LP-based approximation algorithms Exercises and extensions

Vincenzo Bonifaci

April 3, 2012

Contents

1	Integrality of optimal Min-Cut LP solutions	1
2	Existence of an integrality gap for Set Cover	2
3	Lower bound on Greedy for Set Cover	3

1 Integrality of optimal Min-Cut LP solutions

Problem 1.1. Prove that an optimal solution of the Min-Cut linear program is without loss of generality an integral solution. Hint: use the dual program and the complementary slackness conditions.

Recall the Min-Cut LP for a graph G = (V, A) with capacities $(c_a)_{a \in A}$:

$$\min \sum_{\substack{(i,j)\in A}} c_{ij} \cdot d_{ij} \\
\text{s.t.} \quad d_{ij} \ge p_i - p_j \quad \forall (i,j) \in A \\
p_s - p_t \ge 1 \\
d_{ij} \ge 0 \quad \forall (i,j) \in A \\
p_i \ge 0 \quad \forall i \in V.
\end{cases}$$
(1)

Its dual is the Maximum Flow LP:

$$\begin{array}{ll} \max & f_{ts} \\ \text{s.t.} & f_{ij} \leq c_{ij} & \forall (i,j) \in A \\ & f(\delta^{-}(i)) - f(\delta^{+}(i)) \leq 0 & \forall i \in V \\ & f_{ij} \geq 0 & \forall (i,j) \in A. \end{array}$$

$$(2)$$

We have used the shorthands $f(\delta^-(i))$ and $f(\delta^+(i))$ for the flow entering and leaving node *i*, respectively: $f(\delta^-(i)) = \sum_{j:(j,i) \in A} f_{ji}, f(\delta^+(i)) = \sum_{j:(i,j) \in A} f_{ij}$.

Let f be an optimal solution of the dual (maximum flow) linear program. We know that a feasible solution (d, p) of the Min-Cut LP is optimal if and only if it also satisfies the complementary slackness conditions:

$$(d_{ij} > 0) \Rightarrow (f_{ij} = c_{ij}) \tag{3}$$

$$(f_{ij} > 0) \Rightarrow (d_{ij} = p_i - p_j) \tag{4}$$

$$(p_s - p_t > 1) \Rightarrow (f_{ts} = 0) \tag{5}$$

$$(f(\delta^{-}(i)) - f(\delta^{+}(i)) < 0) \Rightarrow (p_i = 0)$$

$$\tag{6}$$

Consider the "residual graph" of f, which is obtained from G by only considering the arcs (i, j) such that $f_{ij} < c_{ij}$, plus the reverse arcs (j, i) such that $f_{ij} > 0$.

If there is a path from s to t in the residual graph of f, then by slightly increasing the flow along this path we get a new feasible flow of larger value. But this is impossible since f is optimal. Therefore, there t is not reachable from s in the residual graph of f.

We now define a solution (d, p) for the Min-Cut LP. Let X be the set of nodes reachable from the node s in the residual graph of f. So $s \in X$, $t \notin X$. Now define $p_i = 1$ if $i \in X$, $p_i = 0$ if $i \notin X$. Moreover, define $d_{ij} = 1$ if $i \in X$, $j \notin X$, and $d_{ij} = 0$ otherwise.

It is not difficult to check that all the constraints of the Min-Cut LP are satisfied by (d, p). Therefore it is a feasible solution. Now consider the complementary slackness conditions:

- (3) is satisfied since if $i \in X$, $j \notin X$ then $f_{ij} = c_{ij}$, and for all other arcs (i, j), $d_{ij} = 0$ (all arcs from X to \bar{X} are saturated by the flow);
- (4) is satisfied since if $i \notin X$, $j \in X$ then $f_{ij} = 0$, and for all other arcs (i, j), $d_{ij} = p_i p_j$ (all reverse arcs from \overline{X} to X have no flow);
- (5) is satisfied simply because $p_s p_t = 1$;
- (6) is satisfied simply because $f(\delta^{-}(i)) = f(\delta^{+}(i))$ for all $i \in V$ (remember that we have added an arc (t, s) to ensure flow conservation also at s and t).

Therefore, (d, p) is a 0/1 optimal solution.

2 Existence of an integrality gap for Set Cover

Problem 2.1. Show an example where a fractional set cover is better than an integral set cover.

Recall the Set Cover ILP:

$$\min \quad \sum_{S \in \mathcal{S}} c(S) \cdot x_S$$
$$\sum_{S:e \in S} x_S \ge 1 \quad \forall e \in U$$
$$x_S \in \{0,1\} \quad \forall S \in \mathcal{S}.$$
$$(7)$$

The LP relaxation is the following:

$$\min \quad \sum_{S \in S} c(S) \cdot x_S$$
$$\sum_{S: e \in S} x_S \ge 1 \quad \forall e \in U$$
$$x_S \ge 0 \qquad \forall S \in S.$$
$$(8)$$

Solution

Consider the following instance: $U = \{a, b, c\}, S = \{S_1, S_2, S_3\}, S_1 = \{a, b\}, S_2 = \{b, c\}, S_3 = \{a, c\}, c(S_1) = c(S_2) = c(S_3) = 1$. An integral set cover has cost at least 2. On the other hand, if we set $x_{S_1} = x_{S_2} = x_{S_3} = 1/2$ we get a feasible solution to the LP, of cost 3/2. So the integrality gap is at least 4/3.

The example can be extended to arbitrarily large instances (how?).

3 Lower bound on Greedy for Set Cover

Problem 3.1. Find an example where Greedy is $\Omega(\log n)$ -approximate for unweighted Set Cover.

(Recall that n denotes the size of the universe set and that in the unweighted case the cost of every set is 1.)

Solution

Consider the following construction. We have $U = \{0, 1, \ldots, 3 \cdot 2^k - 1\}$ (so $n = \Theta(2^k)$). In the collection S there are three sets $B_1 = \{0, \ldots, 2^k - 1\}$, $B_2 = \{2^k, \ldots, 2 \cdot 2^k - 1\}$, $B_3 = \{2 \cdot 2^k, \ldots, 3 \cdot 2^k - 1\}$. Furthermore, S contains also k + 1 sets S_0, \ldots, S_k where

$$S_0 = \{0, 2^k, 2 \cdot 2^k\}$$

and, for $i \in [1, k]$,

$$S_i = \{e \in U : (e \mod 2^k) \in [2^{i-1}, 2^i)\}.$$

See Figure 1 for an illustration when k = 3. The sets B_1, B_2, B_3 are the black sets, the sets S_0, \ldots, S_k are the red sets.

Figure 1: Counterexample for the Greedy Set Cover algorithm

The solution that picks B_1, B_2, B_3 has cost 3, and opt = 3. Since for all i, $3 \cdot 2^{i-1} > 2^i$, at each step the Greedy algorithm will select a red set and there will be k + 1 steps. So the cost of the greedy solution is $k + 1 = \Omega(\log n)$, and the approximation ratio is $\Omega(\log n)/3 = \Omega(\log n)$.