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Lecture Overview

1 Auctions

2 Canonical Single-Good Auctions

3 Comparing Auctions

4 Second-price auctions
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Motivation

Auctions are any mechanisms for allocating resources among
self-interested agents

Very widely used
government sale of resources
privatization
stock market
request for quote
FCC spectrum
real estate sales
eBay
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CS Motivation

resource allocation is a fundamental problem in CS

increasing importance of studying distributed systems with
heterogeneous agents

markets for:
computational resources (JINI, etc.)
P2P systems
network bandwidth

currency needn’t be real money, just something scarce
that said, real money trading agents are also an important
motivation
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First-, Second-Price Auctions

First-Price Auction
bidders write down bids on pieces of paper

auctioneer awards the good to the bidder with the highest bid

that bidder pays the amount of his bid

Second-Price Auction
bidders write down bids on pieces of paper

auctioneer awards the good to the bidder with the highest bid

that bidder pays the amount bid by the second-highest bidder

Auction Theory I Lecture 18, Slide 10
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Second-Price proof

Theorem
Truth-telling is a dominant strategy in a second-price auction.

Proof.
Assume that the other bidders bid in some arbitrary way. We must
show that i’s best response is always to bid truthfully. We’ll break
the proof into two cases:

1 Bidding honestly, i would win the auction

2 Bidding honestly, i would lose the auction

Auction Theory I Lecture 18, Slide 19
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Second-Price proof (2)
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Bidding honestly, i is the winner

If i bids higher, he will still win and still pay the same amount

If i bids lower, he will either still win and still pay the same
amount. . .

or lose and get utility of zero.
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Second-Price proof (3)
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Bidding honestly, i is not the winner

If i bids lower, he will still lose and still pay nothing

If i bids higher, he will either still lose and still pay
nothing. . .

or win and pay more than his valuation.
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Introduction

Our setting now:

a set of outcomes

agents have preferences across them

for the moment, we won’t consider incentive issues:

center knows agents’ preferences, or they declare truthfully

the goal: a social choice function: a mapping from everyone’s

preferences to a particular outcome, which is enforced

how to pick such functions with desirable properties?

Social Choice Lecture 11, Slide 21



Formal model

Definition (Social choice function)
Assume a set of agents N = {1, 2, . . . , n} and a set of outcomes (or
candidates, etc.) O. Let L be the set of total orders on O. A social choice
function (over N and O) is a function C : Ln → O.

Definition (Social welfare function)
Let L,N,O as above. A social welfare function (over N and O) is a
function W : Ln → L.

A social choice function aggregates the preferences into an outcome
A social welfare function aggregates the preferences into a single
preference ordering

V. Bonifaci (IASI-CNR) Models of Selfish Agents October 31, 2012 2 / 13
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Non-Ranking Voting Schemes

Plurality
pick the outcome which is preferred by the most people

Cumulative voting
distribute e.g., 5 votes each
possible to vote for the same outcome multiple times

Approval voting
accept as many outcomes as you “like”

Social Choice Lecture 11, Slide 23
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Ranking Voting Schemes

Plurality with elimination (“instant runoff”)
everyone selects their favorite outcome
the outcome with the fewest votes is eliminated
repeat until one outcome remains

Borda
assign each outcome a number.
The most preferred outcome gets a score of n− 1, the next
most preferred gets n− 2, down to the nth outcome which
gets 0.
Then sum the numbers for each outcome, and choose the one
that has the highest score

Pairwise elimination
in advance, decide a schedule for the order in which pairs will
be compared.
given two outcomes, have everyone determine the one that
they prefer
eliminate the outcome that was not preferred, and continue
with the schedule

Social Choice Lecture 11, Slide 24
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Condorcet Condition

If there is a candidate who is preferred to every other
candidate in pairwise runoffs, that candidate should be the
winner

While the Condorcet condition is considered an important
property for a voting system to satisfy, there is not always a
Condorcet winner

sometimes, there’s a cycle where A defeats B, B defeats C,
and C defeats A in their pairwise runoffs

Social Choice Lecture 11, Slide 25
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Condorcet example

499 agents: A � B � C
3 agents: B � C � A

498 agents: C � B � A

What is the Condorcet winner?

B

What would win under plurality voting? A

What would win under plurality with elimination? C

Social Choice Lecture 11, Slide 29
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Sensitivity to Losing Candidate

35 agents: A � C � B
33 agents: B � A � C
32 agents: C � B � A

What candidate wins under plurality voting?

A

What candidate wins under Borda voting? A

Now consider dropping C. Now what happens under both
Borda and plurality? B wins.

Social Choice Lecture 11, Slide 30
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Notation

N is the set of agents

O is a finite set of outcomes with |O| ≥ 3

L is the set of all possible strict preference orderings over O.
for ease of exposition we switch to strict orderings
we will end up showing that desirable SWFs cannot be found
even if preferences are restricted to strict orderings

[�] is an element of the set Ln (a preference ordering for
every agent; the input to our social welfare function)

�W is the preference ordering selected by the social welfare
function W .

When the input to W is ambiguous we write it in the
subscript; thus, the social order selected by W given the input
[��] is denoted as �W ([��]).

Social Choice Lecture 11, Slide 34
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Pareto Efficiency

Definition (Pareto Efficiency (PE))

W is Pareto efficient if for any o1, o2 ∈ O, ∀i o1 �i o2 implies that
o1 �W o2.

when all agents agree on the ordering of two outcomes, the
social welfare function must select that ordering.

Social Choice Lecture 11, Slide 35
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Independence of Irrelevant Alternatives

Definition (Independence of Irrelevant Alternatives (IIA))

W is independent of irrelevant alternatives if, for any o1, o2 ∈ O

and any two preference profiles [��], [���] ∈ Ln, ∀i (o1 ��
i o2 if and

only if o1 ���
i o2) implies that (o1 �W ([��]) o2 if and only if

o1 �W ([���]) o2).

the selected ordering between two outcomes should depend
only on the relative orderings they are given by the agents.

Social Choice Lecture 11, Slide 36
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Nondictatorship

Definition (Non-dictatorship)

W does not have a dictator if ¬∃i ∀o1, o2(o1 �i o2 ⇒ o1 �W o2).

there does not exist a single agent whose preferences always
determine the social ordering.

We say that W is dictatorial if it fails to satisfy this property.

Social Choice Lecture 11, Slide 37



Arrow’s Theorem

Theorem (Arrow, 1951)
Let |O| ≥ 3. No social welfare function W over O can at the same time

be

Pareto efficient;

independent of irrelevant alternatives;

non-dictatorial.

So, general aggregation of preferences into a single preference ordering is
impossible unless one violates some very natural properties.

V. Bonifaci (IASI-CNR) Models of Selfish Agents October 31, 2012 3 / 13



An exercise: sophisticated voting

agent 1: A � B � C

agent 2: C � A � B

agent 3: B � C � A

The agents will use plurality voting, with the twist that agent 1 is the

chair, and can break ties: if everyone proposes a different name, agent 1’s

candidate passes

Assume everybody knows everybody else’s preferences

How will the agents vote?

V. Bonifaci (IASI-CNR) Models of Selfish Agents October 31, 2012 4 / 13



Mechanism Design

There is still hope: we usually care for social choice functions (=

outcomes), rather than social welfare functions (= rankings)

However, in social choice theory, it is assumed that agents do not try to

manipulate the selection mechanism

Challenge: extend the social choice setting to a new setting where agents

can’t be relied upon to disclose their preferences honestly (mechanism

design)
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Properties of social choice functions

Definition (Dictatorship)
A social choice function C : Ln → O is a dictatorship if there is an agent i
such that

(o �i o
� ∀o � �= o) ⇒ C (�1, . . . ,�n) = o

for all [�] ∈ Ln.

Definition (Truthful choice function)
A social choice function C : Ln → O can be manipulated by agent i if for
some �1, . . . ,�n∈ L and some �i∈ L we have o � �i o, where

o = C (�1, . . . ,�i , . . . ,�n)

o
� = C (�1, . . . ,��

i , . . . ,�n)

C is truthful if it cannot be manipulated by any agent.
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Impossibility of general mechanism design

Theorem (Gibbard-Satterthwaite)
Let C be a social choice function surjective onto O, where |O| ≥ 3. Then
either C is a dictatorship, or C is not truthful.

The proof uses Arrow’s Theorem

So, is mechanism design impossible after all?

V. Bonifaci (IASI-CNR) Models of Selfish Agents October 31, 2012 7 / 13



Lecture overview

Mechanisms with money

V. Bonifaci (IASI-CNR) Models of Selfish Agents October 31, 2012 3 / 7



Games with strict incomplete information

Definition (Strict incomplete information game)
A game with strict incomplete information for n agents is given by:

For every agent i , a set of actions Ai

For every agent i , a set of types Θi . A value θi ∈ Θi is the private
information of i .

For every agent i , a utility function ui : Θi × A1 × · · ·× An → R.

The payoff of i is ui (θi , a) when action profile a is selected

V. Bonifaci (IASI-CNR) Models of Selfish Agents October 31, 2012 9 / 13



Strategies for strict incomplete information games

Definition (Strategy for a strict inc. information game)

A strategy of agent i is a function si : Θi → Ai

si is a (weakly) dominant strategy if for every θi , the action si (θi ) is a
weakly dominant strategy in the full information game defined by θi :

ui (θi , (si (θi ), s−i (θ−i ))) ≥ ui (θi , (a
�
i , s−i (θ−i ))) ∀i ∈ N, ∀θ ∈ Θ,

∀a�i ∈ Ai

That is, the action si (θi ) is dominant for agent i (given his type), even
without knowing the other agents’ actions or types

V. Bonifaci (IASI-CNR) Models of Selfish Agents October 31, 2012 10 / 13



Mechanisms with money

Definition (Quasilinear mechanism)
A quasilinear mechanism for n agents is given by

agents’ type spaces Θ1, . . . ,Θn

agents’ action spaces A1, . . . ,An

a set of outcomes X

valuation functions vi : Θi × X → R
a choice rule χ : A1 × · · ·× An → X

payment rules pi : A1 × · · ·× An → R

The utility of the agent i in the induced game is

ui (θi , a) := vi (θi ,χ(a))− pi (a)
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Implementation of social choice functions

Definition (Implementation of social choice functions)
The mechanism implements a social choice function C : Θ → X if for
some dominant strategy equilibrium s1, . . . , sn in the mechanism’s induced
game,

χ(s1(θ1), . . . , sn(θn)) = C (θ1, . . . , θn) ∀θ ∈ Θ

V. Bonifaci (IASI-CNR) Models of Selfish Agents October 31, 2012 12 / 13
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Implementation Comments

We can require that the desired outcome arises

in the only equilibrium

in every equilibrium

in at least one equilibrium

Forms of implementation:

Direct Implementation: agents each simultaneously send a
single message to the center

Indirect Implementation: agents may send a sequence of
messages; in between, information may be (partially) revealed
about the messages that were sent previously like extensive
form

Mechanism Design Lecture 13, Slide 24



Direct mechanisms

Definition (Direct mechanism)
A direct revelation mechanism is such that for each agent i ,

Ai = {v̂i | v̂i ∈ RX}

I.e., each agent just declares a numerical valuation for each outcome in X
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Recap Quasilinear Mechanisms Properties

Truthfulness

Definition (Truthfulness)

A quasilinear mechanism is truthful if it is direct and ∀i∀vi, agent

i’s equilibrium strategy is to adopt the strategy v̂i = vi.

Our definition before, adapted for the quasilinear setting

Quasilinear Mechanisms; Groves Mechanism Lecture 15, Slide 15
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Lecture Overview

1 Recap

2 Revelation Principle

3 Impossibility

4 Quasilinear Utility
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Revelation Principle

It turns out that any social choice function that can be
implemented by any mechanism can be implemented by a
truthful, direct mechanism!

Consider an arbitrary, non-truthful mechanism (e.g., may be
indirect)

Recall that a mechanism defines a game, and consider an
equilibrium s = (s1, . . . , sn)

Revelation Principle; Quasilinear Utility Lecture 14, Slide 9
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Revelation Principle
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Revelation Principle

!

New Mechanism

Original
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We can construct a new direct mechanism, as shown above

This mechanism is truthful by exactly the same argument that
s was an equilibrium in the original mechanism

“The agents don’t have to lie, because the mechanism already
lies for them.”

Revelation Principle; Quasilinear Utility Lecture 14, Slide 10
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Computational Criticism of the Revelation Principle

computation is pushed onto the center
often, agents’ strategies will be computationally expensive

e.g., in the shortest path problem, agents may need to
compute shortest paths, cutsets in the graph, etc.

since the center plays equilibrium strategies for the agents, the
center now incurs this cost

if computation is intractable, so that it cannot be performed
by agents, then in a sense the revelation principle doesn’t hold

agents can’t play the equilibrium strategy in the original
mechanism
however, in this case it’s unclear what the agents will do

Revelation Principle; Quasilinear Utility Lecture 14, Slide 11
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Lecture Overview
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A positive result

Recall that in the quasilinear utility setting, a mechanism can
be defined as a choice rule and a payment rule.

The Groves mechanism is a mechanism that satisfies:
dominant strategy (truthfulness)
efficiency

In general it’s not:
budget balanced
individual-rational

...though we’ll see later that there’s some hope for recovering
these properties.

VCG Lecture 16, Slide 13
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The Groves Mechanism

Definition (Groves mechanism)

The Groves mechanism is a direct quasilinear mechanism (x , p),
where

x (v̂) = argmax
x

�

i

v̂i(x)

pi(v̂) = hi(v̂−i)−
�

j �=i

v̂j(x (v̂))

VCG Lecture 16, Slide 14
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The Groves Mechanism

x (v̂) = argmax
x

�

i

v̂i(x)

pi(v̂) = hi(v̂−i)−
�

j �=i

v̂j(x (v̂))

The choice rule should not come as a surprise (why not?)

because the mechanism is both truthful and efficient: these
properties entail the given choice rule.

So what’s going on with the payment rule?
the agent i must pay some amount hi(v̂−i) that doesn’t
depend on his own declared valuation
the agent i is paid

�
j �=i v̂j(x (v̂)), the sum of the others’

valuations for the chosen outcome
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Groves Truthfulness

Theorem
Truth telling is a dominant strategy under the Groves mechanism.

Consider a situation where every agent j other than i follows some arbitrary
strategy v̂j . Consider agent i’s problem of choosing the best strategy v̂i. As a
shorthand, we will write v̂ = (v̂−i, v̂i). The best strategy for i is one that solves

max
v̂i

�
vi(x (v̂))− p(v̂)

�

Substituting in the payment function from the Groves mechanism, we have

max
v̂i



vi(x (v̂))− hi(v̂−i) +
�

j �=i

v̂j(x (v̂))





Since hi(v̂−i) does not depend on v̂i, it is sufficient to solve

max
v̂i



vi(x (v̂)) +
�

j �=i

v̂j(x (v̂))



 .
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Groves Truthfulness

max
v̂i



vi(x (v̂)) +
�

j �=i

v̂j(x (v̂))



 .

The only way the declaration v̂i influences this maximization is through the
choice of x. If possible, i would like to pick a declaration v̂i that will lead the
mechanism to pick an x ∈ X which solves

max
x



vi(x) +
�

j �=i

v̂j(x)



 . (1)

Under the Groves mechanism,

x (v̂) = argmax
x

�
�

i

v̂i(x)

�
= argmax

x



v̂i(x) +
�

j �=i

v̂j(x)



 .

The Groves mechanism will choose x in a way that solves the maximization

problem in Equation (1) when i declares v̂i = vi. Because this argument does

not depend in any way on the declarations of the other agents, truth-telling is a

dominant strategy for agent i.
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Proof intuition

externalities are internalized
agents may be able to change the outcome to another one
that they prefer, by changing their declaration
however, their utility doesn’t just depend on the outcome—it
also depends on their payment
since they get paid the (reported) utility of all the other agents
under the chosen allocation, they now have an interest in
maximizing everyone’s utility rather than just their own

in general, DS truthful mechanisms have the property that an
agent’s payment doesn’t depend on the amount of his
declaration, but only on the other agents’ declarations

the agent’s declaration is used only to choose the outcome,
and to set other agents’ payments
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VCG

Definition (Clarke tax)

The Clarke tax sets the hi term in a Groves mechanism as

hi(v̂−i) =
�

j �=i

v̂j (x (v̂−i)) .

Definition (Vickrey-Clarke-Groves (VCG) mechanism)

The Vickrey-Clarke-Groves mechanism is a direct quasilinear
mechanism (x , p), where

x (v̂) = argmax
x

�

i

v̂i(x)

pi(v̂) =
�

j �=i

v̂j (x (v̂−i))−
�

j �=i

v̂j(x (v̂))

VCG Lecture 16, Slide 21



Recap The Groves Mechanism VCG VCG example Individual Rationality Budget Balance

VCG discussion

x (v̂) = argmax
x

�

i

v̂i(x)

pi(v̂) =
�

j �=i

v̂j (x (v̂−i))−
�

j �=i

v̂j(x (v̂))

You get paid everyone’s utility under the allocation that is
actually chosen

except your own, but you get that directly as utility

Then you get charged everyone’s utility in the world where
you don’t participate

Thus you pay your social cost
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VCG discussion

x (v̂) = argmax
x

�

i

v̂i(x)

pi(v̂) =
�

j �=i

v̂j (x (v̂−i))−
�

j �=i

v̂j(x (v̂))

Questions:

who pays 0?

agents who don’t affect the outcome

who pays more than 0?
(pivotal) agents who make things worse for others by existing

who gets paid?
(pivotal) agents who make things better for others by existing

VCG Lecture 16, Slide 23



Recap The Groves Mechanism VCG VCG example Individual Rationality Budget Balance

VCG discussion

x (v̂) = argmax
x

�

i

v̂i(x)

pi(v̂) =
�

j �=i

v̂j (x (v̂−i))−
�

j �=i

v̂j(x (v̂))

Questions:

who pays 0?
agents who don’t affect the outcome

who pays more than 0?
(pivotal) agents who make things worse for others by existing

who gets paid?
(pivotal) agents who make things better for others by existing

VCG Lecture 16, Slide 23



Recap The Groves Mechanism VCG VCG example Individual Rationality Budget Balance

VCG discussion

x (v̂) = argmax
x

�

i

v̂i(x)

pi(v̂) =
�

j �=i

v̂j (x (v̂−i))−
�

j �=i

v̂j(x (v̂))

Questions:

who pays 0?
agents who don’t affect the outcome

who pays more than 0?

(pivotal) agents who make things worse for others by existing

who gets paid?
(pivotal) agents who make things better for others by existing

VCG Lecture 16, Slide 23



Recap The Groves Mechanism VCG VCG example Individual Rationality Budget Balance

VCG discussion

x (v̂) = argmax
x

�

i

v̂i(x)

pi(v̂) =
�

j �=i

v̂j (x (v̂−i))−
�

j �=i

v̂j(x (v̂))

Questions:

who pays 0?
agents who don’t affect the outcome

who pays more than 0?
(pivotal) agents who make things worse for others by existing

who gets paid?
(pivotal) agents who make things better for others by existing

VCG Lecture 16, Slide 23



Recap The Groves Mechanism VCG VCG example Individual Rationality Budget Balance

VCG discussion

x (v̂) = argmax
x

�

i

v̂i(x)

pi(v̂) =
�

j �=i

v̂j (x (v̂−i))−
�

j �=i

v̂j(x (v̂))

Questions:

who pays 0?
agents who don’t affect the outcome

who pays more than 0?
(pivotal) agents who make things worse for others by existing

who gets paid?

(pivotal) agents who make things better for others by existing

VCG Lecture 16, Slide 23



Recap The Groves Mechanism VCG VCG example Individual Rationality Budget Balance

VCG discussion

x (v̂) = argmax
x

�

i

v̂i(x)

pi(v̂) =
�

j �=i

v̂j (x (v̂−i))−
�

j �=i

v̂j(x (v̂))

Questions:

who pays 0?
agents who don’t affect the outcome

who pays more than 0?
(pivotal) agents who make things worse for others by existing

who gets paid?
(pivotal) agents who make things better for others by existing

VCG Lecture 16, Slide 23



Recap The Groves Mechanism VCG VCG example Individual Rationality Budget Balance

VCG properties

x (v̂) = argmax
x

�

i

v̂i(x)

pi(v̂) =
�

j �=i

v̂j (x (v̂−i))−
�

j �=i

v̂j(x (v̂))

Because only pivotal agents have to pay, VCG is also called
the pivot mechanism

It’s dominant-strategy truthful, because it’s a Groves
mechanism
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1 Recap

2 Simple Multiunit Auctions

3 Unlimited Supply

4 General Multiunit Auctions
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Multiunit Auctions

now let’s consider a setting in which
there are k identical goods for sale in a single auction
every bidder only wants one unit

what is VCG in this setting?

every unit is sold for the amount of the k + 1st highest bid

how else can we sell the goods?
pay-your-bid: “discriminatory” pricing, because bidders will
pay different amounts for the same thing
lowest winning bid: very similar to VCG, but ensures that
bidders don’t pay zero if there are fewer bids than units for sale
sequential single-good auctions
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E

D

8 people play as agents A – H; the others act as mediators.

Agents’ utility functions: ui = payment - cost if your edge is
chosen; 0 otherwise.

Mediators: find me a path from source to sink, at the lowest
cost you can.

Agents: agree to be paid whatever you like; claim whatever
you like; however, you can’t show your paper to anyone.
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Selfish routing example

212 8 Protocols for Strategic Agents: Mechanism Design

First, note that because the Clarke tax does not depend on an agent i’s own declara-
tion v̂i, our previous arguments that Groves mechanisms are dominant strategy truthful
and efficient transfer immediately to the VCG mechanism. Now, we’ll try to provide
some intuition about the VCG payment rule. Assume that all agents follow their dom-
inant strategies and declare their valuations truthfully. The second sum in the VCG
payment rule pays each agent i the sum of every other agent j �= i’s utility for the
mechanism’s choice. The first sum charges each agent i the sum of every other agent’s
utility for the choice that would have been made had i not participated in the mecha-
nism. Thus, each agent is made to pay his social cost—the aggregate impact that his
participation has on other agents’ utilities.
What can we say about the amounts of different agents’ payments to the mechanism?

If some agent i does not change the mechanism’s choice by his participation—that is,
if x (v) = x (v−i)—then the two sums in the VCG payment function will cancel out.
The social cost of i’s participation is zero, and so he has to pay nothing. In order for
an agent i to be made to pay a nonzero amount, he must be pivotal in the sense that
the mechanism’s choice x (v) is different from its choice without i, x (v−i). This is
why VCG is sometimes called the pivot mechanism—only pivotal agents are made to
pay. Of course, it’s possible that some agents will improve other agents’ utility by
participating; such agents will be made to pay a negative amount, or in other words
will be paid by the mechanism.
Let’s see an example of how the VCG mechanism works. Recall that Section 8.1.2

discussed the problem of selfish routing in a transportation network. We’ll now recon-
sider that example, and determine what route and what payments the VCG mechanism
would select. For convenience, we reproduce Figure 8.1 as Figure 8.4, and label the
nodes so that we have names to refer to the agents (the edges).
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Figure 8.4 Transportation network with selfish agents.

c�Shoham and Leyton-Brown, 2006

What outcome will be selected by x ?

path ABEF .

How much will AC have to pay?

The shortest path taking his declaration into account has a

length of 5, and imposes a cost of −5 on agents other than

him (because it does not involve him). Likewise, the shortest

path without AC’s declaration also has a length of 5. Thus,

his payment pAC = (−5)− (−5) = 0.
This is what we expect, since AC is not pivotal.

Likewise, BD, CE, CF and DF will all pay zero.
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path without AC’s declaration also has a length of 5. Thus,

his payment pAC = (−5)− (−5) = 0.
This is what we expect, since AC is not pivotal.

Likewise, BD, CE, CF and DF will all pay zero.
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First, note that because the Clarke tax does not depend on an agent i’s own declara-
tion v̂i, our previous arguments that Groves mechanisms are dominant strategy truthful
and efficient transfer immediately to the VCG mechanism. Now, we’ll try to provide
some intuition about the VCG payment rule. Assume that all agents follow their dom-
inant strategies and declare their valuations truthfully. The second sum in the VCG
payment rule pays each agent i the sum of every other agent j �= i’s utility for the
mechanism’s choice. The first sum charges each agent i the sum of every other agent’s
utility for the choice that would have been made had i not participated in the mecha-
nism. Thus, each agent is made to pay his social cost—the aggregate impact that his
participation has on other agents’ utilities.
What can we say about the amounts of different agents’ payments to the mechanism?

If some agent i does not change the mechanism’s choice by his participation—that is,
if x (v) = x (v−i)—then the two sums in the VCG payment function will cancel out.
The social cost of i’s participation is zero, and so he has to pay nothing. In order for
an agent i to be made to pay a nonzero amount, he must be pivotal in the sense that
the mechanism’s choice x (v) is different from its choice without i, x (v−i). This is
why VCG is sometimes called the pivot mechanism—only pivotal agents are made to
pay. Of course, it’s possible that some agents will improve other agents’ utility by
participating; such agents will be made to pay a negative amount, or in other words
will be paid by the mechanism.
Let’s see an example of how the VCG mechanism works. Recall that Section 8.1.2

discussed the problem of selfish routing in a transportation network. We’ll now recon-
sider that example, and determine what route and what payments the VCG mechanism
would select. For convenience, we reproduce Figure 8.1 as Figure 8.4, and label the
nodes so that we have names to refer to the agents (the edges).
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Figure 8.4 Transportation network with selfish agents.

c�Shoham and Leyton-Brown, 2006How much will AB pay?

The shortest path taking AB’s declaration into account has a

length of 5, and imposes a cost of 2 on other agents.

The shortest path without AB is ACEF , which has a cost of

6.
Thus pAB = (−6)− (−2) = −4.
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First, note that because the Clarke tax does not depend on an agent i’s own declara-
tion v̂i, our previous arguments that Groves mechanisms are dominant strategy truthful
and efficient transfer immediately to the VCG mechanism. Now, we’ll try to provide
some intuition about the VCG payment rule. Assume that all agents follow their dom-
inant strategies and declare their valuations truthfully. The second sum in the VCG
payment rule pays each agent i the sum of every other agent j �= i’s utility for the
mechanism’s choice. The first sum charges each agent i the sum of every other agent’s
utility for the choice that would have been made had i not participated in the mecha-
nism. Thus, each agent is made to pay his social cost—the aggregate impact that his
participation has on other agents’ utilities.
What can we say about the amounts of different agents’ payments to the mechanism?

If some agent i does not change the mechanism’s choice by his participation—that is,
if x (v) = x (v−i)—then the two sums in the VCG payment function will cancel out.
The social cost of i’s participation is zero, and so he has to pay nothing. In order for
an agent i to be made to pay a nonzero amount, he must be pivotal in the sense that
the mechanism’s choice x (v) is different from its choice without i, x (v−i). This is
why VCG is sometimes called the pivot mechanism—only pivotal agents are made to
pay. Of course, it’s possible that some agents will improve other agents’ utility by
participating; such agents will be made to pay a negative amount, or in other words
will be paid by the mechanism.
Let’s see an example of how the VCG mechanism works. Recall that Section 8.1.2

discussed the problem of selfish routing in a transportation network. We’ll now recon-
sider that example, and determine what route and what payments the VCG mechanism
would select. For convenience, we reproduce Figure 8.1 as Figure 8.4, and label the
nodes so that we have names to refer to the agents (the edges).
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Figure 8.4 Transportation network with selfish agents.

c�Shoham and Leyton-Brown, 2006How much will BE pay?

pBE = (−6)− (−4) = −2.

How much will EF pay? pEF = (−7)− (−4) = −3.
EF and BE have the same costs but are paid different
amounts. Why?

EF has more market power: for the other agents, the

situation without EF is worse than the situation without BE.
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if x (v) = x (v−i)—then the two sums in the VCG payment function will cancel out.
The social cost of i’s participation is zero, and so he has to pay nothing. In order for
an agent i to be made to pay a nonzero amount, he must be pivotal in the sense that
the mechanism’s choice x (v) is different from its choice without i, x (v−i). This is
why VCG is sometimes called the pivot mechanism—only pivotal agents are made to
pay. Of course, it’s possible that some agents will improve other agents’ utility by
participating; such agents will be made to pay a negative amount, or in other words
will be paid by the mechanism.
Let’s see an example of how the VCG mechanism works. Recall that Section 8.1.2

discussed the problem of selfish routing in a transportation network. We’ll now recon-
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would select. For convenience, we reproduce Figure 8.1 as Figure 8.4, and label the
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tion v̂i, our previous arguments that Groves mechanisms are dominant strategy truthful
and efficient transfer immediately to the VCG mechanism. Now, we’ll try to provide
some intuition about the VCG payment rule. Assume that all agents follow their dom-
inant strategies and declare their valuations truthfully. The second sum in the VCG
payment rule pays each agent i the sum of every other agent j �= i’s utility for the
mechanism’s choice. The first sum charges each agent i the sum of every other agent’s
utility for the choice that would have been made had i not participated in the mecha-
nism. Thus, each agent is made to pay his social cost—the aggregate impact that his
participation has on other agents’ utilities.
What can we say about the amounts of different agents’ payments to the mechanism?

If some agent i does not change the mechanism’s choice by his participation—that is,
if x (v) = x (v−i)—then the two sums in the VCG payment function will cancel out.
The social cost of i’s participation is zero, and so he has to pay nothing. In order for
an agent i to be made to pay a nonzero amount, he must be pivotal in the sense that
the mechanism’s choice x (v) is different from its choice without i, x (v−i). This is
why VCG is sometimes called the pivot mechanism—only pivotal agents are made to
pay. Of course, it’s possible that some agents will improve other agents’ utility by
participating; such agents will be made to pay a negative amount, or in other words
will be paid by the mechanism.
Let’s see an example of how the VCG mechanism works. Recall that Section 8.1.2

discussed the problem of selfish routing in a transportation network. We’ll now recon-
sider that example, and determine what route and what payments the VCG mechanism
would select. For convenience, we reproduce Figure 8.1 as Figure 8.4, and label the
nodes so that we have names to refer to the agents (the edges).
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If some agent i does not change the mechanism’s choice by his participation—that is,
if x (v) = x (v−i)—then the two sums in the VCG payment function will cancel out.
The social cost of i’s participation is zero, and so he has to pay nothing. In order for
an agent i to be made to pay a nonzero amount, he must be pivotal in the sense that
the mechanism’s choice x (v) is different from its choice without i, x (v−i). This is
why VCG is sometimes called the pivot mechanism—only pivotal agents are made to
pay. Of course, it’s possible that some agents will improve other agents’ utility by
participating; such agents will be made to pay a negative amount, or in other words
will be paid by the mechanism.
Let’s see an example of how the VCG mechanism works. Recall that Section 8.1.2
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nodes so that we have names to refer to the agents (the edges).

♥ ♥

♥ ♥

♥ ♥
3

2

3

2

1
5

2

1

A F

C E

B D

�
�
�
�✒

❅
❅
❅
❅❘

✲

❅
❅
❅
❅
❅
❅

❅
❅
❅❅❘

✶

✲

❅
❅
❅
❅❘

�
�
�
�✒

Figure 8.4 Transportation network with selfish agents.

c�Shoham and Leyton-Brown, 2006How much will BE pay? pBE = (−6)− (−4) = −2.

How much will EF pay? pEF = (−7)− (−4) = −3.

EF and BE have the same costs but are paid different
amounts. Why?

EF has more market power: for the other agents, the

situation without EF is worse than the situation without BE.

VCG Lecture 16, Slide 28



Recap The Groves Mechanism VCG VCG example Individual Rationality Budget Balance

Selfish routing example

212 8 Protocols for Strategic Agents: Mechanism Design

First, note that because the Clarke tax does not depend on an agent i’s own declara-
tion v̂i, our previous arguments that Groves mechanisms are dominant strategy truthful
and efficient transfer immediately to the VCG mechanism. Now, we’ll try to provide
some intuition about the VCG payment rule. Assume that all agents follow their dom-
inant strategies and declare their valuations truthfully. The second sum in the VCG
payment rule pays each agent i the sum of every other agent j �= i’s utility for the
mechanism’s choice. The first sum charges each agent i the sum of every other agent’s
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participation has on other agents’ utilities.
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if x (v) = x (v−i)—then the two sums in the VCG payment function will cancel out.
The social cost of i’s participation is zero, and so he has to pay nothing. In order for
an agent i to be made to pay a nonzero amount, he must be pivotal in the sense that
the mechanism’s choice x (v) is different from its choice without i, x (v−i). This is
why VCG is sometimes called the pivot mechanism—only pivotal agents are made to
pay. Of course, it’s possible that some agents will improve other agents’ utility by
participating; such agents will be made to pay a negative amount, or in other words
will be paid by the mechanism.
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Computational applications of mechanism design

1 Task scheduling
allocate tasks among agents to minimize makespan

2 Bandwidth allocation in computer networks
allocate the real-valued capacity of a single network link
among users with different demand curves

3 Multicast cost sharing
share the cost of a multicast transmission among the users
who receive it

4 Two-sided matching
pair up members of two groups according to their preferences,
without imposing any payments
e.g., students and advisors; hospitals and interns; kidney
donors and recipients
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