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The mathematical and computational foundations of modern
multiagent systems, with a focus on game theoretic analysis of
systems in which agents cannot be guaranteed to behave
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Self-interested agents

Lecture Overview

@ Sclf-interested agents
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Self-interested agents

Self-interested agents

@ What does it mean to say that an agent is self-interested?

e not that they want to harm other agents

e not that they only care about things that benefit them

e that the agent has its own description of states of the world
that it likes, and that its actions are motivated by this
description
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Self-interested agents

Self-interested agents

@ What does it mean to say that an agent is self-interested?

e not that they want to harm other agents

e not that they only care about things that benefit them

e that the agent has its own description of states of the world
that it likes, and that its actions are motivated by this
description

@ We capture this by saying that each agent has a utility
function: a mapping from states of the world to real numbers,
indicating level of happiness with that state of the world

e quantifies degree of preference across alternatives

e allows us to understand the impact of uncertainty on these
preferences

e Decision-theoretic rationality: take actions to maximize
expected utility.
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Self-interested agents

Why Utility?

@ Why would anyone argue with the idea that an agent’s
preferences could be described using a utility function?
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Self-interested agents

Why Utility?

@ Why would anyone argue with the idea that an agent’s
preferences could be described using a utility function?

e why should a single-dimensional function be enough to explain
preferences over an arbitrarily complicated set of alternatives?
e Why should an agent's response to uncertainty be captured
purely by the expected value of his utility function?
@ It turns out that the claim that an agent has a utility function
is substantive.
@ There's a famous theorem (von Neumann & Morgenstern,
1944) that derives the existence of a utility function from a
more basic preference ordering and axioms on such orderings.

@ see Theorem 3.1.18 in the book, which includes a proof.
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What is Game Theory?

Lecture Overview

© What is Game Theory?
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What is Game Theory?

Non-Cooperative Game Theory

e What is it?
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What is Game Theory?

Non-Cooperative Game Theory

@ What is it?
e mathematical study of interaction between rational,
self-interested agents
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What is Game Theory?

TCP Backoff Game

X 'Waming - 1o]x]

Yo Internet Connection [ Mot Opbimzed
Dowmdoad [ntzmatE00ST 2000 Nowl

Game Theory Intro Lecture 3, Slide 7



What is Game Theory?

TCP Backoff Game

X 'Waming - 10]x]

Yo Internet Connection [ Mot Opbimzed
Dewmload lntzmatBOOST 2000 Mol

Should you send your packets using correctly-implemented TCP
(which has a “backoff” mechanism) or using a defective
implementation (which doesn't)?

o Consider this situation as a two-player game:

e both use a correct implementation: both get 1 ms delay

e one correct, one defective: 4 ms delay for correct, 0 ms for
defective

e both defective: both get a 3 ms delay.
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What is Game Theory?

Defining Games

e Finite, n-person game: (N, A, u):
e N is a finite set of n players, indexed by ¢
e A=A, x...x A,, where A; is the action set for player i
@ a € Ais an action profile, and so A is the space of action

profiles
o u = (uy,...,uy), a utility function for each player, where
u;: A— R

@ Writing a 2-player game as a matrix:
e row player is player 1, column player is player 2
e rows are actions a € A;, columns are a’ € A,
o cells are outcomes, written as a tuple of utility values for each

player
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What is Game Theory?

Games in Matrix Form

Here's the TCP Backoff Game written as a matrix ( “normal
form™).
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Example Matrix Games

Lecture Overview

© Example Matrix Games
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Example Matrix Games

More General Form

Prisoner’s dilemma is any game

C D
C | a,a | bec
D | ¢eb | dd

withe>a > d > b.
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Example Matrix Games

Games of Pure Competition

Players have exactly opposed interests
@ There must be precisely two players (otherwise they can't
have exactly opposed interests)

e For all action profiles a € A, uj(a) + uz(a) = ¢ for some
constant ¢

e Special case: zero sum
@ Thus, we only need to store a utility function for one player
@ in a sense, it's a one-player game
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Example Matrix Games

Matching Pennies

One player wants to match; the other wants to mismatch.

Heads Tails

Heads 1 -1

Tails -1 1
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Example Matrix Games

Rock-Paper-Scissors

Generalized matching pennies.

Rock Paper Scissors
Rock 0 -1 1
Paper 1 0 -1
Scissors —1 1 0

...Believe it or not, there's an annual international competition for
this game!
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Example Matrix Games

Games of Cooperation

Players have exactly the same interests.
@ no conflict: all players want the same things
° Va € A,Vi,j, ui(a) = uj(a)
@ we often write such games with a single payoff per cell

@ why are such games “noncooperative”?
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Example Matrix Games

Coordination Game

Which side of the road should you drive on?

Left Right
Left 1 0
Right 0 1
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Example Matrix Games

General Games: Battle of the Sexes

The most interesting games combine elements of cooperation and
competition.
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Pareto Optimality

Lecture Overview

@ Pareto Optimality
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Pareto Optimality

Analyzing Games

@ We've defined some canonical games, and thought about how
to play them. Now let's examine the games from the outside

@ From the point of view of an outside observer, can some
outcomes of a game be said to be better than others?
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Pareto Optimality

Analyzing Games

@ We've defined some canonical games, and thought about how
to play them. Now let's examine the games from the outside

@ From the point of view of an outside observer, can some
outcomes of a game be said to be better than others?

e we have no way of saying that one agent's interests are more
important than another’s

e intuition: imagine trying to find the revenue-maximizing
outcome when you don't know what currency has been used to
express each agent's payoff

@ Are there situations where we can still prefer one outcome to
another?
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Pareto Optimality

Pareto Optimality

@ Idea: sometimes, one outcome o is at least as good for every
agent as another outcome o/, and there is some agent who
strictly prefers o to o

e in this case, it seems reasonable to say that o is better than o
e we say that o Pareto-dominates o'.
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Pareto Optimality

Pareto Optimality

@ Idea: sometimes, one outcome o is at least as good for every
agent as another outcome o/, and there is some agent who

strictly prefers o to o
e in this case, it seems reasonable to say that o is better than o
e we say that o Pareto-dominates o'.

@ An outcome o* is Pareto-optimal if there is no other outcome
that Pareto-dominates it.

Lecture 4, Slide 11
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Pareto Optimality

Pareto Optimality

@ Idea: sometimes, one outcome o is at least as good for every
agent as another outcome o/, and there is some agent who

strictly prefers o to o
e in this case, it seems reasonable to say that o is better than o
e we say that o Pareto-dominates o'.

@ An outcome o* is Pareto-optimal if there is no other outcome

that Pareto-dominates it.
e can a game have more than one Pareto-optimal outcome?
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Pareto Optimality

Pareto Optimality

@ Idea: sometimes, one outcome o is at least as good for every
agent as another outcome o/, and there is some agent who

strictly prefers o to o
e in this case, it seems reasonable to say that o is better than o
e we say that o Pareto-dominates o'.

@ An outcome o* is Pareto-optimal if there is no other outcome

that Pareto-dominates it.
e can a game have more than one Pareto-optimal outcome?
e does every game have at least one Pareto-optimal outcome?

Lecture 4, Slide 11
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Pareto Optimality

Pareto Optimal Outcomes in Example Games
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Pareto Optimality

Pareto Optimal Outcomes in Example Games

C D
C | -1,-1 | —4,0
D | 0,-4 | —3-3

Left

Right

Left  Right
1 0
0 1

From Optimality to Equilibrium

Lecture 4, Slide 12



Pareto Optimality

Pareto Optimal Outcomes in Example Games

C D Left nght
C —1.-1 —4.0 Left 1 0
D 0’ —4 73’ -3 nght 0 1
B F
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Pareto Optimality

Pareto Optimal Outcomes in Example Games

C D Left  Right
c | -1,-1 —4,0 Left 1 0
D 0,—4 —-3,-3 Right 0 1
B F Heads  Tails
B 2,1 10,0 Heads 1 -1
F |00 |12 Tails | —1 1
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Best Response and Nash Equilibrium

Lecture Overview

e Best Response and Nash Equilibrium
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Best Response and Nash Equilibrium

Best Response

o If you knew what everyone else was going to do, it would be
easy to pick your own action

From Optimality to Equilibrium Lecture 4, Slide 14



Best Response and Nash Equilibrium

Best Response

o If you knew what everyone else was going to do, it would be
easy to pick your own action
o Leta_; = <a1, SRR o 7 G I ¢ VT B ,an>.
e now a = (a_;,a;)

@ Best response: af € BR(a—;) iff
Ya; € A;, ui(a;‘,a,i) > ui(ai,a,i)
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Best Response and Nash Equilibrium

Nash Equilibrium

@ Now let’s return to the setting where no agent knows
anything about what the others will do

@ What can we say about which actions will occur?
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Best Response and Nash Equilibrium

Nash Equilibrium

@ Now let’s return to the setting where no agent knows
anything about what the others will do

@ What can we say about which actions will occur?

@ Idea: look for stable action profiles.

@ a={(ay,...,ay) is a (“pure strategy”) Nash equilibrium iff
Vi, a; € BR(CL_l)
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Best Response and Nash Equilibrium

Nash Equilibria of Example Games
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Best Response and Nash Equilibrium

Nash Equilibria of Example Games

C D Left Right
c | -1,-1 —4,0 Left 1 0
D O, —4 _3’ -3 nght 0 1
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Best Response and Nash Equilibrium

Nash Equilibria of Example Games

C D Left Right
c | -1,-1 —4,0 Left 1 0
D O, —4 _3’ -3 nght 0 1
B F

From Optimality to Equilibrium Lecture 4, Slide 16



Best Response and Nash Equilibrium

Nash Equilibria of Example Games

C D Left  Right
c | -1,-1 —4,0 Left 1 0
D | 0,—4 —-3,-3 Right 0 1
B F Heads  Tails
B 2,1 10,0 Heads 1 -1
F |00 |12 Tails | —1 1
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Best Response and Nash Equilibrium

Nash Equilibria of Example Games

C D Left  Right
c | -1,-1 —4,0 Left 1 0
D | 0,—4 —-3,-3 Right 0 1
B F Heads  Tails
B 2,1 10,0 Heads 1 -1
F |00 |12 Tails | —1 1

The paradox of Prisoner’s dilemma: the Nash equilibrium is the only
non-Pareto-optimal outcome!
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Mixed Strategies

Lecture Overview

@ Mixed Strategies
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Mixed Strategies

Mixed Strategies

@ It would be a pretty bad idea to play any deterministic
strategy in matching pennies

o Idea: confuse the opponent by playing randomly
@ Define a strategy s; for agent ¢ as any probability distribution
over the actions A;.
e pure strategy: only one action is played with positive
probability
e mixed strategy: more than one action is played with positive
probability
o these actions are called the support of the mixed strategy

@ Let the set of all strategies for i be .S;
@ Let the set of all strategy profiles be S =57 x ... x 5.
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Mixed Strategies

Utility under Mixed Strategies

@ What is your payoff if all the players follow mixed strategy
profile s € 57

o We can't just read this number from the game matrix
anymore: we won't always end up in the same cell
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Mixed Strategies

Utility under Mixed Strategies

@ What is your payoff if all the players follow mixed strategy
profile s € 57

o We can't just read this number from the game matrix
anymore: we won't always end up in the same cell

@ Instead, use the idea of expected utility from decision theory:

ui(s) = Z u;(a)Pr(als)

a€A

Pr(als) = JT s;(ay)

JEN
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Mixed Strategies

Best Response and Nash Equilibrium

Our definitions of best response and Nash equilibrium generalize
from actions to strategies.
@ Best response:
o s7 € BR(s_;) iff Vs; € S, wi(s], s—i) > wi(8i,5—4)
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Mixed Strategies

Best Response and Nash Equilibrium

Our definitions of best response and Nash equilibrium generalize
from actions to strategies.
@ Best response:
o s7 € BR(s_;) iff Vs; € S, wi(s], s—i) > wi(8i,5—4)

@ Nash equilibrium:
o s=(81,...,8,) is a Nash equilibrium iff Vi, s; € BR(s_;)

From Optimality to Equilibrium Lecture 4, Slide 20



Mixed Strategies

Best Response and Nash Equilibrium

Our definitions of best response and Nash equilibrium generalize
from actions to strategies.
@ Best response:
o s7 € BR(s_;) iff Vs; € S, wi(s], s—i) > wi(8i,5—4)

@ Nash equilibrium:
o s=(81,...,8,) is a Nash equilibrium iff Vi, s; € BR(s_;)

e Every finite game has a Nash equilibrium! [Nash, 1950]
e e.g., matching pennies: both players play heads/tails 50%/50%
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Mixed Strategies

Interpreting Mixed Strategy Equilibria

What does it mean to play a mixed strategy? Different
interpretations:
@ Randomize to confuse your opponent
e consider the matching pennies example
@ Players randomize when they are uncertain about the other’s
action
e consider battle of the sexes

@ Mixed strategies are a concise description of what might
happen in repeated play: count of pure strategies in the limit

@ Mixed strategies describe population dynamics: 2 agents
chosen from a population, all having deterministic strategies.
MS is the probability of getting an agent who will play one PS
or another.
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A multiplayer game: 2/3 of the mean

@ Consider the following game:

e Everybody bets 1 euro
o Everyone secretly writes a number between 0 and 100 on a

sheet of paper
e The mean of the numbers is computed and the player(s) closest

to 2/3 of the mean split the money
@ Model this as a normal form game
@ Which are the Nash equilibria, and why?

V. Bonifaci (IASI-CNR) Models of Selfish Agents October 29, 2012



Computing Mixed NE

Lecture Overview

© Computing Mixed Nash Equilibria

Computing Nash Equilibrium; Maxmin Lecture 5, Slide 9



Mixed Strategies

Computing Mixed Nash Equilibria: Battle of the Sexes

@ It's hard in general to compute Nash equilibria, but it's easy
when you can guess the support

@ For BoS, let's look for an equilibrium where all actions are
part of the support

From Optimality to Equilibrium Lecture 4, Slide 21



Mixed Strategies

Computing Mixed Nash Equilibria: Battle of the Sexes

o Let player 2 play B with p, F' with 1 — p.
o If player 1 best-responds with a mixed strategy, player 2 must
make him indifferent between F' and B (why?)

From Optimality to Equilibrium Lecture 4, Slide 21



Mixed Strategies

Computing Mixed Nash Equilibria: Battle of the Sexes

o Let player 2 play B with p, F' with 1 — p.
o If player 1 best-responds with a mixed strategy, player 2 must
make him indifferent between F' and B (why?)

ul(B) = ul(F)
2p+0(1—p) =0p+1(1—p)
1

ng
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Mixed Strategies

Computing Mixed Nash Equilibria: Battle of the Sexes

o Likewise, player 1 must randomize to make player 2
indifferent.
e Why is player 1 willing to randomize?
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Mixed Strategies

Computing Mixed Nash Equilibria: Battle of the Sexes

o Likewise, player 1 must randomize to make player 2
indifferent.
e Why is player 1 willing to randomize?
o Let player 1 play B with ¢, F with 1 —gq.
u(B) = ua(F)
q¢+0(1—q)=0¢+2(1-q)

: e (2 1y (1 2
@ Thus the mixed strategies (35, 5), (35, 5) are a Nash
equilibrium.
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LP

Linear Programming

A linear program is defined by:
@ a set of real-valued variables
@ a linear objective function
e a weighted sum of the variables
@ a set of linear constraints

o the requirement that a weighted sum of the variables must be
greater than or equal to some constant

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 8



Support Enumeration

To compute a Mixed Nash Equilibrium in a 2-player game:
@ Enumerate all possible pairs of supports Z; C Ay, 2o C A,
@ For each pair, check feasibility of this Linear Program:

Z p2(32 uq 31732 Z pg 32 U1 a 32) ‘v’al c Zl7 ‘v’a' € Al

32622 32622

Z pl(al)U2(al, 32) > Z pl(al)U2(31, a’) Vag € Zg, Va € A2
a1€/y ai1€y

Z pi(ai) =1, pi(a1) >0 Va; € Z;

ai1€ly

Z p2(a2) =1, pa(az) >0 Vay € 2.

el

Running time is exponential in |A;| + | Az
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Maxmin and Minmax

Lecture Overview

@ Maxmin and Minmax
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Maxmin and Minmax

Maxmin Strategies

@ Player ¢'s maxmin strategy is a strategy that maximizes i's
worst-case payoff, in the situation where all the other players
(whom we denote —i) happen to play the strategies which
cause the greatest harm to i.

@ The maxmin value (or safety level) of the game for player i is
that minimum amount of payoff guaranteed by a maxmin
strategy.

Definition (Maxmin)

The maxmin strategy for player i is arg max,, ming_, u;(s1, $2),
and the maxmin value for player i is max,, mins_, u;(s1, $2).

@ Why would ¢ want to play a maxmin strategy?

Lecture 5, Slide 15
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Maxmin and Minmax

Maxmin Strategies

@ Player ¢'s maxmin strategy is a strategy that maximizes i's
worst-case payoff, in the situation where all the other players
(whom we denote —i) happen to play the strategies which
cause the greatest harm to i.

@ The maxmin value (or safety level) of the game for player i is
that minimum amount of payoff guaranteed by a maxmin
strategy.

Definition (Maxmin)

The maxmin strategy for player i is arg max,, ming_, u;(s1, $2),
and the maxmin value for player i is max,, mins_, u;(s1, $2).

e Why would ¢ want to play a maxmin strategy?
e a conservative agent maximizing worst-case payoff
e a paranoid agent who believes everyone is out to get him

Lecture 5, Slide 15
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Maxmin and Minmax

Minmax Strategies

@ Player i's minmax strategy against player —i in a 2-player
game is a strategy that minimizes —i's best-case payoff, and
the minmax value for 7 against —i is payoff.

@ Why would ¢ want to play a minmax strategy?

Definition (Minmax, 2-player)

In a two-player game, the minmax strategy for player i against
player —i is arg ming, maxs_, u—;(s;, 5—;), and player —i's minmax
value is ming, maxs_, u_;(si, S—;).
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Maxmin and Minmax

Minmax Strategies

@ Player i's minmax strategy against player —i in a 2-player
game is a strategy that minimizes —i's best-case payoff, and
the minmax value for 7 against —i is payoff.

@ Why would ¢ want to play a minmax strategy?

e to punish the other agent as much as possible

Definition (Minmax, 2-player)

In a two-player game, the minmax strategy for player i against
player —i is arg ming, maxs_, u—;(s;, 5—;), and player —i's minmax
value is ming, maxs_, u_;(si, S—;).

Computing Nash Equilibrium; Maxmin Lecture 5, Slide 16



Maxmin and Minmax

Minmax Theorem

Theorem (Minimax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium
each player receives a payoff that is equal to both his maxmin
value and his minmax value.

Computing Nash Equilibrium; Maxmin
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Maxmin and Minmax

Minmax Theorem

Theorem (Minimax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium
each player receives a payoff that is equal to both his maxmin
value and his minmax value.

@ Each player’'s maxmin value is equal to his minmax value. By

convention, the maxmin value for player 1 is called the value of the
game.

Computing Nash Equilibrium; Maxmin
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Maxmin and Minmax

Minmax Theorem

Theorem (Minimax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium
each player receives a payoff that is equal to both his maxmin
value and his minmax value.

@ Each player’'s maxmin value is equal to his minmax value. By
convention, the maxmin value for player 1 is called the value of the
game.

@ For both players, the set of maxmin strategies coincides with the set
of minmax strategies.
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Maxmin and Minmax

Minmax Theorem

Theorem (Minimax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium
each player receives a payoff that is equal to both his maxmin
value and his minmax value.

@ Each player’'s maxmin value is equal to his minmax value. By
convention, the maxmin value for player 1 is called the value of the
game.

@ For both players, the set of maxmin strategies coincides with the set
of minmax strategies.

© Any maxmin strategy profile (or, equivalently, minmax strategy
profile) is a Nash equilibrium. Furthermore, these are all the Nash
equilibria. Consequently, all Nash equilibria have the same payoff
vector (namely, those in which player 1 gets the value of the game).
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Saddle Point: Matching Pennies

Maxmin and Minmax
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Computing Maxmin

Computing equilibria of zero-sum games

minimize U}

subject to Z ui(a, az) - s3> < U Va1 € A1
a2€A2
> o
as€As
592 >0 Vas € Ay

o First, identify the variables:

e Uj is the expected utility for player 1
o s52 is player 2's probability of playing action az under his
mixed strategy

@ each uj(ay,az) is a constant.

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 11



Computing Maxmin

Computing equilibria of zero-sum games

Now let's interpret the LP:

minimize U}

subject to Z ui(a, ag) - s3> < U Va1 € A1
a2€A2
a€A2
s92 >0 Vas € Ay

@ 5o is a valid probability distribution.

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 11



Computing Maxmin

Computing equilibria of zero-sum games

Now let's interpret the LP:

minimize U;

subject to Z ui(ar, az) - s3> < U Ya, € Ay
azGAz
a2€A2
592 >0 Yag € As

e U is as small as possible.

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 11



Computing Maxmin

Computing equilibria of zero-sum games

Now let's interpret the LP:

minimize U}

subject to Z u(ar,az) - s3> < U Ya, € Ay
as€As
(ZQGAQ
592 >0 Vag € Ay

@ Player 1's expected utility for playing each of his actions under
player 2's mixed strategy is no more than U7
o Because U7 is minimized, this constraint will be tight for some
actions: the support of player 1's mixed strategy.

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 11



Computing Maxmin

Computing equilibria of zero-sum games

minimize U}

subject to Z ui(ar, ag) - s3> < U Ya, € A1
as€As
(ZQGAQ
552 >0 Vas € Ag

@ This formulation gives us the minmax strategy for player 2.

@ To get the minmax strategy for player 1, we need to solve a
second (analogous) LP.
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Domination

Lecture Overview

@ Domination
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Domination

Domination

@ Let s; and s be two strategies for player 4, and let S_; be is
the set of all possible strategy profiles for the other players

Definition

s; strictly dominates s if Vs_; € S_;, ui(ss, i) > (s}, s—;)

Definition

s; weakly dominates s} if Vs_; € S_;, u;(si,5-:) > ui(s}, s—;) and
ds_; € S, u;(ss, s_i) > u;i(sh, s—i)

Definition

s; very weakly dominates s} if Vs_; € S_;, w;(s;,5—:) > ui(s}, s—;)

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 14



Domination

Equilibria and dominance

@ If one strategy dominates all others, we say it is dominant.

@ A strategy profile consisting of dominant strategies for every
player must be a Nash equilibrium.

e An equilibrium in strictly dominant strategies must be unique.

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 15



Domination

Equilibria and dominance

@ If one strategy dominates all others, we say it is dominant.

@ A strategy profile consisting of dominant strategies for every
player must be a Nash equilibrium.

e An equilibrium in strictly dominant strategies must be unique.
@ Consider Prisoner’'s Dilemma again

e not only is the only equilibrium the only non-Pareto-optimal
outcome, but it's also an equilibrium in strictly dominant
strategies!
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Iterated Removal

Lecture Overview

@ Iterated Removal of Dominated Strategies
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Iterated Removal

Dominated strategies

@ No equilibrium can involve a strictly dominated strategy

e Thus we can remove it, and end up with a strategically
equivalent game

o This might allow us to remove another strategy that wasn't
dominated before

e Running this process to termination is called iterated removal
of dominated strategies.
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Iterated Removal

Iterated Removal of Dominated Strategies: Example

L C R
3,1 0,1 0,0
1,1 1,1 5,0
0,1 4,1 0,0

Computing Minmax; Dominance
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Iterated Removal

Iterated Removal of Dominated Strategies: Example

L C R
3,1 0,1 0,0
1,1 1,1 5,0
0,1 4,1 0,0

@ R is dominated by L.

Computing Minmax; Dominance
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Iterated Removal

Iterated Removal of Dominated Strategies: Example

L C
3,1 0,1
1,1 1,1
0,1 4,1

Computing Minmax; Dominance
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Iterated Removal

Iterated Removal of Dominated Strategies: Example

L C
U 3,1 0,1
M 1,1 1,1
D 0,1 4,1

@ M is dominated by the mixed strategy that selects U and D

with equal probability.
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Iterated Removal

Iterated Removal of Dominated Strategies: Example

L C
3,1 0,1
0,1 4,1

Computing Minmax; Dominance
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Iterated Removal

Iterated Removal of Dominated Strategies: Example

D 0,1 4,1

@ No other strategies are dominated.
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Iterated Removal

Iterated Removal of Dominated Strategies

@ This process preserves Nash equilibria.

e strict dominance: all equilibria preserved.
o weak or very weak dominance: at least one equilibrium
preserved.

@ Thus, it can be used as a preprocessing step before computing
an equilibrium
e Some games are solvable using this technique.
e Example: Traveler's Dilemmal
@ What about the order of removal when there are multiple
dominated strategies?
e strict dominance: doesn’t matter.
e weak or very weak dominance: can affect which equilibria are
preserved.
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Correlated Equilibrium

Lecture Overview

@ Correlated Equilibrium
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Correlated Equilibrium

Pithy Quote

If there is intelligent life on other planets, in a majority of
them, they would have discovered correlated equilibrium
before Nash equilibrium.

— Roger Myerson
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Correlated Equilibrium

EIES

o Consider again Battle of the Sexes.

o Intuitively, the best outcome seems a 50-50 split between
(F,F) and (B, B).

e But there's no way to achieve this, so either someone loses out
(unfair) or both players often miscoordinate

@ Another classic example: traffic game

go wait
go | —100,—-100 10,0
B 0,10 —10,-10
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Correlated Equilibrium

Intuition

@ What is the natural solution here?
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Correlated Equilibrium

Intuition

@ What is the natural solution here?

e A traffic light: a fair randomizing device that tells one of the
agents to go and the other to wait.

o Benefits:
o the negative payoff outcomes are completely avoided
e fairness is achieved
o the sum of social welfare exceeds that of any Nash equilibrium
@ We could use the same idea to achieve the fair outcome in
battle of the sexes.

@ Our example presumed that everyone perfectly observes the
random event; not required.

@ More generally, some random variable with a commonly
known distribution, and a private signal to each player about
the outcome.

e signal doesn't determine the outcome or others’ signals;
however, correlated
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Formal definition

Definition (Correlated equilibrium)

Given an n-agent game G = (N, A, u), a correlated equilibrium is a
probability distribution (p(a)).ca on the space of strategy profiles
such that for each player i and every two strategies a;, a} of i/,

> pla)ui(aia)> > pla)uia),a ).

acAlai€a acA|a;€a

Conditioned on the event that a contains a;, the expected utility of
playing a; is no smaller than that of playing a.

V. Bonifaci (IASI-CNR) Models of Selfish Agents October 29, 2012 6/7



Existence

For every mixed Nash equilibrium (s, sy, .. .,s,) there exists a
corresponding correlated equilibrium (p(a)aca)-

@ This is easy to show:
o let p(a) = [Ijen si(ai)
@ Thus, correlated equilibria always exist

V. Bonifaci (IASI-CNR) Models of Selfish Agents October 29, 2012



Correlated Equilibrium

RENES

@ Not every correlated equilibrium is equivalent to a Nash
equilibrium
e thus, correlated equilibrium is a weaker notion than Nash

@ Any convex combination of the payoffs achievable under
correlated equilibria is itself realizable under a correlated
equilibrium

o start with the Nash equilibria (each of which is a CE)

e introduce a second randomizing device that selects which CE
the agents will play

e regardless of the probabilities, no agent has incentive to deviate

o the probabilities can be adjusted to achieve any convex
combination of the equilibrium payoffs

e the randomizing devices can be combined
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Computing Correlated Equilibria

Lecture Overview

© Computing Correlated Equilibria

Computing Domination; Correlated Equilibria Lecture 6, Slide 23



Computing Correlated Equilibria

Computing CE

Z pla)ui(a) > Z pla)ui(aj,a_;) Vi€ N, Va;,a; € A;

acAla;€a acAla;€a
pa) >0 Vaec A

> pla)=1

a€A

e variables: p(a); constants: u;(a)
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Computing Correlated Equilibria

Computing CE

Z p(a)u;(a) > Z pla)u;(al,a_;) Vi€ N, Va;,a; € A;

acAla;€a acAla;€a
pa) >0 Vaec A

> pla)=1

a€A

e variables: p(a); constants: u;(a)

@ we could find the social-welfare maximizing CE by adding an
objective function

maximize: Z p(a) Z ui(a).

a€A iEN
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Computing Correlated Equilibria

Why are CE easier to compute than NE?

Z pla)u;(a) > Z pla)ui(a;,a_;) Vi€ N, Va;,a, € A;

a€Ala;Ea acAlal€a
pla) =0 Vae A

> pla) =1

a€A

@ intuitively, correlated equilibrium has only a single randomization
over outcomes, whereas in NE this is constructed as a product of
independent probabilities.

@ To change this program so that it finds NE, the first constraint

would be
Z u;(a) H p;la;) > Zui(a;,a_i) H pjla;) Vi€ N,Va, € A;.
acA jeN acA JEN\{i}

@ This is a nonlinear constraint!
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