LP-based approximation algorithms Exercises and extensions

Vincenzo Bonifaci

April 3, 2012

Contents

1 Integrality of optimal Min-Cut LP solutions 1
2 Existence of an integrality gap for Set Cover 2
3 Lower bound on Greedy for Set Cover 3

1 Integrality of optimal Min-Cut LP solutions

Problem 1.1. Prove that an optimal solution of the Min-Cut linear program is without loss of generality an integral solution. Hint: use the dual program and the complementary slackness conditions.

Recall the Min-Cut LP for a graph $G=(V, A)$ with capacities $\left(c_{a}\right)_{a \in A}$:

$$
\begin{array}{lll}
\min & \sum_{(i, j) \in A} c_{i j} \cdot d_{i j} & \\
\text { s.t. } & d_{i j} \geq p_{i}-p_{j} & \forall(i, j) \in A \tag{1}\\
& p_{s}-p_{t} \geq 1 & \\
& d_{i j} \geq 0 & \forall(i, j) \in A \\
& p_{i} \geq 0 & \forall i \in V .
\end{array}
$$

Its dual is the Maximum Flow LP:

$$
\begin{array}{lll}
\max & f_{t s} & \\
\text { s.t. } & f_{i j} \leq c_{i j} & \forall(i, j) \in A \\
& f\left(\delta^{-}(i)\right)-f\left(\delta^{+}(i)\right) \leq 0 & \forall i \in V \tag{2}\\
& f_{i j} \geq 0 & \forall(i, j) \in A
\end{array}
$$

We have used the shorthands $f\left(\delta^{-}(i)\right)$ and $f\left(\delta^{+}(i)\right)$ for the flow entering and leaving node i, respectively: $f\left(\delta^{-}(i)\right)=\sum_{j:(j, i) \in A} f_{j i}, f\left(\delta^{+}(i)\right)=\sum_{j:(i, j) \in A} f_{i j}$.

Let f be an optimal solution of the dual (maximum flow) linear program. We know that a feasible solution (d, p) of the Min-Cut LP is optimal if and only if it also satisfies the complementary slackness conditions:

$$
\begin{align*}
\left(d_{i j}>0\right) & \Rightarrow\left(f_{i j}=c_{i j}\right) \tag{3}\\
\left(f_{i j}>0\right) & \Rightarrow\left(d_{i j}=p_{i}-p_{j}\right) \tag{4}\\
\left(p_{s}-p_{t}>1\right) & \Rightarrow\left(f_{t s}=0\right) \tag{5}\\
\left(f\left(\delta^{-}(i)\right)-f\left(\delta^{+}(i)\right)<0\right) & \Rightarrow\left(p_{i}=0\right) \tag{6}
\end{align*}
$$

Consider the "residual graph" of f, which is obtained from G by only considering the arcs (i, j) such that $f_{i j}<c_{i j}$, plus the reverse $\operatorname{arcs}(j, i)$ such that $f_{i j}>0$.

If there is a path from s to t in the residual graph of f, then by slightly increasing the flow along this path we get a new feasible flow of larger value. But this is impossible since f is optimal. Therefore, there t is not reachable from s in the residual graph of f.

We now define a solution (d, p) for the Min-Cut LP. Let X be the set of nodes reachable from the node s in the residual graph of f. So $s \in X, t \notin X$. Now define $p_{i}=1$ if $i \in X, p_{i}=0$ if $i \notin X$. Moreover, define $d_{i j}=1$ if $i \in X$, $j \notin X$, and $d_{i j}=0$ otherwise.

It is not difficult to check that all the constraints of the Min-Cut LP are satisfied by (d, p). Therefore it is a feasible solution. Now consider the complementary slackness conditions:

- (3) is satisfied since if $i \in X, j \notin X$ then $f_{i j}=c_{i j}$, and for all other arcs $(i, j), d_{i j}=0$ (all arcs from X to \bar{X} are saturated by the flow);
- (4) is satisfied since if $i \notin X, j \in X$ then $f_{i j}=0$, and for all other arcs $(i, j), d_{i j}=p_{i}-p_{j}$ (all reverse arcs from \bar{X} to X have no flow);
- (5) is satisfied simply because $p_{s}-p_{t}=1$;
- (6) is satisfied simply because $f\left(\delta^{-}(i)\right)=f\left(\delta^{+}(i)\right)$ for all $i \in V$ (remember that we have added an $\operatorname{arc}(t, s)$ to ensure flow conservation also at s and $t)$.

Therefore, (d, p) is a $0 / 1$ optimal solution.

2 Existence of an integrality gap for Set Cover

Problem 2.1. Show an example where a fractional set cover is better than an integral set cover.

Recall the Set Cover ILP:

$$
\begin{array}{rll}
\min & \sum_{S \in \mathcal{S}} c(S) \cdot x_{S} & \\
& \sum_{S: e \in S} x_{S} \geq 1 \quad \forall e \in U \tag{7}\\
& x_{S} \in\{0,1\} \quad \forall S \in \mathcal{S}
\end{array}
$$

The LP relaxation is the following:

$$
\min \begin{array}{ll}
& \sum_{S \in \mathcal{S}} c(S) \cdot x_{S} \\
& \sum_{S: e \in S} x_{S} \geq 1 \tag{8}\\
& \forall e \in U \\
& x_{S} \geq 0
\end{array} \quad \forall S \in \mathcal{S} .
$$

Solution

Consider the following instance: $U=\{a, b, c\}, \mathcal{S}=\left\{S_{1}, S_{2}, S_{3}\right\}, S_{1}=\{a, b\}$, $S_{2}=\{b, c\}, S_{3}=\{a, c\}, c\left(S_{1}\right)=c\left(S_{2}\right)=c\left(S_{3}\right)=1$. An integral set cover has cost at least 2. On the other hand, if we set $x_{S_{1}}=x_{S_{2}}=x_{S_{3}}=1 / 2$ we get a feasible solution to the LP, of cost $3 / 2$. So the integrality gap is at least $4 / 3$.

The example can be extended to arbitrarily large instances (how?).

3 Lower bound on Greedy for Set Cover

Problem 3.1. Find an example where Greedy is $\Omega(\log n)$-approximate for unweighted Set Cover.
(Recall that n denotes the size of the universe set and that in the unweighted case the cost of every set is 1.)

Solution

Consider the following construction. We have $U=\left\{0,1, \ldots, 3 \cdot 2^{k}-1\right\}$ (so $\left.n=\Theta\left(2^{k}\right)\right)$. In the collection \mathcal{S} there are three sets $B_{1}=\left\{0, \ldots, 2^{k}-1\right\}$, $B_{2}=\left\{2^{k}, \ldots, 2 \cdot 2^{k}-1\right\}, B_{3}=\left\{2 \cdot 2^{k}, \ldots, 3 \cdot 2^{k}-1\right\}$. Furthermore, \mathcal{S} contains also $k+1$ sets S_{0}, \ldots, S_{k} where

$$
S_{0}=\left\{0,2^{k}, 2 \cdot 2^{k}\right\}
$$

and, for $i \in[1, k]$,

$$
S_{i}=\left\{e \in U:\left(e \bmod 2^{k}\right) \in\left[2^{i-1}, 2^{i}\right)\right\}
$$

See Figure 1 for an illustration when $k=3$. The sets B_{1}, B_{2}, B_{3} are the black sets, the sets S_{0}, \ldots, S_{k} are the red sets.

Figure 1: Counterexample for the Greedy Set Cover algorithm

The solution that picks B_{1}, B_{2}, B_{3} has cost 3 , and opt $=3$. Since for all i, $3 \cdot 2^{i-1}>2^{i}$, at each step the Greedy algorithm will select a red set and there will be $k+1$ steps. So the cost of the greedy solution is $k+1=\Omega(\log n)$, and the approximation ratio is $\Omega(\log n) / 3=\Omega(\log n)$.

