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Abstract

Network design is a fundamental problem for
which it is important to understand the effects
of strategic behavior. Given a collection of self-
interested agents who want to form a network con-
necting certain endpoints, the set of stable solutions
— the Nash equilibria — may look quite different
from the centrally enforced optimum. We study the
quality of the best Nash equilibrium, and refer to
the ratio of its cost to the optimum network cost
as the price of stability. The best Nash equilibrium
solution has a natural meaning of stability in this
context — it is the optimal solution that can be pro-
posed from which no user will “defect”.

We consider the price of stability for network de-
sign with respect to one of the most widely-studied
protocols for network cost allocation, in which the
cost of each edge is divided equally between users
whose connections make use of it; this fair-division
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scheme can be derived from the Shapley value, and
has a number of basic economic motivations. We
show that the price of stability for network design
with respect to this fair cost allocation is O(log k),
where k is the number of users, and that a good
Nash equilibrium can be achieved via best-response
dynamics in which users iteratively defect from a
starting solution. This establishes that the fair cost
allocation protocol is in fact a useful mechanism
for inducing strategic behavior to form near-optimal
equilibria. We discuss connections to the class of
potential games defined by Monderer and Shapley,
and extend our results to cases in which users are
seeking to balance network design costs with laten-
cies in the constructed network, with stronger results
when the network has only delays and no construc-
tion costs. We also present bounds on the conver-
gence time of best-response dynamics, and discuss
extensions to a weighted game.

1. Introduction

In many network settings, the system behavior
arises from the actions of a large number of inde-
pendent agents, each motivated by self-interest and
optimizing an individual objective function. As a
result, the global performance of the system may
not be as good as in a case where a central author-
ity can simply dictate a solution; rather, we need
to understand the quality of solutions that are con-
sistent with self-interested behavior. Recent theo-
retical work has framed this type of question in the
following general form: how much worse is the so-
lution quality at a Nash equilibrium1, relative to

1Recall that a Nash equilibrium is a state of the system
in which no agent has an interest in unilaterally changing its
own behavior.
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the quality at a centrally enforced optimum? Ques-
tions of this genre have received considerable atten-
tion in recent years, for problems including routing
[24, 25, 4], load balancing [5, 6, 16, 23], and facility
location [26].

An important issue to explore in this area is the
middle ground between centrally enforced solutions
and completely unregulated anarchy. In most net-
working applications, it is not the case that agents
are completely unrestricted; rather, they interact
with an underlying protocol that essentially pro-
poses a collective solution to all participants, who
can each either accept it or defect from it. As a re-
sult, it is in the interest of the protocol designer to
seek the best Nash equilibrium; this can naturally
be viewed as the optimum subject to the constraint
that the solution be stable, with no agent having
an incentive to unilaterally defect from it once it
is offered. Hence, one can view the ratio of the
solution quality at the best Nash equilibrium rela-
tive to the global optimum as a price of stability,
since it captures the problem of optimization sub-
ject to this constraint. Some recent work [1, 4] has
considered this definition (termed the “optimistic
price of anarchy” in [1]); it stands in contrast to the
larger line of work in algorithmic game theory on
the price of anarchy [21] — the ratio of the worst
Nash equilibrium to the optimum — which is more
suited to worst-case analysis of situations with es-
sentially no protocol mediating interactions among
the agents. Indeed, one can view the activity of a
protocol designer seeking a good Nash equilibrium
as being aligned with the general goals of mecha-
nism design — producing a game that yields good
outcomes when players act in their own self-interest.

Network Design Games. Network design is a
natural area in which to explore the price of stabil-
ity, given the large body of work in the networking
literature on methods for sharing the cost of a de-
signed network — often a virtual overlay, multicast
tree, or other sub-network of the Internet — among
a collection of participants. (See e.g. [9, 11] for
overviews of work in this area).

A cost-sharing mechanism can be viewed as the
underlying protocol that determines how much a
network serving several participants will cost to
each of them. Specifically, say that each user i has
a pair of nodes (si, ti) that it wishes to connect; it
chooses an si-ti path Si; and the cost-sharing mech-
anism then charges user i a cost of Ci(S1, . . . , Sk).

(Note that this cost can depend on the choices of
the other users as well.) Although there are in
principle many possible cost-sharing mechanisms,
research in this area has converged on a few mech-
anisms with good theoretical and empirical behav-
ior; here we focus on the following particularly nat-
ural one: the cost of each edge is shared equally
by the set of all users whose paths contain it, so
that Ci(S1, S2, . . . , Sk) =

∑
e∈Si

ce

|{j : e ∈ Sj}| . This

equal-division mechanism has a number of basic eco-
nomic motivations; it can be derived from the Shap-
ley value [20], and it can be shown to be the unique
cost-sharing scheme satisfying a number of differ-
ent sets of axioms [9, 11, 20]. For the former rea-
son, we will refer to it as the Shapley cost-sharing
mechanism. Note that the total edge cost of the de-
signed network is equal to the sum of the costs in the
union of all Si, and the costs allocated to users in
the Shapley mechanism completely pay for this total
edge cost:

∑n
i=1 Ci(S1, S2, . . . , Sk) =

∑
e∈∪iSi

ce.

Now, the general question is to determine how
this basic cost-sharing mechanism serves to influ-
ence the strategic behavior of the users, and what
effect this has on the structure and overall cost
of the network one obtains. Given a solution to
the network design problem consisting of a vec-
tor of paths (S1, . . . , Sk) for the n users, user i
would be interested in deviating from this solu-
tion if there were an alternate si-ti path S′

i so that
changing to S′

i would lower its cost under the result-
ing allocation: Ci(S1, . . . , Si−1, S

′
i, Si+1, . . . , Sk) <

Ci(S1, . . . , Si−1, Si, Si+1, . . . , Sk). We say that a set
of paths is a Nash equilibrium if no user has an inter-
est in deviating. As we will see below, there exists a
set of paths in Nash equilibrium for every instance
of this network design game. (In this paper, we
will only be concerned with pure Nash equilibrium;
i.e. with equilibria where each user deterministically
chooses a single path.)

The goal of a network design protocol is to sug-
gest for each user i a path Si so that the resulting
set of paths is in Nash equilibrium and its total cost
exceeds that of an optimal set of paths by as small a
factor as possible; this factor is the price of stability
of the instance. It is useful at this point to consider
a simple example that illustrates how the price of
stability can grow to a super-constant value (with
k). Suppose k players wish to connect the common
source s to their terminal ti, assume player i has
its own path of cost 1/i, and all players can share a
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Figure 1. An instance in which the price of stability converges to H(k) = Θ(log k) as ε → 0.

common path of cost 1+ε for some small ε > 0 (see
Figure 1). The optimal solution would connect all
agents through the common path for a total cost of
1 + ε. However, if this solution were offered to the
users, they would defect from it one by one to their
alternate paths. The unique Nash equilibrium has
a cost of

∑k
i=1

1
i = H(k).

While the price of stability in this instance grows
with k, it only does so logarithmically. It is thus
natural to ask how bad the price of stability can
be for this network design problem. If we think
about the example in Figure 1 further, it is also
interesting to note that a good Nash equilibrium
is reached by iterated greedy updating of players’
solutions (in other words, best-response dynamics)
starting from an optimal solution; it is natural to
ask to what extent this holds in general.

Our Results. Our first main result is that in ev-
ery instance of the network design problem with
Shapley cost-sharing, there always exists a Nash
equilibrium of total cost at most H(k) times opti-
mal. In other words, the simple example in Figure 1
is in fact the worst possible case.

We prove this result using a potential function
method due to Monderer and Shapley [19] and
Rosenthal [22] (see also [3]): one defines a poten-
tial function Φ on possible solutions and shows that
any improving move by one of the users (i.e. to
lower its own cost) reduces the value of Φ. Since
the set of possible solutions is finite, it follows that
any sequence of improving moves leads to a Nash
equilibrium. The goal of Monderer and Shapley’s
and Rosenthal’s work was to prove existence state-
ments of this sort; for our purposes, we make further
use of the potential function to prove a bound on

the price of stability. Specifically, we give bounds
relating the value of the potential for a given solu-
tion to the overall cost of that solution; if we then
iterate best-response dynamics starting from an op-
timal solution, the potential does not increase, and
hence we can bound the cost of any solution that
we reach. Thus, for this network design game, best-
response dynamics starting from the optimum does
in fact always lead to a good Nash equilibrium.

We can extend our basic result to a number of
more general settings. To begin with, the H(k)
bound on the price of stability extends directly to
the case in which users are selecting arbitrary sub-
sets of a ground set (with elements’ costs shared
according to the Shapley value), rather than paths
in a graph; it also extends to the case in which the
cost of each edge is a non-decreasing concave func-
tion of the number of users on it. In addition, our
results also hold if we introduce capacities into our
model; each edge e may be used by at most ue play-
ers, where ue is the capacity of e.

We arrive at a more technically involved set of ex-
tensions if we wish to add latencies to the network
design problem. Here each edge has a concave con-
struction cost ce(x) when there are x users on the
edge, and a latency cost de(x); the cost experienced
by a user is the full latency plus a fair share of the
construction cost, de(x) + ce(x)/x. We give general
conditions on the latency functions that allow us to
bound the price of stability in this case at d ·H(k),
where d depends on the delay functions used. More-
over, we obtain stronger bounds in the case where
users experience only delays, not construction costs;
this includes a result that relates the cost at the
best Nash equilibrium to that of an optimum with
twice as many players, and a result that improves
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the potential-based bound on the price of stability
for the single-source delay-only case.

Since a number of our proofs are obtained by
following the results of best-response dynamics via
a potential function, it is natural to investigate the
speed of convergence of best-response dynamics for
this game. We show that it converges to a Nash
equilibrium in polynomial time for the case of two
players, but that with k players, it can run for a time
exponential in k. Whether there is a way to schedule
players’ moves to make best-response converge in a
polynomial number of steps for this game in general
is an interesting open question.

Finally, we consider a natural generalization of
the cost-sharing model that carries us beyond the
potential-function framework and raises interesting
questions for further work. Specifically, suppose
each user has a weight (perhaps corresponding to
the amount of traffic it plans to send), and we
change the cost-allocation so that user i’s payment
for edge e is equal to the ratio of its weight to the
total weight of all users on e. In addition to being
intuitively natural, this definition is analogous to
certain natural generalizations of the Shapley value
[18]. The weighted model, however, is significantly
more complicated: there is no longer a potential
function whose value tracks improvements in users’
costs when they greedily update their solutions, and
it is an open question whether best-response dynam-
ics will always converge to a Nash equilibrium. We
have obtained some initial results here, including
the convergence of best-response dynamics when all
users seek to construct a path from a node s to a
node t (the price of stability here is 1), and in the
general model of users selecting sets from a ground
set, when each element appears in the sets of at most
two users. An interesting open question is to obtain
more general results in this weighted setting, which
appears to pose a challenge to potential-based meth-
ods. Further, we know that some results will neces-
sarily look quite different in the weighted case; for
example, using a construction involving user weights
that grow exponentially in k, we can show that the
price of stability can be as high as Ω(k).

Related Work. Network design games under a
different model were considered by a subset of the
authors in [1]; there, the setting was much more
“unregulated” in that users could offer to pay for an
arbitrary fraction of any edge in the network. This
model resulted in instances where no pure Nash

equilibrium existed; and in many cases in [1] when
pure Nash equilibria did exist, certain users were
able to act as “free riders,” paying very little or
nothing at all. The present model, on the other
hand, ensures that there is always a pure Nash equi-
librium within a logarithmic factor of optimal, in
which users pay a fair portion of the resources they
use. Network creation games of a fairly different
flavor — in which users correspond to nodes, and
can build subsets of the edges incident to them —
have been considered in [2, 7, 10]. The model in
this paper associates users instead with connection
requests, and allows them to contribute to the cost
of any edge that helps form a path that they need.

The bulk of the work on cost-sharing (see e.g.
[9, 11] and the references there) tends to assume
a fixed underlying set of edges. Jain and Vazirani
[12] and Kent and Skorin-Kapov [15] consider cost-
sharing for a single source network design game.
Cost-sharing games assume that there is a central
authority that designs and maintains the network,
and decides appropriate cost-shares for each agent,
depending on the graph and all other agents, via a
complex algorithm. The agents’ only role is to re-
port their utility for being included in the network.

Here, on the other hand, we consider a sim-
ple cost-sharing mechanism, the Shapley-value, and
ask what the strategic implications of a given cost-
sharing mechanism are for the way in which a net-
work will be designed. This question explores the
feedback between the protocol that governs network
construction and the behavior of self-interested
agents that interact with this protocol. An ap-
proach of a similar style, though in a different set-
ting related to routing, was pursued by Johari and
Tsitsiklis [13]; there, they assumed a network pro-
tocol that priced traffic according to a scheme due
to Kelly [14], and asked how this protocol would af-
fect the strategic decisions of self-interested agents
routing connections in the network.

The special case of our game with only delays
is closely related of the congestion game of [25, 24].
They consider a game where the amount of flow car-
ried by an individual user is infinitesimally small (a
non-atomic game), while in this paper we assume
that each user has a unit of flow, which it needs to
route on a single path. In the non-atomic game of
[25, 24] the Nash equilibrium is essentially unique
(hence there is no distinction between the price of
anarchy and stability), while in our atomic game
there can be many equilibria. Fabrikant, Papadim-
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itriou, and Talwar [8] consider our atomic game with
delays only. They give a polynomial time algorithm
to minimize the potential function Φ in the case
that all users share a common source, and show that
finding any equilibrium solution is PLS-complete for
multiple source-sink pairs. Our results extend the
price of anarchy results of [25, 24] about non-atomic
games to results on the price of stability for the case
of single source atomic games.

A weighted game similar to our is presented by
Libman and Orda [17], with a different mechanism
for distributing costs among users. They do not
consider the price of stability, and instead focus on
convergence in parallel networks.

2. Nash Equilibria of Network Design
with Shapley Cost-Sharing

In this section we consider the Fair Connection
Game for k players as defined in the Introduction.
Let a directed graph G = (V, E) be given, with each
edge having a nonnegative cost ce. Each player i has
a set of terminal nodes Ti that he wants to connect.
A strategy of a player is a set of edges Si ⊂ E such
that Si connects all nodes in Ti. We assume that
we use the Shapley value to share the cost of the
edges, i.e. all players using an edge split up the
cost of the edge equally. Given a vector of players’
strategies S = (S1, . . . , Sk), let xe be the number
of agents whose strategy contains edge e. Then the
cost to agent i is Ci(S) =

∑
e∈Si

(ce/xe), and the
goal of each agent is to connect its terminals with
minimum total cost.

In the worst case, Nash equilibria can be very
expensive in this game, so that the price of anar-
chy becomes as large as k. To see this, consider k
players with common source s and sink t, and two
parallel edges of cost 1 and k. The worst equilib-
rium has all players selecting the more expensive
edge, thereby paying k times the cost of the op-
timal network. However, we can bound the price
of stability by H(k), which is the harmonic sum
1 + 1

2 + 1
3 + . . . + 1

k , as follows.

Theorem 2.1 The price of stability of the fair con-
nection game is at most H(k).

Proof: The fair connection game that we have de-
fined falls into the class of congestion games as de-
fined by Monderer and Shapley [19], as the cost of
an edge e to a user i is fe(x) = ce/x, which depends

only on edge e and the number of users x whose
strategy contains e. Monderer and Shapley [19]
show that all congestion games have deterministic
Nash equilibria. They prove this using a potential
function Φ, defined as follows.

Φ(S) =
∑
e∈E

xe∑
x=1

fe(x) (1)

Monderer and Shapley [19] show that for any strat-
egy S = (S1, . . . , Sk) if a single player i devi-
ates to strategy S′

i, then the change in the po-
tential value Φ(S) − Φ(S′) of the new strategy set
S′ = (S1, . . . , S′

i, . . . , Sk) is exactly the change in
the cost to player i. Note that the change of player
i’s strategy affects the cost of many other players
j �= i, but the Φ value is not effected by the change
in the cost of these players, it simply tracks the cost
of the player who changes its strategy. They call a
game in which such a function Φ exists a potential
game. To show that such a potential game has a de-
terministic Nash equilibrium, start from any state
S = (S1, . . . , Sk) and consider a sequence of self-
ish moves (allowing players to change strategies to
improve their costs). In a congestion game any se-
quence of such improving moves leads to a Nash
equilibrium as each move decreases the potential
function Φ, and hence must lead to a stable state.

Monderer and Shapley do not say anything about
the quality of Nash equilibria with respect to the
centralized optimum, but we can use their poten-
tial function to establish our bound. Let xe be de-
fined as above with respect to S. Now the poten-
tial function of Equation 1 in our case is Φ(S) =∑

e∈E ceH(xe). According to the above argument,
any improving deviation decreases Φ(S), and so a
sequence of improving deviations by players must
eventually result in a Nash equilibrium.

Consider the strategy S∗ = (S∗
1 , . . . , S∗

k) defin-
ing the optimal centralized solution. Let OPT =∑

e∈S∗ ce be the cost of this solution. Then,
Φ(S∗) ≤ ∑

e∈S∗(ce · H(k)), which is exactly H(k) ·
OPT . Now we start from strategy S∗ and follow
a sequence of improving self-interested moves. We
know that this will result in a Nash equilibrium S
with Φ(S) ≤ Φ(S∗).

Note that the potential value of any solution S is
at least the total cost: Φ(S) ≥ ∑

e∈S ce = cost(S).
Therefore, there exists a Nash equilibrium with cost
at most H(k) · OPT , as desired.

Recall from the Introduction that this bound is
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tight as shown by the example in Figure 1. Unfor-
tunately, even though Theorem 2.1 says that cheap
Nash equilibria exist, finding them is NP-complete
(by a reduction from 3D-Matching).

We can extend the results of Theorem 2.1 to con-
cave cost functions. Consider the extended fair con-
nection game where instead of a constant cost ce,
each edge has a cost which depends on the number
of players using that edge, ce(x). We assume that
ce(x) is a nondecreasing, concave function, mod-
eling the buy-at-bulk economy of scale of buying
edges that can be used by more players. Notice that
the cost of an edge ce(x) might increase with the
number of players using it, but the cost per player
fe(x) = ce(x)/x decreases if ce(x) is concave.

Theorem 2.2 Take a fair connection game with
each edge having a nondecreasing concave cost func-
tion ce(x), where x is the number of players using
edge e. Then the price of stability is at most H(k).

Proof: The proof is analogous to the proof of The-
orem 2.1. We use the potential function Φ(S) de-
fined by (1). As before, the change in potential if
a player i deviates equals exactly to the change of
that player’s payments. We start with the strat-
egy S∗ with minimum total cost, and perform a se-
ries of improving deviations until we reach a Nash
equilibrium S with Φ(S) ≤ Φ(S∗). To finish the
proof all we need to show is that cost(S) ≤ Φ(S) ≤
H(k) · cost(S) for all strategies S. The second in-
equality follows since ce(x) is nondecreasing and
therefore

∑xe

x=1(ce(x)/x) ≤ H(xe) · ce(xe). To see
that cost(S) ≤ Φ(S) notice that since ce(x) is con-
cave, the cost per player must decrease with x,
i.e. ce(x)/x is a nonincreasing function. Therefore,
cost(S) =

∑
e∈S ce(xe) =

∑
e∈S xe · (ce(xe)/xe) ≤

Φ(S), which finishes the proof.

Extensions. The proof of Theorem 2.2 extends to
a general congestion game, where players attempt
to share a set of resources R they need. Instead of
having an underlying graph structure, we now think
of each s ∈ R as a resource with a concave cost
function cs(x) of the number of users selecting sets
containing s. The possible strategies of each player
i is a set Si of subsets of R. Each player seeks to
select a set Si ∈ Si so as to minimize his cost. Since
the proofs above did not rely on the graph structure,
they translate directly to this extension.

We can further extend the results to the case
when the cost to a player is a combination of the cost

ce(x)/x, and a function of the selected set, such as
the distance between terminals in the network de-
sign case. More precisely, the price of stability is
still at most H(k) if each player is trying to mini-
mize the cost

∑
e∈Si

(ce(xe)/xe)+di(Si) where ce is
monotone increasing and concave, and di is an ar-
bitrary function specific to player i (e.g. a distance
function, or diameter of Si, etc.). The proof is anal-
ogous to Theorem 2.2, except with a new poten-
tial Φ(S) =

∑
i di(Si) +

∑
e∈S

∑x=xe

x=1
ce(x)

x . Notice
that this is technically not a congestion game on the
given graph G. Finally we note that all these results
(as well as those subsequent) hold in the presence
of capacities. Adding capacities ue to each edge e
and disallowing more than ue players to use e at any
time does not substantially alter any of our proofs.

The Case of Undirected Graphs. While the
bound of H(k) is tight for general directed graphs,
it is not tight for undirected graphs. Finding the
correct bound is an interesting open problem. In
the case of two players, our bound on the price of
stability is H(2) = 3/2. In the full version we show
that that this bound can be improved to 4/3 in the
case of two players and a single source. We also give
an example to show that this bound is tight.

3. Dealing with Delays

In most of the previous section, we assumed that
the utility of a player depends only on the cost of
the edges he uses. What changes if we introduce
latency into the picture? We have extended this to
the case when the players’ cost is a combination of
“design” cost and the length of the path selected.
More generally, delay on an edge does not have to
be simply the “hop-count”, but can also depend on
congestion, i.e., on the number of players using the
edge. In this section we will consider such a model.

Assume that each edge has both a cost function
ce(x) and a latency function de(x), where ce(x) is
the cost of building the edge e for x users and the
users will share this cost equally, while de(x) is the
delay suffered by users on edge e if x users are shar-
ing the edge. The goal of each user will be to min-
imize the sum of his cost and his latency. If we as-
sume that both the cost and latency for each edge
depend only on the number of players using that
edge, then this fits directly into our model of a con-
gestion game above: the total cost felt by each user
on the edge is fe(x) = ce(x)/x + de(x). If the func-
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tion xfe(x) is concave then Theorem 2.2 applies.
But while concave functions are natural for model-
ing cost, latency tends to be convex.

3.1. Combining Costs and Delays

First, we extend the argument in the proof of
Theorem 2.2 to general functions fe. The most gen-
eral version of this argument is expressed in the fol-
lowing theorem.

Theorem 3.1 Consider a fair connection game
with arbitrary edge-cost functions fe. Suppose that
Φ(S) is as in Equation 1, with cost(S) ≤ A · Φ(S),
and Φ(S) ≤ B · cost(S) for all S. Then, the price
of stability is at most A · B.

Proof: Let S∗ be a strategy such that S∗
i is the set

of edges i uses in the centralized optimal solution.
We know from above that if we perform a series of
improving deviations on it, we must converge to a
Nash equilibrium S′ with potential value at most
Φ(S∗). By our assumptions, cost(S′) ≤ A ·Φ(S′) ≤
A · Φ(S∗) ≤ AB · cost(S∗) = AB · OPT .

Our main interest in this section are functions
fe(x) that are the sums of the fair share of a cost
and a delay, i.e., fe(x) = ce(x)/x+de(x). We will as-
sume that de(x) is monotone increasing, while ce(x)
is monotone increasing and concave.

Corollary 3.2 If ce(x) is concave and nondecreas-
ing, de(x) is nondecreasing for all e, and xede(xe) ≤
A

∑xe

x=1 de(x) for all e and xe, then the price of sta-
bility is at most A · H(k). In particular, if de(x)
is a polynomial with degree at most l and nonnega-
tive coefficients, then the price of stability is at most
(l + 1) · H(k).

Proof: For functions fe(x) = ce(x)/x + de(x),
both the cost and potential of a solution come in
two parts corresponding to the cost c and delay d.

For the part corresponding to cost the potential
over-estimates the cost by at most a factor of H(k)
as proved in Theorem 2.2. If on the delay, the po-
tential underestimates the cost by at most a factor
of A, then we get the bound of A ·H(k) for the price
of stability by Theorem 3.1.

Therefore, for reasonable delay functions, the
price of stability cannot be too large. In particu-
lar, if the utility function of each player depends on

a concave cost and delay that is independent of the
number of users on the edge, then we get that the
price of stability is at most H(k) as we have shown
at the end of the previous section. If the delay grows
linearly with the number of users, then the price of
stability is at most 2H(k).

3.2. Games with Only Delays

In this subsection we consider games with only
delay. We assume that the cost of a player for using
an edge e used by x players is fe(x) = de(x), and
de is a monotone increasing function of x. This
cost function models delays that are increasing with
congestion.

We will consider the special case when there is a
common source s. Each player i has one additional
terminal ti, and the player wants to connect s to ti
via a directed path. Fabrikant, Papadimitriou, and
Talwar [8] showed that in this case, one can com-
pute the Nash equilibrium minimizing the potential
function Φ via a minimum cost flow computation.
For each edge e they introduce many parallel copies,
each with capacity 1, and cost de(x) for integers
x > 0. We will use properties of a minimum cost
flow for establishing our results.

First we show a bicriteria bound, and compare
the cost of the cheapest Nash equilibrium to that of
the optimum design with twice as many players.

Theorem 3.3 Consider the single source case of a
congestion game with only delays. Let S be the min-
imum cost Nash equilibrium and S∗ be the minimum
cost solution for the problem where each player i is
replaced by two players. Then cost(S) ≤ cost(S∗).

Proof: Consider the Nash equilibrium obtained
by Fabrikant et al [8] via a minimum cost flow com-
putation. Assume that xe is the number of users
using edge e at this equilibrium. By assumption, all
users share a common source s. Let D(v) denote
the cost of the minimum cost path in the residual
graph from s to v. The length of the path of user
i is at most D(ti) (as otherwise the residual graph
would have a negative cycle) and hence we get that
cost(S) ≤ ∑

i D(ti).
Now consider a modified delay function d̂e for

each edge e = (u, v). Define d̂e(x) = de(x) if x > xe,
and d̂e(x) = D(v) − D(u) if x ≤ xe. Note that for
any edge e we have D(v)−D(u) ≤ de(xe +1) as the
edge e = (u, v) is in the residual graph with cost
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de(xe +1). This implies that the modified delay d̂ is
monotone. For edges with xe �= 0 we also have that
de(xe) ≤ D(v)−D(u) as the reverse edge (v, u) is in
the residual graph with cost −de(xe), so the delay
of an edge is not decreased.

Now observe that, subject to the new delay d̂,
the shortest path from s to ti is length D(ti) even
in an empty network. The minimum possible cost
of two paths from s to ti for the two users corre-
sponding to user i is then at least 2D(ti) for each
player i. Therefore the minimum cost of a solution
with delays d̂ is at least 2

∑
i D(ti).

To bound cost(S∗) we need to bound the differ-
ence in cost of a solution when measured with delays
d̂ and d. Note that for any edge e = (u, v) and any
number x we have that xd̂e(x)−xde(x) ≤ xe(D(v)−
D(u)), and hence the difference in total cost is at
most

∑
e=(u,v) xe(D(v) − D(u)) =

∑
i D(ti). Using

this, we get that cost(S∗) ≥ ∑
i D(ti) ≥ cost(S).

Note that a similar bound is not possible for a
model with both costs and delays, when additional
users compensate to some extent for the price of
stability. Consider a problem with two parallel links
e and e′ and k users. Assume on link e the cost is
all design cost ce(x) = 1 + ε for a small ε > 0. On
the other link e′ the cost is all delay, and the delay
with x users is de′(x) = 1/(k−x+1). The optimum
solution is to use the first edge e, and it costs 1 + ε.
Note that the optimum with any number of extra
users costs the same, as this is all design cost. On
the other hand, the only Nash is to have all users
on e′, incurring delay 1, for a total cost of k.

Note that the H(k) term in Corollary 3.2 comes
from the concave cost c, and so the bound obtained
there improves by an H(k) factor when the cost
consists of only delay. Roughgarden [24] showed a
tighter bound for non-atomic games. He assumed
that the delay is monotone increasing, and the total
cost of an edge xde(x) is a convex function of the
traffic x. He showed that for any class of such func-
tions D containing all constant functions, the price
of anarchy is always obtained on a two node, two
link network. Let us call α(D) the price of anarchy
for non-atomic games with delays from the class D
(which is also the price of stability, since the Nash
equilibrium is unique). For example, Roughgarden
[24] showed that for polynomials of degree at most l
this bound is O(l/ log l). Here we extend this result
to a single source atomic game.

Theorem 3.4 If in a single source fair connection
game all costs are delays, and all delays are from a
set D satisfying the above condition, then the price
of stability is at most α(D).

Proof Sketch: We defer the full proof to the ex-
tended version. The idea is as follows. We construct
a modified network Ĝ by adding edges and capaci-
ties to G. We show that the Nash equilibrium is not
affected by the change, and the optimum can only
improve. We obtain the claimed bound by compar-
ing the cost of the Nash equilibrium to the minimum
cost of a fractional solution (a flow) in Ĝ.

Consider the Nash equilibrium obtained via a
minimum cost flow computation as in the proof of
Theorem 3.3, let xe be the number of paths using
edge e, and D(v) be the length of the shortest path
from s to v in the residual graph. Add to each
edge e = (u, v) a capacity of xe, and augment our
network by adding a parallel edge e′ with constant
delay D(v) − D(u). Note that the new capacity
and the added links do not effect the equilibrium.
We will show that for each edge e, the two paral-
lel copies: edge e with new capacity xe and edge e′,
can carry any number of paths at least as cheaply as
the original edge e could. Hence this change in the
network only improves the minimum possible cost.
Let Ĝ denote the resulting network flow problem.

We will show that the minimum cost fractional
flow in Ĝ is obtained by splitting the flow xe be-
tween the two edges e and e′ appropriately to make
the cost of the gradient equal. The claimed bound
will then follow by comparing the cost xede(xe) of
the edge at Nash equilibrium with the cost of the
corresponding two edges e and e′ in Ĝ.

4. Convergence of Best Response

In this section, we address the convergence prop-
erties of best response dynamics in our game.

Theorem 4.1 In the two player fair connection
game, best response dynamics starting from any
configuration converges to a Nash equilibrium in
polynomial time.

The detailed proof appears in the extended version
and shows that for any best response run, the num-
ber of edges shared by both players increases mono-
tonically. For more players, however, the hope of
any positive result about best response dynamics
seems slim. In fact, we can show the following.
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Theorem 4.2 Best response dynamics for k play-
ers may run in time exponential in k.

The proof constructs an example of a game that
can simulate a k-bit counter. The extended version
contains details of the construction.

5. Weighted Players

So far we have assumed that players sharing an
edge e pay equal fractions of e’s cost. We now con-
sider a game with fixed edge costs where players
have weights wi ≥ 1, and players’ payments are
proportional to their weight. More precisely, given
a strategy S = (S1, . . . , Sk), define W to be the
total weight of all players, and let We be the sum
of the weights of players using e. Then player i’s
payment for edge e will be wi

We
ce.

Note that the potential function Φ(S) used for
the unweighted version of the game is not a potential
function once weights are added. In particular, in
a weighted game, improving moves can increase the
value of Φ(S), as this is no longer a congestion game.
The following theorem uses a new potential function
for a special class of weighted games.

Theorem 5.1 In a weighted game where each edge
e is in the strategy spaces of at most two players,
there exists a potential function for this game, and
hence a Nash equilibrium exists.

Proof: Consider the following potential function.
For each edge e used by players i and j, define

Φe(S) =




cewi if player i uses e in S
cewj if player j uses e in S
ceθij if both players i and j use e in S
0 otherwise

where θij = (wi +wj − wiwj

wi+wj
). For any edge e with

only one player i, simply set Φe(S) = wice if i uses
e and 0 otherwise. Define Φ(S) =

∑
e Φe(S). We

now simply need to argue that if a player makes an
improving move, then Φ(S) decreases. Consider a
player i and an edge e that player i joins. If the edge
already supported another player j, then i’s cost for
using e is ce

wi

wi+wj
, while the change in Φe(S) is

ce(wi − wiwj

wi + wj
) = ce

wi
2

wi + wj
.

Thus the change in potential when i joins e equals
the cost i incurs, scaled up by a factor of wi. In

fact, it is easy to show the more general fact that
when player i moves, the change in Φ(S) is equal to
the change in player i’s payments scaled up by wi.
This means that improving moves always decrease
Φ(S), thus proving the theorem.

Note that this applies not only to paths, but also
to the generalized model in which players select sub-
sets from some ground set. The analogous condition
is that no ground element appears in the strategy
spaces of more than two players.

Corollary 5.2 Any two-player weighted game has
a Nash equilibrium.

While the above potential function also implies a
bound on the price of stability, even with only two
players this bound is very weak. However, if there
are only two players with weights 1 and w ≥ 1,
then we can show that the price of stability is at
most 1 + 1

1+w , and this is tight for all w.
The following result shows the existence of Nash

equilibria in weighted single commodity games.

Theorem 5.3 For any weighted game in which all
players have the same source s and sink t, best re-
sponse dynamics converges to a Nash equilibrium,
and hence Nash equilibria exist.

Proof: Start with any initial set of strategies S.
For every s − t path P define the marginal cost of
P to be c(P ) =

∑
e∈P

ce

We
where We depends on

S. Observe that if player i currently uses path P ,
then i’s payment is wic(P ). Define P (S) to be a
tuple of the values c(P ) over all paths P , sorted in
increasing order. We want to show that the cheapest
improving deviation of any player causes P (S) to
strictly decrease lexicographically.

Suppose that one of the best moves for player i
is to switch paths from P1 to P2. Let P denote the
set of paths that intersect P1 ∪ P2. For any pair
of paths P and Q, let cP (Q) denote the new value
of c(Q) after player i has switched to path P . To
show that P (S) strictly decreases lexicographically,
it suffices to show that

min
P∈P

cP2(P ) < min
P∈P

c(P ). (2)

Define P ′ = arg minP∈P c(P ). Since P2 was i’s
best response, cP2(P2) ≤ cP (P ) for all paths P .
In particular, cP2(P2) ≤ cP ′(P ′). We also know
that cP ′(P ′) ≤ c(P ′), since in deviating to P ′,
player i adds itself to some edges of P ′. In fact,
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cP ′(P ′) < c(P ′) unless P ′ = P1. Assuming P ′ �= P1,
we now have that cP2(P2) < c(P ′), which proves in-
equality 2. If P ′ = P1, then since player i decided to
deviate, cP2(P2) < c(P1). Therefore, we once again
have that cP2(P2) < c(P ′), as desired.

In the case where the graph consists of only 2
nodes s and t joined by parallel links, we can simi-
larly show that any sequence of improving responses
converge to a Nash equilibrium.

With arbitrarily increasing cost functions, [17]
gives an example demonstrating that a weighted
game may not have any pure Nash equilibria. How-
ever, it is still an open problem to determine
whether weighted games with fixed costs always
have Nash Equilibria. While the authors believe
they do, it is not clear how to adapt a potential-style
argument to prove this. The construction above
does not even extend to games where 3 players share
an edge. However, in either case, the following claim
shows that the price of stability bounds from the
unweighted case will not carry over.

Theorem 5.4 There are weighted games for which
the price of stability is Θ(log W ) and Θ(k).

An example exhibiting this is a modified version
of the graph in Figure 1. Change the edge with cost
1 + ε to cost 1, and for all other edges with positive
cost, set the new cost to be 1

2 . For 1 ≤ i ≤ k let
player i have weight wi = 2i−1. Since each player
has a greater weight than all smaller weight players
combined, the only Nash equilibrium has cost k

2 =
Θ(log W ), while the optimal solution has cost 1.
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