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Self-interested agents

What does it mean to say that an agent is self-interested?
not that they want to harm other agents
not that they only care about things that benefit them
that the agent has its own description of states of the world
that it likes, and that its actions are motivated by this
description

We capture this by saying that each agent has a utility
function: a mapping from states of the world to real numbers,
indicating level of happiness with that state of the world

quantifies degree of preference across alternatives
allows us to understand the impact of uncertainty on these
preferences
Decision-theoretic rationality: take actions to maximize
expected utility.

Game Theory Intro Lecture 3, Slide 3



Self-interested agents What is Game Theory? Example Matrix Games

Self-interested agents

What does it mean to say that an agent is self-interested?
not that they want to harm other agents
not that they only care about things that benefit them
that the agent has its own description of states of the world
that it likes, and that its actions are motivated by this
description

We capture this by saying that each agent has a utility
function: a mapping from states of the world to real numbers,
indicating level of happiness with that state of the world

quantifies degree of preference across alternatives
allows us to understand the impact of uncertainty on these
preferences
Decision-theoretic rationality: take actions to maximize
expected utility.

Game Theory Intro Lecture 3, Slide 3



Self-interested agents What is Game Theory? Example Matrix Games

Why Utility?

Why would anyone argue with the idea that an agent’s
preferences could be described using a utility function?

why should a single-dimensional function be enough to explain
preferences over an arbitrarily complicated set of alternatives?
Why should an agent’s response to uncertainty be captured
purely by the expected value of his utility function?

It turns out that the claim that an agent has a utility function
is substantive.

There’s a famous theorem (von Neumann & Morgenstern,
1944) that derives the existence of a utility function from a
more basic preference ordering and axioms on such orderings.

see Theorem 3.1.18 in the book, which includes a proof.

Game Theory Intro Lecture 3, Slide 4
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Non-Cooperative Game Theory

What is it?

mathematical study of interaction between rational,
self-interested agents

Why is it called non-cooperative?
while it’s most interested in situations where agents’ interests
conflict, it’s not restricted to these settings
the key is that the individual is the basic modeling unit, and
that individuals pursue their own interests

cooperative/coalitional game theory has teams as the central
unit, rather than agents

Game Theory Intro Lecture 3, Slide 6
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TCP Backoff Game

Game Theory

Consider this situation as a two-player game:
both use a correct implementation: both get 1 ms delay
one correct, one defective: 4 ms delay for correct, 0 ms for defective
both defective: both get a 3 ms delay.

Should you send your packets using correctly-implemented 
TCP (which has a “backoff” mechanism) or using a defective
implementation (which doesn’t)?
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Defining Games

Finite, n-person game: �N,A, u�:
N is a finite set of n players, indexed by i
A = A1 × . . .×An, where Ai is the action set for player i

a ∈ A is an action profile, and so A is the space of action
profiles

u = �u1, . . . , un�, a utility function for each player, where
ui : A �→ R

Writing a 2-player game as a matrix:
row player is player 1, column player is player 2
rows are actions a ∈ A1, columns are a� ∈ A2

cells are outcomes, written as a tuple of utility values for each
player

Game Theory Intro Lecture 3, Slide 8



Self-interested agents What is Game Theory? Example Matrix Games

Games in Matrix Form

Here’s the TCP Backoff Game written as a matrix (“normal

form”).

56 3 Competition and Coordination: Normal form games

when congestion occurs. You have two possible strategies: C (for using a Correct
implementation) and D (for using a Defective one). If both you and your colleague
adopt C then your average packet delay is 1ms (millisecond). If you both adopt D the
delay is 3ms, because of additional overhead at the network router. Finally, if one of
you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.
These consequences are shown in Figure 3.1. Your options are the two rows, and

your colleague’s options are the columns. In each cell, the first number represents
your payoff (or, minus your delay), and the second number represents your colleague’s
payoff.1TCP user’s

game

Prisoner’s
dilemma game

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 3.1 The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?
Game theory gives answers to many of these questions. It tells us that any rational

user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, if the number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as the strategic or matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are two prisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.

c�Shoham and Leyton-Brown, 2006
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More General Form

Prisoner’s dilemma is any game
58 3 Competition and Coordination: Normal form games

C D

C a, a b, c

D c, b d, d

Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion of utility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo any positive affinepositive affine

transformation transformation; this simply means that each payoff x is replaced by a payoff ax + b,
where a is a fixed positive real number and b is a fixed real number.
There are some restricted classes of normal-form games that deserve special men-

tion. The first is the class of common-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profiles a ∈ A1 × · · · × An and any pair of agents i, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also called pure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.
Because of their special nature, we often represent common value games with an

abbreviated form of the matrix in which we list only one payoff in each of the cells.
As an example, imagine two drivers driving towards each other in a country without

traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown in Figure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination games lie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly called constant-sum games. Unlike common-payoff games,constant-sum

games
c�Shoham and Leyton-Brown, 2006

with c > a > d > b.
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Games of Pure Competition

Players have exactly opposed interests

There must be precisely two players (otherwise they can’t
have exactly opposed interests)

For all action profiles a ∈ A, u1(a) + u2(a) = c for some
constant c

Special case: zero sum

Thus, we only need to store a utility function for one player
in a sense, it’s a one-player game

Game Theory Intro Lecture 3, Slide 12
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Matching Pennies

One player wants to match; the other wants to mismatch.

3.2 Games in normal form 59

constant-sum games are meaningful primarily in the context of two-player (though not
necessarily two-strategy) games.

Definition 3.2.3 A normal form game is constant sum if there exists a constant c such
that for each strategy profile a ∈ A1 ×A2 it is the case that u1(a) + u2(a) = c.

For convenience, when we talk of constant-sum games going forward we will always
assume that c = 0, that is, that we have a zero-sum game. If common-payoff games
represent situations of pure coordination, zero-sum games represent situations of pure
competition; one player’s gain must come at the expense of the other player.
As in the case of common-payoff games, we can use an abbreviated matrix form to

represent zero-sum games, in which we write only one payoff value in each cell. This
value represents the payoff of player 1, and thus the negative of the payoff of player 2.
Note, though, that whereas the full matrix representation is unambiguous, when we use
the abbreviation we must explicit state whether this matrix represents a common-payoff
game or a zero-sum one.
A classical example of a zero-sum game is the game of matching pennies. In this matching

pennies gamegame, each of the two players has a penny, and independently chooses to display either
heads or tails. The two players then compare their pennies. If they are the same then
player 1 pockets both, and otherwise player 2 pockets them. The payoff matrix is
shown in Figure 3.5.

Heads Tails

Heads 1 −1

Tails −1 1

Figure 3.5 Matching Pennies game.

The popular children’s game of Rock, Paper, Scissors, also known as Rochambeau, Rock, Paper,
Scissors, or
Rochambeau
game

provides a three-strategy generalization of the matching-pennies game. The payoff
matrix of this zero-sum game is shown in Figure 3.6. In this game, each of the two
players can choose either Rock, Paper, or Scissors. If both players choose the same
action, there is no winner, and the utilities are zero. Otherwise, each of the actions
wins over one of the other actions, and loses to the other remaining action.
In general, games tend to include elements of both coordination and competition.

Prisoner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, called Battle of the Sexes, a
husband and wife wish to go to the movies, and they can select among two movies:
“Violence Galore (VG)” and “Gentle Love (GL)”. They much prefer to go together
rather than to separate movies, but while the wife prefers VG the husband prefers GL.
The payoff matrix is shown in Figure 3.7. We will return to this game shortly.

Multi Agent Systems, draft of February 11, 2006

Play this game with someone near you, repeating five times.
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Rock-Paper-Scissors

Generalized matching pennies.
60 3 Competition and Coordination: Normal form games

Rock Paper Scissors

Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock, Paper, Scissors game.

VG GL

VG 2, 1 0, 0

GL 0, 0 1, 2

Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in a game, but not yet his
set of strategies, or his available choices. Certainly one kind of strategy is to select
a single action and play it; we call such a strategy a pure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.
We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX letΠ(X) be the set of all probability distributions overX . Then the set of mixed
strategies for player i is Si = Π(Ai). The set of mixed strategy profiles is simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets, S1 × · · ·× Sn.

By si(ai) we denote the probability that an action ai will be played under mixed
strategy si. The subset of actions that are assigned positive probability by the mixed
strategy si is called the support of si.

Definition 3.2.5 The support of a mixed strategy si for a player i is the set of pure
strategies {ai|si(ai) > 0}.

c�Shoham and Leyton-Brown, 2006

...Believe it or not, there’s an annual international competition for
this game!
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Games of Cooperation

Players have exactly the same interests.

no conflict: all players want the same things

∀a ∈ A, ∀i, j, ui(a) = uj(a)

we often write such games with a single payoff per cell

why are such games “noncooperative”?
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Coordination Game

Which side of the road should you drive on?

58 3 Competition and Coordination: Normal form games
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Play this game with someone near you. Then find a new partner
and play again. Play five times in total.
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General Games: Battle of the Sexes

The most interesting games combine elements of cooperation and
competition.

60 3 Competition and Coordination: Normal form games
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Analyzing Games

We’ve defined some canonical games, and thought about how
to play them. Now let’s examine the games from the outside

From the point of view of an outside observer, can some
outcomes of a game be said to be better than others?

we have no way of saying that one agent’s interests are more
important than another’s
intuition: imagine trying to find the revenue-maximizing
outcome when you don’t know what currency has been used to
express each agent’s payoff

Are there situations where we can still prefer one outcome to
another?

From Optimality to Equilibrium Lecture 4, Slide 10
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Pareto Optimality

Idea: sometimes, one outcome o is at least as good for every
agent as another outcome o�, and there is some agent who
strictly prefers o to o�

in this case, it seems reasonable to say that o is better than o�

we say that o Pareto-dominates o�.

An outcome o∗ is Pareto-optimal if there is no other outcome
that Pareto-dominates it.

can a game have more than one Pareto-optimal outcome?
does every game have at least one Pareto-optimal outcome?

From Optimality to Equilibrium Lecture 4, Slide 11
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Pareto Optimal Outcomes in Example Games

56 3 Competition and Coordination: Normal form games

when congestion occurs. You have two possible strategies: C (for using a Correct
implementation) and D (for using a Defective one). If both you and your colleague
adopt C then your average packet delay is 1ms (millisecond). If you both adopt D the
delay is 3ms, because of additional overhead at the network router. Finally, if one of
you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.
These consequences are shown in Figure 3.1. Your options are the two rows, and

your colleague’s options are the columns. In each cell, the first number represents
your payoff (or, minus your delay), and the second number represents your colleague’s
payoff.1TCP user’s

game

Prisoner’s
dilemma game

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 3.1 The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?
Game theory gives answers to many of these questions. It tells us that any rational

user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, if the number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as the strategic or matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are two prisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.

c�Shoham and Leyton-Brown, 2006
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Pareto Optimal Outcomes in Example Games
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you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.
These consequences are shown in Figure 3.1. Your options are the two rows, and

your colleague’s options are the columns. In each cell, the first number represents
your payoff (or, minus your delay), and the second number represents your colleague’s
payoff.1TCP user’s

game

Prisoner’s
dilemma game

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 3.1 The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?
Game theory gives answers to many of these questions. It tells us that any rational

user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, if the number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as the strategic or matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are two prisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.
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C D

C a, a b, c

D c, b d, d

Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion of utility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo any positive affinepositive affine

transformation transformation; this simply means that each payoff x is replaced by a payoff ax + b,
where a is a fixed positive real number and b is a fixed real number.
There are some restricted classes of normal-form games that deserve special men-

tion. The first is the class of common-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profiles a ∈ A1 × · · · × An and any pair of agents i, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also called pure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.
Because of their special nature, we often represent common value games with an

abbreviated form of the matrix in which we list only one payoff in each of the cells.
As an example, imagine two drivers driving towards each other in a country without

traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown in Figure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination games lie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly called constant-sum games. Unlike common-payoff games,constant-sum

games
c�Shoham and Leyton-Brown, 2006
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implementation) and D (for using a Defective one). If both you and your colleague
adopt C then your average packet delay is 1ms (millisecond). If you both adopt D the
delay is 3ms, because of additional overhead at the network router. Finally, if one of
you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.
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Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?
Game theory gives answers to many of these questions. It tells us that any rational

user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, if the number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as the strategic or matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are two prisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.
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Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion of utility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo any positive affinepositive affine

transformation transformation; this simply means that each payoff x is replaced by a payoff ax + b,
where a is a fixed positive real number and b is a fixed real number.
There are some restricted classes of normal-form games that deserve special men-

tion. The first is the class of common-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profiles a ∈ A1 × · · · × An and any pair of agents i, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also called pure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.
Because of their special nature, we often represent common value games with an

abbreviated form of the matrix in which we list only one payoff in each of the cells.
As an example, imagine two drivers driving towards each other in a country without

traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown in Figure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination games lie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly called constant-sum games. Unlike common-payoff games,constant-sum

games
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Rock Paper Scissors

Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock, Paper, Scissors game. 

 B         F

B 2, 1 0, 0

F 0, 0 1, 2

Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in a game, but not yet his
set of strategies, or his available choices. Certainly one kind of strategy is to select
a single action and play it; we call such a strategy a pure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.
We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX letΠ(X) be the set of all probability distributions overX . Then the set of mixed
strategies for player i is Si = Π(Ai). The set of mixed strategy profiles is simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets, S1 × · · ·× Sn.

By si(ai) we denote the probability that an action ai will be played under mixed
strategy si. The subset of actions that are assigned positive probability by the mixed
strategy si is called the support of si.

Definition 3.2.5 The support of a mixed strategy si for a player i is the set of pure
strategies {ai|si(ai) > 0}.
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delay is 3ms, because of additional overhead at the network router. Finally, if one of
you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.
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Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?
Game theory gives answers to many of these questions. It tells us that any rational

user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, if the number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as the strategic or matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are two prisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.
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Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion of utility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo any positive affinepositive affine

transformation transformation; this simply means that each payoff x is replaced by a payoff ax + b,
where a is a fixed positive real number and b is a fixed real number.
There are some restricted classes of normal-form games that deserve special men-

tion. The first is the class of common-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profiles a ∈ A1 × · · · × An and any pair of agents i, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also called pure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.
Because of their special nature, we often represent common value games with an

abbreviated form of the matrix in which we list only one payoff in each of the cells.
As an example, imagine two drivers driving towards each other in a country without

traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown in Figure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination games lie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly called constant-sum games. Unlike common-payoff games,constant-sum

games
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3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in a game, but not yet his
set of strategies, or his available choices. Certainly one kind of strategy is to select
a single action and play it; we call such a strategy a pure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.
We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX letΠ(X) be the set of all probability distributions overX . Then the set of mixed
strategies for player i is Si = Π(Ai). The set of mixed strategy profiles is simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets, S1 × · · ·× Sn.

By si(ai) we denote the probability that an action ai will be played under mixed
strategy si. The subset of actions that are assigned positive probability by the mixed
strategy si is called the support of si.

Definition 3.2.5 The support of a mixed strategy si for a player i is the set of pure
strategies {ai|si(ai) > 0}.
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constant-sum games are meaningful primarily in the context of two-player (though not
necessarily two-strategy) games.

Definition 3.2.3 A normal form game is constant sum if there exists a constant c such
that for each strategy profile a ∈ A1 ×A2 it is the case that u1(a) + u2(a) = c.

For convenience, when we talk of constant-sum games going forward we will always
assume that c = 0, that is, that we have a zero-sum game. If common-payoff games
represent situations of pure coordination, zero-sum games represent situations of pure
competition; one player’s gain must come at the expense of the other player.
As in the case of common-payoff games, we can use an abbreviated matrix form to

represent zero-sum games, in which we write only one payoff value in each cell. This
value represents the payoff of player 1, and thus the negative of the payoff of player 2.
Note, though, that whereas the full matrix representation is unambiguous, when we use
the abbreviation we must explicit state whether this matrix represents a common-payoff
game or a zero-sum one.
A classical example of a zero-sum game is the game of matching pennies. In this matching

pennies gamegame, each of the two players has a penny, and independently chooses to display either
heads or tails. The two players then compare their pennies. If they are the same then
player 1 pockets both, and otherwise player 2 pockets them. The payoff matrix is
shown in Figure 3.5.

Heads Tails

Heads 1 −1

Tails −1 1

Figure 3.5 Matching Pennies game.

The popular children’s game of Rock, Paper, Scissors, also known as Rochambeau, Rock, Paper,
Scissors, or
Rochambeau
game

provides a three-strategy generalization of the matching-pennies game. The payoff
matrix of this zero-sum game is shown in Figure 3.6. In this game, each of the two
players can choose either Rock, Paper, or Scissors. If both players choose the same
action, there is no winner, and the utilities are zero. Otherwise, each of the actions
wins over one of the other actions, and loses to the other remaining action.
In general, games tend to include elements of both coordination and competition.

Prisoner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, called Battle of the Sexes, a
husband and wife wish to go to the movies, and they can select among two movies:
“Violence Galore (VG)” and “Gentle Love (GL)”. They much prefer to go together
rather than to separate movies, but while the wife prefers VG the husband prefers GL.
The payoff matrix is shown in Figure 3.7. We will return to this game shortly.
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Best Response

If you knew what everyone else was going to do, it would be
easy to pick your own action

Let a−i = �a1, . . . , ai−1, ai+1, . . . , an�.
now a = (a−i, ai)

Best response: a∗i ∈ BR(a−i) iff
∀ai ∈ Ai, ui(a∗i , a−i) ≥ ui(ai, a−i)

From Optimality to Equilibrium Lecture 4, Slide 14



Recap Pareto Optimality Best Response and Nash Equilibrium Mixed Strategies

Best Response

If you knew what everyone else was going to do, it would be
easy to pick your own action

Let a−i = �a1, . . . , ai−1, ai+1, . . . , an�.
now a = (a−i, ai)

Best response: a∗i ∈ BR(a−i) iff
∀ai ∈ Ai, ui(a∗i , a−i) ≥ ui(ai, a−i)

From Optimality to Equilibrium Lecture 4, Slide 14



Recap Pareto Optimality Best Response and Nash Equilibrium Mixed Strategies

Nash Equilibrium

Now let’s return to the setting where no agent knows
anything about what the others will do

What can we say about which actions will occur?

Idea: look for stable action profiles.

a = �a1, . . . , an� is a (“pure strategy”) Nash equilibrium iff
∀i, ai ∈ BR(a−i).
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Nash Equilibria of Example Games

56 3 Competition and Coordination: Normal form games

when congestion occurs. You have two possible strategies: C (for using a Correct
implementation) and D (for using a Defective one). If both you and your colleague
adopt C then your average packet delay is 1ms (millisecond). If you both adopt D the
delay is 3ms, because of additional overhead at the network router. Finally, if one of
you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.
These consequences are shown in Figure 3.1. Your options are the two rows, and

your colleague’s options are the columns. In each cell, the first number represents
your payoff (or, minus your delay), and the second number represents your colleague’s
payoff.1TCP user’s

game

Prisoner’s
dilemma game

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 3.1 The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?
Game theory gives answers to many of these questions. It tells us that any rational

user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, if the number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as the strategic or matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are two prisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.

c�Shoham and Leyton-Brown, 2006

The paradox of Prisoner’s dilemma: the Nash equilibrium is the only
non-Pareto-optimal outcome!
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adopt C then your average packet delay is 1ms (millisecond). If you both adopt D the
delay is 3ms, because of additional overhead at the network router. Finally, if one of
you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.
These consequences are shown in Figure 3.1. Your options are the two rows, and
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Figure 3.1 The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?
Game theory gives answers to many of these questions. It tells us that any rational

user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, if the number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as the strategic or matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are two prisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.
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Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion of utility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo any positive affinepositive affine

transformation transformation; this simply means that each payoff x is replaced by a payoff ax + b,
where a is a fixed positive real number and b is a fixed real number.
There are some restricted classes of normal-form games that deserve special men-

tion. The first is the class of common-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profiles a ∈ A1 × · · · × An and any pair of agents i, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also called pure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.
Because of their special nature, we often represent common value games with an

abbreviated form of the matrix in which we list only one payoff in each of the cells.
As an example, imagine two drivers driving towards each other in a country without

traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown in Figure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination games lie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly called constant-sum games. Unlike common-payoff games,constant-sum
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when congestion occurs. You have two possible strategies: C (for using a Correct
implementation) and D (for using a Defective one). If both you and your colleague
adopt C then your average packet delay is 1ms (millisecond). If you both adopt D the
delay is 3ms, because of additional overhead at the network router. Finally, if one of
you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.
These consequences are shown in Figure 3.1. Your options are the two rows, and

your colleague’s options are the columns. In each cell, the first number represents
your payoff (or, minus your delay), and the second number represents your colleague’s
payoff.1TCP user’s

game

Prisoner’s
dilemma game

C D

C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 3.1 The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?
Game theory gives answers to many of these questions. It tells us that any rational

user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, if the number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as the strategic or matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are two prisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.

c�Shoham and Leyton-Brown, 2006

58 3 Competition and Coordination: Normal form games

C D

C a, a b, c
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Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion of utility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo any positive affinepositive affine

transformation transformation; this simply means that each payoff x is replaced by a payoff ax + b,
where a is a fixed positive real number and b is a fixed real number.
There are some restricted classes of normal-form games that deserve special men-

tion. The first is the class of common-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profiles a ∈ A1 × · · · × An and any pair of agents i, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also called pure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.
Because of their special nature, we often represent common value games with an

abbreviated form of the matrix in which we list only one payoff in each of the cells.
As an example, imagine two drivers driving towards each other in a country without

traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown in Figure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination games lie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly called constant-sum games. Unlike common-payoff games,constant-sum

games
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Rock Paper Scissors

Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock, Paper, Scissors game. 

 B         F

B 2, 1 0, 0

F 0, 0 1, 2

Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in a game, but not yet his
set of strategies, or his available choices. Certainly one kind of strategy is to select
a single action and play it; we call such a strategy a pure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.
We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX letΠ(X) be the set of all probability distributions overX . Then the set of mixed
strategies for player i is Si = Π(Ai). The set of mixed strategy profiles is simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets, S1 × · · ·× Sn.

By si(ai) we denote the probability that an action ai will be played under mixed
strategy si. The subset of actions that are assigned positive probability by the mixed
strategy si is called the support of si.

Definition 3.2.5 The support of a mixed strategy si for a player i is the set of pure
strategies {ai|si(ai) > 0}.
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when congestion occurs. You have two possible strategies: C (for using a Correct
implementation) and D (for using a Defective one). If both you and your colleague
adopt C then your average packet delay is 1ms (millisecond). If you both adopt D the
delay is 3ms, because of additional overhead at the network router. Finally, if one of
you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.
These consequences are shown in Figure 3.1. Your options are the two rows, and

your colleague’s options are the columns. In each cell, the first number represents
your payoff (or, minus your delay), and the second number represents your colleague’s
payoff.1TCP user’s
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C −1,−1 −4, 0
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Figure 3.1 The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?
Game theory gives answers to many of these questions. It tells us that any rational

user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, if the number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as the strategic or matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are two prisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.
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Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion of utility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo any positive affinepositive affine

transformation transformation; this simply means that each payoff x is replaced by a payoff ax + b,
where a is a fixed positive real number and b is a fixed real number.
There are some restricted classes of normal-form games that deserve special men-

tion. The first is the class of common-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profiles a ∈ A1 × · · · × An and any pair of agents i, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also called pure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.
Because of their special nature, we often represent common value games with an

abbreviated form of the matrix in which we list only one payoff in each of the cells.
As an example, imagine two drivers driving towards each other in a country without

traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown in Figure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination games lie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly called constant-sum games. Unlike common-payoff games,constant-sum

games
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3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in a game, but not yet his
set of strategies, or his available choices. Certainly one kind of strategy is to select
a single action and play it; we call such a strategy a pure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.
We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX letΠ(X) be the set of all probability distributions overX . Then the set of mixed
strategies for player i is Si = Π(Ai). The set of mixed strategy profiles is simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets, S1 × · · ·× Sn.

By si(ai) we denote the probability that an action ai will be played under mixed
strategy si. The subset of actions that are assigned positive probability by the mixed
strategy si is called the support of si.

Definition 3.2.5 The support of a mixed strategy si for a player i is the set of pure
strategies {ai|si(ai) > 0}.
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constant-sum games are meaningful primarily in the context of two-player (though not
necessarily two-strategy) games.

Definition 3.2.3 A normal form game is constant sum if there exists a constant c such
that for each strategy profile a ∈ A1 ×A2 it is the case that u1(a) + u2(a) = c.

For convenience, when we talk of constant-sum games going forward we will always
assume that c = 0, that is, that we have a zero-sum game. If common-payoff games
represent situations of pure coordination, zero-sum games represent situations of pure
competition; one player’s gain must come at the expense of the other player.
As in the case of common-payoff games, we can use an abbreviated matrix form to

represent zero-sum games, in which we write only one payoff value in each cell. This
value represents the payoff of player 1, and thus the negative of the payoff of player 2.
Note, though, that whereas the full matrix representation is unambiguous, when we use
the abbreviation we must explicit state whether this matrix represents a common-payoff
game or a zero-sum one.
A classical example of a zero-sum game is the game of matching pennies. In this matching

pennies gamegame, each of the two players has a penny, and independently chooses to display either
heads or tails. The two players then compare their pennies. If they are the same then
player 1 pockets both, and otherwise player 2 pockets them. The payoff matrix is
shown in Figure 3.5.

Heads Tails

Heads 1 −1

Tails −1 1

Figure 3.5 Matching Pennies game.

The popular children’s game of Rock, Paper, Scissors, also known as Rochambeau, Rock, Paper,
Scissors, or
Rochambeau
game

provides a three-strategy generalization of the matching-pennies game. The payoff
matrix of this zero-sum game is shown in Figure 3.6. In this game, each of the two
players can choose either Rock, Paper, or Scissors. If both players choose the same
action, there is no winner, and the utilities are zero. Otherwise, each of the actions
wins over one of the other actions, and loses to the other remaining action.
In general, games tend to include elements of both coordination and competition.

Prisoner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, called Battle of the Sexes, a
husband and wife wish to go to the movies, and they can select among two movies:
“Violence Galore (VG)” and “Gentle Love (GL)”. They much prefer to go together
rather than to separate movies, but while the wife prefers VG the husband prefers GL.
The payoff matrix is shown in Figure 3.7. We will return to this game shortly.
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when congestion occurs. You have two possible strategies: C (for using a Correct
implementation) and D (for using a Defective one). If both you and your colleague
adopt C then your average packet delay is 1ms (millisecond). If you both adopt D the
delay is 3ms, because of additional overhead at the network router. Finally, if one of
you adopts D and the other adopts C then the D adopter will experience no delay at all,
but the C adopter will experience a delay of 4ms.
These consequences are shown in Figure 3.1. Your options are the two rows, and

your colleague’s options are the columns. In each cell, the first number represents
your payoff (or, minus your delay), and the second number represents your colleague’s
payoff.1TCP user’s

game

Prisoner’s
dilemma game
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C −1,−1 −4, 0

D 0,−4 −3,−3

Figure 3.1 The TCP user’s (aka the Prisoner’s) Dilemma.

Given these options what should you adopt, C or D? Does it depend on what you
think your colleague will do? Furthermore, from the perspective of the network opera-
tor, what kind of behavior can he expect from the two users? Will any two users behave
the same when presented with this scenario? Will the behavior change if the network
operator allows the users to communicate with each other before making a decision?
Under what changes to the delays would the users’ decisions still be the same? How
would the users behave if they have the opportunity to face this same decision with the
same counterpart multiple times? Do answers to the above questions depend on how
rational the agents are and how they view each other’s rationality?
Game theory gives answers to many of these questions. It tells us that any rational

user, when presented with this scenario once, will adopt D—regardless of what the
other user does. It tells us that allowing the users to communicate beforehand will
not change the outcome. It tells us that for perfectly rational agents, the decision will
remain the same even if they play multiple times; however, if the number of times that
the agents will play this is infinite, or even uncertain, we may see them adopt C.

3.2 Games in normal form

The normal form, also known as the strategic or matrix form, is the most familiargame in
strategic form

game in matrix
form

representation of strategic interactions in game theory.

1. The term ‘Prisoners’ Dilemma’ for this famous game theoretic situation derives from the original story
accompanying the numbers. Imagine the players of the game are two prisoners suspected of a crime rather
than network users, that you each can either Confess to the crime or Deny it, and that the absolute values of
the numbers represent the length of jail term each of you will get in each scenario.
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Figure 3.3 Any c > a > d > b define an instance of Prisoner’s Dilemma.

To fully understand the role of the payoff numbers we would need to enter into
a discussion of utility theory. Here, let us just mention that for most purposes, theutility theory
analysis of any game is unchanged if the payoff numbers undergo any positive affinepositive affine

transformation transformation; this simply means that each payoff x is replaced by a payoff ax + b,
where a is a fixed positive real number and b is a fixed real number.
There are some restricted classes of normal-form games that deserve special men-

tion. The first is the class of common-payoff games. These are games in which, for
every action profile, all players have the same payoff.

Definition 3.2.2 A common payoff game, or team game, is a game in which for allcommon-payoff
game

team game

action profiles a ∈ A1 × · · · × An and any pair of agents i, j, it is the case that
ui(a) = uj(a).

Common-payoff games are also called pure coordination games, since in such gamespure-
coordination
game

the agents have no conflicting interests; their sole challenge is to coordinate on an
action that is maximally beneficial to all.
Because of their special nature, we often represent common value games with an

abbreviated form of the matrix in which we list only one payoff in each of the cells.
As an example, imagine two drivers driving towards each other in a country without

traffic rules, and who must independently decide whether to drive on the left or on the
right. If the players choose the same side (left or right) they have some high utility, and
otherwise they have a low utility. The game matrix is shown in Figure 3.4.

Left Right

Left 1 0

Right 0 1

Figure 3.4 Coordination game.

At the other end of the spectrum from pure coordination games lie zero-sum games,zero-sum game
which (bearing in mind the comment we made earlier about positive affine transforma-
tions) are more properly called constant-sum games. Unlike common-payoff games,constant-sum

games
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3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in a game, but not yet his
set of strategies, or his available choices. Certainly one kind of strategy is to select
a single action and play it; we call such a strategy a pure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.
We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX letΠ(X) be the set of all probability distributions overX . Then the set of mixed
strategies for player i is Si = Π(Ai). The set of mixed strategy profiles is simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets, S1 × · · ·× Sn.

By si(ai) we denote the probability that an action ai will be played under mixed
strategy si. The subset of actions that are assigned positive probability by the mixed
strategy si is called the support of si.

Definition 3.2.5 The support of a mixed strategy si for a player i is the set of pure
strategies {ai|si(ai) > 0}.
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constant-sum games are meaningful primarily in the context of two-player (though not
necessarily two-strategy) games.

Definition 3.2.3 A normal form game is constant sum if there exists a constant c such
that for each strategy profile a ∈ A1 ×A2 it is the case that u1(a) + u2(a) = c.

For convenience, when we talk of constant-sum games going forward we will always
assume that c = 0, that is, that we have a zero-sum game. If common-payoff games
represent situations of pure coordination, zero-sum games represent situations of pure
competition; one player’s gain must come at the expense of the other player.
As in the case of common-payoff games, we can use an abbreviated matrix form to

represent zero-sum games, in which we write only one payoff value in each cell. This
value represents the payoff of player 1, and thus the negative of the payoff of player 2.
Note, though, that whereas the full matrix representation is unambiguous, when we use
the abbreviation we must explicit state whether this matrix represents a common-payoff
game or a zero-sum one.
A classical example of a zero-sum game is the game of matching pennies. In this matching

pennies gamegame, each of the two players has a penny, and independently chooses to display either
heads or tails. The two players then compare their pennies. If they are the same then
player 1 pockets both, and otherwise player 2 pockets them. The payoff matrix is
shown in Figure 3.5.

Heads Tails

Heads 1 −1

Tails −1 1

Figure 3.5 Matching Pennies game.

The popular children’s game of Rock, Paper, Scissors, also known as Rochambeau, Rock, Paper,
Scissors, or
Rochambeau
game

provides a three-strategy generalization of the matching-pennies game. The payoff
matrix of this zero-sum game is shown in Figure 3.6. In this game, each of the two
players can choose either Rock, Paper, or Scissors. If both players choose the same
action, there is no winner, and the utilities are zero. Otherwise, each of the actions
wins over one of the other actions, and loses to the other remaining action.
In general, games tend to include elements of both coordination and competition.

Prisoner’s Dilemma does, although in a rather paradoxical way. Here is another well-
known game that includes both elements. In this game, called Battle of the Sexes, a
husband and wife wish to go to the movies, and they can select among two movies:
“Violence Galore (VG)” and “Gentle Love (GL)”. They much prefer to go together
rather than to separate movies, but while the wife prefers VG the husband prefers GL.
The payoff matrix is shown in Figure 3.7. We will return to this game shortly.
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Mixed Strategies

It would be a pretty bad idea to play any deterministic
strategy in matching pennies

Idea: confuse the opponent by playing randomly

Define a strategy si for agent i as any probability distribution
over the actions Ai.

pure strategy: only one action is played with positive
probability
mixed strategy: more than one action is played with positive
probability

these actions are called the support of the mixed strategy

Let the set of all strategies for i be Si

Let the set of all strategy profiles be S = S1 × . . .× Sn.
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Utility under Mixed Strategies

What is your payoff if all the players follow mixed strategy
profile s ∈ S?

We can’t just read this number from the game matrix
anymore: we won’t always end up in the same cell

Instead, use the idea of expected utility from decision theory:

ui(s) =
�

a∈A
ui(a)Pr(a|s)

Pr(a|s) =
�

j∈N
sj(aj)
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Best Response and Nash Equilibrium

Our definitions of best response and Nash equilibrium generalize

from actions to strategies.

Best response:

s∗i ∈ BR(s−i) iff ∀si ∈ Si, ui(s∗i , s−i) ≥ ui(si, s−i)

Nash equilibrium:

s = �s1, . . . , sn� is a Nash equilibrium iff ∀i, si ∈ BR(s−i)

Every finite game has a Nash equilibrium! [Nash, 1950]

e.g., matching pennies: both players play heads/tails 50%/50%
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Interpreting Mixed Strategy Equilibria

What does it mean to play a mixed strategy? Different
interpretations:

Randomize to confuse your opponent
consider the matching pennies example

Players randomize when they are uncertain about the other’s
action

consider battle of the sexes

Mixed strategies are a concise description of what might
happen in repeated play: count of pure strategies in the limit

Mixed strategies describe population dynamics: 2 agents
chosen from a population, all having deterministic strategies.
MS is the probability of getting an agent who will play one PS
or another.
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A multiplayer game: 2/3 of the mean

Consider the following game:
Everybody bets 1 euro
Everyone secretly writes a number between 0 and 100 on a
sheet of paper
The mean of the numbers is computed and the player(s) closest
to 2/3 of the mean split the money

Model this as a normal form game

Which are the Nash equilibria, and why?
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Recap Pareto Optimality Best Response and Nash Equilibrium Mixed Strategies

Computing Mixed Nash Equilibria: Battle of the Sexes

60 3 Competition and Coordination: Normal form games

Rock Paper Scissors

Rock 0 −1 1

Paper 1 0 −1

Scissors −1 1 0

Figure 3.6 Rock, Paper, Scissors game. 

 B         F

B 2, 1 0, 0

F 0, 0 1, 2

Figure 3.7 Battle of the Sexes game.

3.2.2 Strategies in normal-form games

We have so far defined the actions available to each player in a game, but not yet his
set of strategies, or his available choices. Certainly one kind of strategy is to select
a single action and play it; we call such a strategy a pure strategy, and we will usepure strategy
the notation we have already developed for actions to represent it. There is, however,
another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
a mixed strategy. Although it may not be immediately obvious why a player shouldmixed strategy
introduce randomness into his choice of action, in fact in a multi-agent setting the role
of mixed strategies is critical. We will return to this when we discuss solution concepts
for games in the next section.
We define a mixed strategy for a normal form game as follows.

Definition 3.2.4 Let (N, (A1, . . . , An), O, µ, u) be a normal form game, and for any
setX letΠ(X) be the set of all probability distributions overX . Then the set of mixed
strategies for player i is Si = Π(Ai). The set of mixed strategy profiles is simply themixed strategy

profiles Cartesian product of the individual mixed strategy sets, S1 × · · ·× Sn.

By si(ai) we denote the probability that an action ai will be played under mixed
strategy si. The subset of actions that are assigned positive probability by the mixed
strategy si is called the support of si.

Definition 3.2.5 The support of a mixed strategy si for a player i is the set of pure
strategies {ai|si(ai) > 0}.

c�Shoham and Leyton-Brown, 2006

It’s hard in general to compute Nash equilibria, but it’s easy
when you can guess the support

For BoS, let’s look for an equilibrium where all actions are
part of the support
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c�Shoham and Leyton-Brown, 2006

Let player 2 play B with p, F with 1− p.

If player 1 best-responds with a mixed strategy, player 2 must
make him indifferent between F and B (why?)

u1(B) = u1(F )

2p+ 0(1− p) = 0p+ 1(1− p)

p =
1

3
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another, less obvious type of strategy; a player can choose to randomize over the set of
available actions according to some probability distribution; such a strategy is called
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Definition 3.2.5 The support of a mixed strategy si for a player i is the set of pure
strategies {ai|si(ai) > 0}.

c�Shoham and Leyton-Brown, 2006

Likewise, player 1 must randomize to make player 2
indifferent.

Why is player 1 willing to randomize?

Let player 1 play B with q, F with 1− q.

u2(B) = u2(F )

q + 0(1− q) = 0q + 2(1− q)

q =
2

3

Thus the mixed strategies (23 ,
1
3), (

1
3 ,

2
3) are a Nash

equilibrium.
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Likewise, player 1 must randomize to make player 2
indifferent.

Why is player 1 willing to randomize?
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Linear Programming

A linear program is defined by:

a set of real-valued variables

a linear objective function
a weighted sum of the variables

a set of linear constraints
the requirement that a weighted sum of the variables must be
greater than or equal to some constant

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 8



Support Enumeration

To compute a Mixed Nash Equilibrium in a 2-player game:

Enumerate all possible pairs of supports Z1 ⊆ A1, Z2 ⊆ A2

For each pair, check feasibility of this Linear Program:

�

a2∈Z2

p2(a2)u1(a1, a2) ≥
�

a2∈Z2

p2(a2)u1(a
�, a2) ∀a1 ∈ Z1, ∀a� ∈ A1

�

a1∈Z1

p1(a1)u2(a1, a2) ≥
�

a1∈Z1

p1(a1)u2(a1, a
�) ∀a2 ∈ Z2, ∀a� ∈ A2

�

a1∈Z1

p1(a1) = 1, p1(a1) ≥ 0 ∀a1 ∈ Z1

�

a2∈Z2

p2(a2) = 1, p2(a2) ≥ 0 ∀a2 ∈ Z2.

Running time is exponential in |A1|+ |A2|.
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Lecture Overview
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4 Maxmin and Minmax
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Recap Computing Mixed NE Fun Game Maxmin and Minmax

Maxmin Strategies

Player i’s maxmin strategy is a strategy that maximizes i’s
worst-case payoff, in the situation where all the other players
(whom we denote −i) happen to play the strategies which
cause the greatest harm to i.

The maxmin value (or safety level) of the game for player i is
that minimum amount of payoff guaranteed by a maxmin
strategy.

Definition (Maxmin)

The maxmin strategy for player i is argmaxsi mins−i ui(s1, s2),
and the maxmin value for player i is maxsi mins−i ui(s1, s2).

Why would i want to play a maxmin strategy?

a conservative agent maximizing worst-case payoff
a paranoid agent who believes everyone is out to get him
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Recap Computing Mixed NE Fun Game Maxmin and Minmax

Minmax Strategies

Player i’s minmax strategy against player −i in a 2-player
game is a strategy that minimizes −i’s best-case payoff, and
the minmax value for i against −i is payoff.

Why would i want to play a minmax strategy?

to punish the other agent as much as possible

Definition (Minmax, 2-player)

In a two-player game, the minmax strategy for player i against
player −i is argminsi maxs−i u−i(si, s−i), and player −i’s minmax
value is minsi maxs−i u−i(si, s−i).
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Recap Computing Mixed NE Fun Game Maxmin and Minmax

Minmax Theorem

Theorem (Minimax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium
each player receives a payoff that is equal to both his maxmin
value and his minmax value.

1 Each player’s maxmin value is equal to his minmax value. By
convention, the maxmin value for player 1 is called the value of the
game.

2 For both players, the set of maxmin strategies coincides with the set
of minmax strategies.

3 Any maxmin strategy profile (or, equivalently, minmax strategy
profile) is a Nash equilibrium. Furthermore, these are all the Nash
equilibria. Consequently, all Nash equilibria have the same payoff
vector (namely, those in which player 1 gets the value of the game).
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Recap Computing Mixed NE Fun Game Maxmin and Minmax

Minmax Theorem

Theorem (Minimax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium
each player receives a payoff that is equal to both his maxmin
value and his minmax value.

1 Each player’s maxmin value is equal to his minmax value. By
convention, the maxmin value for player 1 is called the value of the
game.

2 For both players, the set of maxmin strategies coincides with the set
of minmax strategies.

3 Any maxmin strategy profile (or, equivalently, minmax strategy
profile) is a Nash equilibrium. Furthermore, these are all the Nash
equilibria. Consequently, all Nash equilibria have the same payoff
vector (namely, those in which player 1 gets the value of the game).

Computing Nash Equilibrium; Maxmin Lecture 5, Slide 17



Recap Computing Mixed NE Fun Game Maxmin and Minmax

Minmax Theorem

Theorem (Minimax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium
each player receives a payoff that is equal to both his maxmin
value and his minmax value.

1 Each player’s maxmin value is equal to his minmax value. By
convention, the maxmin value for player 1 is called the value of the
game.

2 For both players, the set of maxmin strategies coincides with the set
of minmax strategies.

3 Any maxmin strategy profile (or, equivalently, minmax strategy
profile) is a Nash equilibrium. Furthermore, these are all the Nash
equilibria. Consequently, all Nash equilibria have the same payoff
vector (namely, those in which player 1 gets the value of the game).

Computing Nash Equilibrium; Maxmin Lecture 5, Slide 17



Recap Computing Mixed NE Fun Game Maxmin and Minmax

Minmax Theorem

Theorem (Minimax theorem (von Neumann, 1928))

In any finite, two-player, zero-sum game, in any Nash equilibrium
each player receives a payoff that is equal to both his maxmin
value and his minmax value.

1 Each player’s maxmin value is equal to his minmax value. By
convention, the maxmin value for player 1 is called the value of the
game.

2 For both players, the set of maxmin strategies coincides with the set
of minmax strategies.

3 Any maxmin strategy profile (or, equivalently, minmax strategy
profile) is a Nash equilibrium. Furthermore, these are all the Nash
equilibria. Consequently, all Nash equilibria have the same payoff
vector (namely, those in which player 1 gets the value of the game).

Computing Nash Equilibrium; Maxmin Lecture 5, Slide 17



Recap Computing Mixed NE Fun Game Maxmin and Minmax

Saddle Point: Matching Pennies

Computing Nash Equilibrium; Maxmin Lecture 5, Slide 18



Recap LP Computing Maxmin Domination Fun Game Iterated Removal Computing Domination

Computing equilibria of zero-sum games

minimize U∗
1

subject to
�

a2∈A2

u1(a1, a2) · sa2
2 ≤ U∗

1 ∀a1 ∈ A1

�

a2∈A2

sa2
2 = 1

sa2
2 ≥ 0 ∀a2 ∈ A2

First, identify the variables:
U∗

1 is the expected utility for player 1
sa2
2 is player 2’s probability of playing action a2 under his

mixed strategy

each u1(a1, a2) is a constant.
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Recap LP Computing Maxmin Domination Fun Game Iterated Removal Computing Domination

Computing equilibria of zero-sum games

Now let’s interpret the LP:

minimize U∗
1

subject to
�

a2∈A2

u1(a1, a2) · sa2
2 ≤ U∗

1 ∀a1 ∈ A1

�

a2∈A2

sa2
2 = 1

sa2
2 ≥ 0 ∀a2 ∈ A2

s2 is a valid probability distribution.
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Recap LP Computing Maxmin Domination Fun Game Iterated Removal Computing Domination

Computing equilibria of zero-sum games

Now let’s interpret the LP:

minimize U∗
1

subject to
�

a2∈A2

u1(a1, a2) · sa2
2 ≤ U∗

1 ∀a1 ∈ A1

�

a2∈A2

sa2
2 = 1

sa2
2 ≥ 0 ∀a2 ∈ A2

U∗
1 is as small as possible.
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Recap LP Computing Maxmin Domination Fun Game Iterated Removal Computing Domination

Computing equilibria of zero-sum games

Now let’s interpret the LP:

minimize U∗
1

subject to
�

a2∈A2

u1(a1, a2) · sa2
2 ≤ U∗

1 ∀a1 ∈ A1

�

a2∈A2

sa2
2 = 1

sa2
2 ≥ 0 ∀a2 ∈ A2

Player 1’s expected utility for playing each of his actions under
player 2’s mixed strategy is no more than U∗

1 .
Because U∗

1 is minimized, this constraint will be tight for some
actions: the support of player 1’s mixed strategy.

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 11
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Computing equilibria of zero-sum games

minimize U∗
1

subject to
�

a2∈A2

u1(a1, a2) · sa2
2 ≤ U∗

1 ∀a1 ∈ A1

�

a2∈A2

sa2
2 = 1

sa2
2 ≥ 0 ∀a2 ∈ A2

This formulation gives us the minmax strategy for player 2.

To get the minmax strategy for player 1, we need to solve a
second (analogous) LP.
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Recap LP Computing Maxmin Domination Fun Game Iterated Removal Computing Domination

Lecture Overview

1 Recap

2 Linear Programming

3 Computational Problems Involving Maxmin

4 Domination

5 Fun Game

6 Iterated Removal of Dominated Strategies

7 Computational Problems Involving Domination
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Domination

Let si and s�i be two strategies for player i, and let S−i be is
the set of all possible strategy profiles for the other players

Definition

si strictly dominates s�i if ∀s−i ∈ S−i, ui(si, s−i) > ui(s�i, s−i)

Definition

si weakly dominates s�i if ∀s−i ∈ S−i, ui(si, s−i) ≥ ui(s�i, s−i) and
∃s−i ∈ S−i, ui(si, s−i) > ui(s�i, s−i)

Definition

si very weakly dominates s�i if ∀s−i ∈ S−i, ui(si, s−i) ≥ ui(s�i, s−i)
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Equilibria and dominance

If one strategy dominates all others, we say it is dominant.

A strategy profile consisting of dominant strategies for every
player must be a Nash equilibrium.

An equilibrium in strictly dominant strategies must be unique.

Consider Prisoner’s Dilemma again
not only is the only equilibrium the only non-Pareto-optimal
outcome, but it’s also an equilibrium in strictly dominant
strategies!

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 15



Recap LP Computing Maxmin Domination Fun Game Iterated Removal Computing Domination

Equilibria and dominance

If one strategy dominates all others, we say it is dominant.

A strategy profile consisting of dominant strategies for every
player must be a Nash equilibrium.

An equilibrium in strictly dominant strategies must be unique.

Consider Prisoner’s Dilemma again
not only is the only equilibrium the only non-Pareto-optimal
outcome, but it’s also an equilibrium in strictly dominant
strategies!

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 15



Recap LP Computing Maxmin Domination Fun Game Iterated Removal Computing Domination

Lecture Overview

1 Recap

2 Linear Programming

3 Computational Problems Involving Maxmin

4 Domination

5 Fun Game

6 Iterated Removal of Dominated Strategies

7 Computational Problems Involving Domination

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 20



Recap LP Computing Maxmin Domination Fun Game Iterated Removal Computing Domination

Dominated strategies

No equilibrium can involve a strictly dominated strategy
Thus we can remove it, and end up with a strategically
equivalent game
This might allow us to remove another strategy that wasn’t
dominated before
Running this process to termination is called iterated removal
of dominated strategies.
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Iterated Removal of Dominated Strategies: Example

L C R

U 3, 1 0, 1 0, 0

M 1, 1 1, 1 5, 0

D 0, 1 4, 1 0, 0

R is dominated by L.

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 22



Recap LP Computing Maxmin Domination Fun Game Iterated Removal Computing Domination

Iterated Removal of Dominated Strategies: Example

L C R

U 3, 1 0, 1 0, 0

M 1, 1 1, 1 5, 0

D 0, 1 4, 1 0, 0

R is dominated by L.

Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 22



Recap LP Computing Maxmin Domination Fun Game Iterated Removal Computing Domination

Iterated Removal of Dominated Strategies: Example

L C

U 3, 1 0, 1

M 1, 1 1, 1

D 0, 1 4, 1

M is dominated by the mixed strategy that selects U and D
with equal probability.
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Iterated Removal of Dominated Strategies: Example

L C

U 3, 1 0, 1

D 0, 1 4, 1

No other strategies are dominated.
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Iterated Removal of Dominated Strategies

This process preserves Nash equilibria.
strict dominance: all equilibria preserved.
weak or very weak dominance: at least one equilibrium
preserved.

Thus, it can be used as a preprocessing step before computing
an equilibrium

Some games are solvable using this technique.
Example: Traveler’s Dilemma!

What about the order of removal when there are multiple
dominated strategies?

strict dominance: doesn’t matter.
weak or very weak dominance: can affect which equilibria are
preserved.
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Lecture Overview

1 Recap

2 Computational Problems Involving Domination

3 Rationalizability

4 Correlated Equilibrium

5 Computing Correlated Equilibria
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Pithy Quote

If there is intelligent life on other planets, in a majority of
them, they would have discovered correlated equilibrium
before Nash equilibrium.

– Roger Myerson
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Examples

Consider again Battle of the Sexes.
Intuitively, the best outcome seems a 50-50 split between
(F, F ) and (B,B).
But there’s no way to achieve this, so either someone loses out
(unfair) or both players often miscoordinate

Another classic example: traffic game
go wait

go −100,−100 10, 0
B 0, 10 −10,−10
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Intuition

What is the natural solution here?

A traffic light: a fair randomizing device that tells one of the

agents to go and the other to wait.

Benefits:

the negative payoff outcomes are completely avoided

fairness is achieved

the sum of social welfare exceeds that of any Nash equilibrium

We could use the same idea to achieve the fair outcome in

battle of the sexes.

Our example presumed that everyone perfectly observes the

random event; not required.

More generally, some random variable with a commonly

known distribution, and a private signal to each player about

the outcome.

signal doesn’t determine the outcome or others’ signals;

however, correlated
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Formal definition

Definition (Correlated equilibrium)
Given an n-agent game G = (N ,A, u), a correlated equilibrium is a
probability distribution (p(a))a∈A on the space of strategy profiles
such that for each player i and every two strategies ai , a�i of i ,

�

a∈A|ai∈a

p(a)ui(ai , a−i) ≥
�

a∈A|ai∈a

p(a)ui(a
�
i , a−i).

Conditioned on the event that a contains ai , the expected utility of
playing ai is no smaller than that of playing a�i .
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Existence

Theorem
For every mixed Nash equilibrium (s1, s2, . . . , sn) there exists a
corresponding correlated equilibrium (p(a)a∈A).

This is easy to show:
let p(a) =

�
i∈N si (ai )

Thus, correlated equilibria always exist
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Remarks

Not every correlated equilibrium is equivalent to a Nash
equilibrium

thus, correlated equilibrium is a weaker notion than Nash

Any convex combination of the payoffs achievable under
correlated equilibria is itself realizable under a correlated
equilibrium

start with the Nash equilibria (each of which is a CE)
introduce a second randomizing device that selects which CE
the agents will play
regardless of the probabilities, no agent has incentive to deviate
the probabilities can be adjusted to achieve any convex
combination of the equilibrium payoffs
the randomizing devices can be combined
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Computing CE

�

a∈A|ai∈a

p(a)ui(a) ≥
�

a∈A|ai∈a

p(a)ui(a�i, a−i) ∀i ∈ N, ∀ai, a
�
i ∈ Ai

p(a) ≥ 0 ∀a ∈ A
�

a∈A

p(a) = 1

variables: p(a); constants: ui(a)

we could find the social-welfare maximizing CE by adding an
objective function

maximize:
�

a∈A

p(a)
�

i∈N

ui(a).
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Why are CE easier to compute than NE?

�

a∈A|ai∈a

p(a)ui(a) ≥
�

a∈A|a�
i∈a

p(a)ui(a�i, a−i) ∀i ∈ N, ∀ai, a
�
i ∈ Ai

p(a) ≥ 0 ∀a ∈ A
�

a∈A

p(a) = 1

intuitively, correlated equilibrium has only a single randomization
over outcomes, whereas in NE this is constructed as a product of
independent probabilities.

To change this program so that it finds NE, the first constraint
would be�

a∈A

ui(a)
�

j∈N

pj(aj) ≥
�

a∈A

ui(a�i, a−i)
�

j∈N\{i}

pj(aj) ∀i ∈ N, ∀a�i ∈ Ai.

This is a nonlinear constraint!
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