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Evolution perfected brain design by maximizing its functionality while
minimizing costs associated with building and maintaining it. Assump-
tion that brain functionality is specified by neuronal connectivity, im-
plemented by costly biological wiring, leads to the following optimal
design problem. For a given neuronal connectivity, find a spatial layout
of neurons that minimizes the wiring cost. Unfortunately, this problem
is difficult to solve because the number of possible layouts is often astro-
nomically large. We argue that the wiring cost may scale as wire length
squared, reducing the optimal layout problem to a constrained minimiza-
tion of a quadratic form. For biologically plausible constraints, this prob-
lem has exact analytical solutions, which give reasonable approximations
to actual layouts in the brain. These solutions make the inverse problem
of inferring neuronal connectivity from neuronal layout more tractable.

1 Introduction

Wiring up distant neurons in the brain is costly to an organism (Ramón
y Cajal, 1899/1999). The cost of wiring arises from its volume (Cherniak,
1992; Mitchison, 1991), metabolic requirements (Attwell & Laughlin, 2001),
signal delay and attenuation (Rall et al., 1992; Rushton, 1951), or possible
guidance defects in development (Dickson, 2002). Whatever the origin of
the wiring cost, it must grow with the distance between connected neurons.
Therefore, placing connected neurons as close as possible reduces the wiring
cost and, for a given connectivity, confers selection advantage to an organ-
ism. In principle, this evolutionary argument allows one to predict neuronal
placement from connectivity data by solving an optimal layout problem. In
practice, solving this problem for many neurons with nonstereotypical con-
nectivity is complicated, and often impossible, due to the large number of
possible neuronal permutations, which grows exponentially in the number
of neurons.

In this letter, we argue that the wiring cost may scale approximately as the
wire length squared (see section 2). In this approximation, the optimal layout
problem reduces to the minimization of a quadratic form (see section 3). The
trivial solution is ruled out by biological constraints that can be classified
into external and internal. For both classes of constraints, the optimal layout
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can be found in analytical form (see sections 4 and 5). To test the quadratic
placement optimization, we compare its predictions in two cases where both
connectivity and layout are known: prefrontal cortical areas in macaque (see
section 6) and Caenorhabditis elegans ganglia (see section 7). The solution of
the quadratic optimal layout problem gives a reasonable approximation to
the actual placement of these multineuron complexes. Thus, the quadratic
wire length cost function promises to be a powerful tool for solving optimal
neuronal layout problems.

2 Wiring Cost May Scale as Wire Length Squared

Because the exact origin of the wiring cost is not known, one can only guess
its dependence on the distance between neurons. In this section, we consider
several plausible hypotheses for the wiring cost function and argue that the
wire length squared may serve as a reasonable approximation.

Previous work suggests that the cost of wiring is proportional to its vol-
ume (Cherniak, 1992; Chklovskii, Schikorski, & Stevens, 2002; Mitchison,
1991; Stepanyants, Hof, & Chklovskii, 2002), which scales with the distance
times wire diameter squared. If the wire diameter is fixed, the wiring cost
grows linearly with distance. But if the cost is proportional to volume, why
not make all the axons infinitesimally thin? My collaborators and I have
argued (Chklovskii et al., 2002; Chklovskii & Stepanyants, 2003) that the
observed axon diameter may result from the trade-off between the wire vol-
ume cost, which grows with wire diameter, and signal propagation delay
cost, which decreases with wire diameter because of an increase in conduc-
tion speed. This trade-off is captured by the wiring cost function, C, which
contains two terms—one proportional to the signal propagation delay, T, to
power n, and the other proportional to the wire volume, V:

C = αTn + βV, (2.1)

where α and β are unknown constants. If the wires are myelinated axons,
the signal propagation speed, s, scales linearly with the wire diameter, d,
s = kd, leading to the following expression for the cost function:

C = α

(
L
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+ β
π

4
d2L, (2.2)

where L is the wire length. The cost function is minimized by the wire
diameter that solves the equation ∂C/∂d = 0. By substituting this optimal
wire diameter into the cost function 2.2, I get the following dependence of
the cost on the wire length, L:
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If the exponent, n = 1, then the wiring cost scales linearly with the wire
length. It is possible, however, that the signal propagation delay is a hard
constraint (n = ∞). Then the wiring cost scales as the length cubed. In-
termediate values of the exponent give cost functions that lie between the
linear and the cubic dependence on length. Therefore, it is reasonable to
approximate the actual wire length cost function by a quadratic expression:

C = 3
4

(
π2αβ2

k4

)1/3

L2. (2.4)

It is possible that the actual cost function is noticeably different from the
quadratic form (e.g., if the exponent, n < 1). Still, the quadratic cost func-
tion can be very useful due to the exact solvability of the quadratic layout
problem, as demonstrated in sections 4 and 5. The validity of the quadratic
cost function is established by the comparison of theoretical predictions with
experimental data (see sections 6 and 7). Thus, the quadratic cost function
may play a role in neuronal layout optimization similar to the harmonic
oscillator in physics or the fruit fly in genetics.

3 Optimal Layout Problem Requires Constraints

In order to formulate the quadratic optimal layout problem, we represent a
neuronal circuit as a nondirected weighted graph. Nodes of the graph corre-
spond to neurons (or multineuron complexes), and edges correspond to con-
nections between neurons (or between multineuron complexes). The weight
of each edge represents the connection strength and is given by the (con-
stant) coefficient in front of the wire length squared (see equation 2.4) times
the multiplicity of the connection. In turn, the multiplicity of the connection
is given by the number of parallel wires between the given pair of neuronal
complexes or perhaps by the number of synapses between the given pair of
neurons. The directionality of connections can be ignored because the cost
of a wire does not depend on the direction of signal propagation.

The graph is specified algebraically by the adjacency matrix (or the wiring
diagram), A, where weights Aij give (nondirectional) connection strengths
between neurons i and j. This matrix is symmetric (Aij = Aji), nonnegative
(Aij ≥ 0), with all diagonal elements equal to zero (Aii = 0). With the help
of the adjacency matrix, the quadratic wire length cost function for the
neuronal circuit can be written as

C = 1
2

∑
i,j

Aij(ri − rj)
2, (3.1)

where ri, rj are coordinates of the nodes i and j. The quadratic optimal
layout problem is to find coordinates, which minimize the cost function for
given constraints. Constraints exclude the trivial solution, ri = 0, and may
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be classified by their biological origin into external and internal. External
constraints arise from the fact that the brain is not an isolated network of
neurons but is connected with the sensory and motor organs, the placement
of which is determined by functional requirements unrelated to wiring (see
section 4). Internal constraints arise from the volume exclusion by neuron
bodies and axons, meaning that no two neurons or axons can occupy the
same point in space (see section 5).

The quadratic wire length cost function 3.1 has a simple physical anal-
ogy. If neurons are connected by stretched rubber bands of zero length at
rest, then equation 3.1 represents their elastic energy. The weights Aij in
equation 3.1 represent elasticity of connections. Then the minimal energy
state is achieved when all neurons are in one location and all rubber bands
have zero length. This trivial solution is ruled out by external or internal
constraints. Previously, the rubber band analogy inspired the elastic net al-
gorithm (Durbin & Mitchison, 1990; Durbin & Willshaw, 1987; Goodhill &
Willshaw, 1990), whose relationship to the wiring minimization is discussed
in Goodhill and Sejnowski (1997).

4 Exact Solution Under External Constraints

The function of the brain is to bridge sensory input and motor output.
Communications between sensory and motor organs, on the one hand, and
the brain, on the other, require biological wires. The cost of these wires must
be included in the overall cost function,

C = 1
2

∑
i,j

Aij(ri − rj)
2 +

∑
i,j

Bij(ri − fj)2, (4.1)

where the first term represents the cost of wiring between neurons in the
brain and the second term represents the cost of wiring between the brain
and sensory and motor organs. Weight Bij represents connection strength
between neuron i and organ j, and fj is the coordinate of organ j. As various
functional requirements determine organ placement in the body plan (e.g.,
frontal eyes, forward nose, muscles attached to bones), it is reasonable to
formulate the optimal neuronal layout problem with the organ coordinates
fixed. To solve the optimal layout problem, we search for the minimum of
the wiring cost function 4.1, while varying the locations of the brain neurons,
ri. An elegant way to do this is by first rewriting the two terms of the cost
function in a matrix form (Hall, 1970),

1
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where r is a column vector {ri} matrix DAij = δij
∑

k Aik, and L is called the
Laplacian of matrix A,∑

i,j

Bij(ri − fj)2 =
∑

i,j
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i − 2ri fj + f 2

j )

=
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r2
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∑
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Bij − 2
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riBij fj +
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j

f 2
j

∑
i

Bij

= rTDBr − 2rTBf + const, (4.3)

where matrix DBij = δij
∑

k Bik. The minimum of the quadratic wire length
cost function 4.1 can be found by taking a derivative in respect to ri and
setting it to zero:

dC
dr

= 2(L + DB)r − 2Bf = 0. (4.4)

Then the optimal layout is given by the following matrix equation:

r = (L + DB)−1Bf. (4.5)

This solution for the layout problem can be easily generalized to d spa-
tial dimensions. Because the cost function 4.1 is separable into d terms, each
containing distances along different dimensions, equation 4.5 gives the pro-
jection of the layout vector onto the corresponding spatial dimension.

In the rubber bands analogy, this solution is reminiscent of a cobweb,
where the network nodes’ location is determined by the forces exerted by
external and internal connections. If external connections, Bij, are much
stronger than internal, Aij, the location of the nodes is determined mainly
by the balance of external forces. For example, if each node makes a strong
connection with only one fixed organ, it should be located on that organ.
In the opposite limit, when internal connections dominate, all nodes cluster
together near the center of mass. Then the optimal layout problem can be
broken into two steps. First, the location of the center of mass, rcm, corre-
sponds to the minimum of

Ccm =
∑

j

(rcm − fj)2
∑

i
Bij. (4.6)

Second, coordinates of the nodes relative to the center of mass can be found
by using the spectral decomposition of the Laplacian (see the next section).
This two-step solution allows one to predict the center of mass location even
when the internal connections are not completely known.

5 Spectral Analysis Emulates Internal Constraints

The finite size of neuronal bodies and axons places constraints on the pos-
sible layouts because of volume exclusion, or congestion. Inclusion of these
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constraints is in general a difficult problem. Here we present an approx-
imate treatment of the internal constraints, which yields an aesthetically
appealing exact solution (Hall, 1970). In order to avoid the trivial solution,
the norm of vector r is fixed, yielding the following optimization problem
(see equation 4.2 for derivation):

minimize C = 1
2

∑
i,j

Aij(ri − rj)
2 = rTLr, subject to rTr = 1. (5.1)

This minimization problem is solved by the eigenvector of L corresponding
to its lowest eigenvalue. However, the lowest eigenvalue of L is 0, and
the corresponding eigenvector is 1/N1/2, which means that all nodes are at
the same point. This led Hall (1970) to introduce an additional constraint
by requiring that the minimization problem solution be orthogonal to that
eigenvector:

rT1 = 0 or
∑

i
ri = 0. (5.2)

Then the solution to the one-dimensional optimal layout problem is given
by the eigenvector of the Laplacian, v2, corresponding to the second lowest
eigenvalue, λ2. If the problem is d-dimensional, then the solution is given by
the d eigenvectors, corresponding to the 2nd to d + 1st lowest eigenvalues
(Hall, 1970).

The layout problem with internal constraints also admits a physical anal-
ogy. In addition to the elastic force exerted on the nodes by massless rubber
bands, there is repulsive force proportional to the distance from the origin.
The role of the additional constraint 5.1 is to pin the center of mass to the
origin. Alternatively, one can view this problem as finding the configuration
with minimum elastic energy for fixed moment of inertia 5.1 and center of
mass 5.2.

Unfortunately, the above solution for internal constraints cannot be com-
bined straightforwardly with that for external constraints presented in sec-
tion 4. For example, the center of mass coordinates is determined by incom-
patible considerations in the two cases: arbitrary placement at the origin
versus force balance depending on external constraints. Yet the Laplacian
spectrum and the corresponding eigenvectors may approximate the solu-
tion obtained with external constraints if the weights of internal connections
dominate that of external. This relationship between the two formulations
can be formalized by rewriting the scalar product between the ith eigenvec-
tor, vi, and the external constraint solution, r,

vir = viBf
λi + βi

, (5.3)

whereβi are coefficients of the spectral decomposition of DB in the projection
basis.
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6 Layout of Prefrontal Cortical Areas in Macaque

Cerebral cortex consists of multiple areas whose spatial arrangement and
interconnectivity are reproducible from animal to animal. Previous work
suggests that the arrangement of cortical areas is determined by minimiz-
ing the total length of the interconnections between them (Cherniak, 1994;
Mitchison, 1991). Recently, this suggestion has been put to a direct test in the
macaque prefrontal cortex (Klyachko & Stevens, 2003), where most of the in-
terconnections and the layout of areas are known (Carmichael & Price, 1996;
see Figure 1). Brute force enumeration of all possible area layouts shows that
the wiring in the actual layout is the shortest (Klyachko & Stevens, 2003).

Here we test the quadratic wire length approach on the data set used in
Klyachko and Stevens (2003) by using both external and internal constraints
formulation.

In the external constraints formulation, the 14 areas on the periphery of
the prefrontal cortex are treated as fixed organs, their locations being the
actual ones (the crosses in Figure 1A and 1B). Locations of the remaining 10
areas are continuously varied to minimize the sum of connection lengths
squared. Equation 4.5 yields the placement shown in Figure 1B. Although
the predicted locations are closer together than in reality, the predicted or-
dering is close to the actual one. The only exception to the correct ordering
is the placement of 14r, which should be lower. Interestingly, this placement
corresponds to one of the close-to-optimal placements reported in Klyachko
and Stevens (2003). There are two possible explanations for why the areas
are predicted to bunch up more than they do in reality. First, the external
constraint formulation neglects volume exclusion, that is, the fact that the
areas have finite size and cannot overlap. Second, there may be connections
between the areas that were considered in Carmichael and Price (1996) and
the areas that were not considered. Because these areas lie outside the con-
sidered fixed areas, their inclusion would pull apart the movable areas.

The internal constraints formulation applied to the 18 areas included in
prefrontal orbital and medial networks (Carmichael & Price, 1996) yields the
arrangement shown in Figure 1C. This placement has approximately correct
ordering of the areas. Moreover, this analysis correctly clusters cortical areas
into two clusters distinguished by the sign of the second eigenvector com-
ponent. These clusters correspond to the known (Carmichael & Price, 1996)
subdivisions of the prefrontal cortex orbital (blue labels) and medial (red la-
bels) networks. Thus, the predictions of the internal constraints formulation
are consistent with anatomical data.

7 Layout of Ganglia in C. elegans

Neurons in the C. elegans nervous system are clustered into several gan-
glia distributed along its body. Most connections between the ganglia are
known, making this system a natural choice for testing the wiring optimiza-
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Figure 1: Comparison of the actual cortical area arrangement (A) with the pre-
dictions of the quadratic layout optimization under external (B) and internal
(C) constraints. (A) Cortical area centers in the coordinate frame of the flat-
tened prefrontal cortex, taken from Klyachko and Stevens (2003) and labeled
according to Carmichael and Price (1996). Crosses indicate areas that were fixed
in the external constraint formulation, and circles indicate movable areas. (B)
Area locations predicted by the external constraint formulation. Blue lines show
internal connections (Aij), and red lines external ones (Bij). (C) Area locations
predicted by the internal constraint formulation. Areas cluster by the sign of the
second eigenvector component (negative versus positive abscissa) in accordance
with the known division of the prefrontal cortex into orbital (brown labels) and
medial (green labels) networks (Carmichael & Price, 1996).
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Figure 2: Solid dots (connected in the anterior-posterior order) show predicted
versus actual positions of C. elegans ganglia normalized by the distance from
head to tail. Deviations from the diagonal line correspond to differences in the
actual versus predicted ganglia positions. Although predicted ganglia positions
differ from the actual ones, their order is predicted correctly with the exception
of the dorsorectal ganglion (actual position: 0.88 of body length).

tion approach. The layout problem is essentially one-dimensional because
of the large aspect ratio (more than 10:1) of the worm body. Brute force enu-
meration of all permutations of 11 movable components (including nerve
ring in addition to ganglia; Cherniak, 1994) shows that the actual ordering
minimizes the total wire length.

Here I show that solving a quadratic placement problem can largely re-
produce the actual order of ganglia. In the external constraints formulation,
the locations of ganglia are given by equation 4.5, where the wiring dia-
gram and fixed locations of sensors and muscles are the same as in Cherniak
(1994). Figure 2 shows the predicted positions of C. elegans ganglia versus
the actual ones. The predicted order agrees with the actual one with the
exception of a single ganglion. This is a reasonably good agreement consid-
ering that there are 11! alternative orderings. However, predicted ganglia
locations deviate from the actual ones. These deviations may be due to
missing information in the wiring diagram (e.g., the lack of neuromuscular
connections); deviations of the cost function from the quadratic form; or
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other factors that should be included in the cost function. Future work will
determine which of these factors are responsible for the disagreement.

Internal constraints are unlikely to play a significant role in the placement
of ganglia due to the relative sparseness of the C. elegans nervous system.
Therefore, I skip this analysis.

8 Discussion

In this letter, I argue that the wire length squared may approximate the
wiring cost, thus reducing the optimal layout problem to the constrained
minimization of a quadratic form. For two types of constraints, external
and internal, exact analytical solutions exist, allowing straightforward and
intuitive analysis. To test the quadratic optimization approach, I revisit two
known cases of wire length minimization, where previous solutions relied
on brute force complete enumeration. Minimization of wire length squared
approximates the actual layouts reasonably well. One recurring problem
with external constraint formulation is the bunching of graph nodes in the
solution. This happens because the number of internal connections usu-
ally exceeds that of the external ones. The bunching does not happen in
actual brains because of the ”volume exclusion” of multineuron complexes
or internal constraints. The spectral method emulates these constraints and
eliminates the bunching problem. However, exclusion of the external con-
nections may lead to the overall rotation of the graph or incorrect positioning
of some multineuron complexes.

As in any other theoretical analysis, the optimal neuronal layout solu-
tion relies on several simplifying assumptions. The central assumption, the
quadratic form of the cost function, is supported by the argument in sec-
tion 2, showing that quadratic cost function may be a reasonable approxi-
mation. The utility of this approximation is due to its exact solvability (see
sections 4 and 5). The validity of this approximation is supported by the fact
that its predictions are consistent with experimental data (see sections 7 and
8). Another assumption is that wiring consists of point-to-point (nonbranch-
ing) axons. This assumption is valid for connections between cortical areas
and can serve as a first-order approximation in other cases. Future work will
analyze the impact of the axonal branching and the presence of dendrites on
brain design. Also in the real brain, axonal branches are not exactly straight
lines. Their curvature is itself a result of internal constraints, which are in-
cluded here only on the mean-field level (see section 5). A more detailed
treatment of internal constraints, or congestion, will be presented elsewhere.

Although quadratic cost function is an approximation, it yields opti-
mal layouts reasonably close to those obtained by minimizing total wiring
length in realistic situations. While complete enumeration of possible lay-
outs is limited to a small number of movable components, quadratic layout
problem yields exact solutions in analytical form for the wiring diagrams as
big as computers can handle. These analytical solutions can be readily and



Exact Solution for the Optimal Neuronal Layout Problem 2077

intuitively investigated, making the inverse problem (predicting connectiv-
ity from neuronal layout) more tractable. Since solving this problem may
complement the existing experimental methods for establishing neuronal
connectivity, the quadratic cost function promises to be an important tool
for understanding brain design and function.

Acknowledgments

I thank Natarajan Kannan for bringing Hall’s work to my attention and Ar-
men Stepanyants, Anatoli Grinshpan, and all the members of my group for
helpful discussions. I am grateful to Charles Stevens for making Klyachko
and Stevens (2003) available prior to publication. This work was supported
by the Lita Annenberg Hazen Foundation and the David and Lucile Packard
Foundation.

References

Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey
matter of the brain. J. Cereb. Blood Flow Metab., 21, 1133–1145.

Carmichael, S. T., & Price, J. L. (1996). Connectional networks within the orbital
and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol., 371,
179–207.

Cherniak, C. (1992). Local optimization of neuron arbors. Biol. Cybern., 66, 503–
510.

Cherniak, C. (1994). Component placement optimization in the brain. J. Neurosci.,
14, 2418–2427.

Chklovskii, D. B., Schikorski, T., & Stevens, C. F. (2002). Wiring optimization in
cortical circuits. Neuron, 34, 341–347.

Chklovskii, D. B., & Stepanyants, A. (2003). Power-law for axon diameters at
branch point. BMC Neurosci., 4, 18.

Dickson, B. J. (2002). Molecular mechanisms of axon guidance. Science, 298,
1959–1964.

Durbin, R., & Mitchison, G. (1990). A dimension reduction framework for un-
derstanding cortical maps. Nature, 343, 644–647.

Durbin, R., & Willshaw, D. (1987). An analogue approach to the travelling sales-
man problem using an elastic net method. Nature, 326, 689–691.

Goodhill, G. J., & Sejnowski, T. J. (1997). A unifying objective function for topo-
graphic mappings. Neural Computation, 9, 1291–1303.

Goodhill, G. J., & Willshaw, D. J. (1990). Application of the elastic net algorithm
to the formation of ocular dominance stripes. Network, 1, 41–59.

Hall, K. (1970). An r-dimensional quadratic placement algorithm. Management
Science, 17, 219–229.

Klyachko, V. A., & Stevens, C. F. (2003). Connectivity optimization and the po-
sitioning of cortical areas. Proc. Natl. Acad. Sci. USA, 100, 7937–7941.

Mitchison, G. (1991). Neuronal branching patterns and the economy of cortical
wiring. Proc. R. Soc. Lond. B Biol. Sci., 245, 151–158.

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0271-678x()21L.1133[aid=2363167]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0021-9967()371L.179[aid=532586]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0021-9967()371L.179[aid=532586]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0340-1200()66L.503[aid=6129345]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0270-6474()14L.2418[aid=846381]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0270-6474()14L.2418[aid=846381]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0896-6273()34L.341[aid=6129344]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=1471-2202()4L.18[aid=6129343]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0036-8075()298L.1959[aid=6129342]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0036-8075()298L.1959[aid=6129342]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0028-0836()343L.644[aid=6129341]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0028-0836()326L.689[aid=216333]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0899-7667()9L.1291[aid=218054]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0027-8424()100L.7937[aid=6129340]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0962-8452()245L.151[aid=846399]


2078 D. Chklovskii

Rall, W., Burke, R. E., Holmes, W. R., Jack, J. J., Redman, S. J., & Segev, I. (1992).
Matching dendritic neuron models to experimental data. Physiol. Rev., 72,
S159–186.

Ramón y Cajal, S. (1999). Textura del sistema nervioso del hombre y de los
vertebrados (Texture of the nervous system of man and the vertebrates).
New York: Springer-Verlag. (Original work published in 1899).

Rushton, W. A. (1951). Theory of the effects of fibre size in medullated nerve. J.
Physiol., 115, 101–122.

Stepanyants, A., Hof, P. R., & Chklovskii, D. B. (2002). Geometry and structural
plasticity of synaptic connectivity. Neuron, 34, 275–288.

Received October 21, 2003; accepted March 17, 2004.

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0022-3751()115L.101[aid=6129347]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0022-3751()115L.101[aid=6129347]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0896-6273()34L.275[aid=6129346]

