 0 ∀S ∈ S.

(8)

Solution

Consider the following instance: U = {a, b, c}, S = {S1, S2, S3}, S1 = {a, b},
S2 = {b, c}, S3 = {a, c}, c(S1) = c(S2) = c(S3) = 1. An integral set cover has
cost at least 2. On the other hand, if we set xS1

= xS2
= xS3

= 1/2 we get a
feasible solution to the LP, of cost 3/2. So the integrality gap is at least 4/3.

The example can be extended to arbitrarily large instances (how?).

3 Lower bound on Greedy for Set Cover

Problem 3.1. Find an example where Greedy is Ω(log n)-approximate for un-
weighted Set Cover.

(Recall that n denotes the size of the universe set and that in the unweighted
case the cost of every set is 1.)

Solution

Consider the following construction. We have U = {0, 1, . . . , 3 · 2k − 1} (so
n = Θ(2k)). In the collection S there are three sets B1 = {0, . . . , 2k − 1},
B2 = {2k, . . . , 2 · 2k − 1}, B3 = {2 · 2k, . . . , 3 · 2k − 1}. Furthermore, S contains
also k + 1 sets S0, . . . , Sk where

S0 = {0, 2k, 2 · 2k}

and, for i ∈ [1, k],

Si = {e ∈ U : (e mod 2k) ∈ [2i−1, 2i)}.

See Figure 1 for an illustration when k = 3. The sets B1, B2, B3 are the black
sets, the sets S0, . . . , Sk are the red sets.
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Figure 1: Counterexample for the Greedy Set Cover algorithm

The solution that picks B1, B2, B3 has cost 3, and opt = 3. Since for all i,
3 · 2i−1 > 2i, at each step the Greedy algorithm will select a red set and there
will be k + 1 steps. So the cost of the greedy solution is k + 1 = Ω(log n), and
the approximation ratio is Ω(log n)/3 = Ω(log n).


