
An adversarial queueing model

for online server routing

Vincenzo Bonifaci∗

Abstract

In an online server routing problem, a vehicle or server moves in a
network in order to process incoming requests at the nodes. Online server
routing problems have been thoroughly studied using competitive analy-
sis. We propose a new model for online server routing, based on adver-
sarial queueing theory. The model addresses questions such as whether
a server routing algorithm is stable, that is, whether it is such that the
number of unserved requests in the system remains bounded at all times,
assuming a bound on the global rate of requests arrival. This captures
a notion of throughput for which competitive analysis typically does not
give any useful result. In this framework, we consider a number of natural
algorithms and we analyze their stability and performance.

Keywords: online algorithms, adversarial queueing theory, server routing.

1 Introduction

Consider the following model of a computer harddrive: while the disk is rotating,
read and write requests arrive for data lying on specific sectors of the disk. Thus,
the head located on the arm of the disk has to move in order to align itself to
the correct track, and wait for the disk to rotate onto the sector holding the
data. If we ignore the rotational delay, the problem is that of routing a server
(the head) on a finite space (the arm) in order to process some requests.

A sensible algorithm for controlling the disk’s head should be able to cope
with requests in a stable manner: the number of unserved requests should not
increase indefinitely as time passes. This requires of course that the rate of
incoming requests does not overflow the head’s service speed, but that condi-
tion alone is not sufficient; an algorithm that moves the head back and forth
between far away locations while serving few requests will easily lead to an
unstable system even when the arrival rate is relatively low. Notice that this

∗Dip. di Informatica e Sistemistica, Università di Roma “La Sapienza”, Rome, Italy;
Dept. Mathematics and Computer Science, Technical University Eindhoven, Eindhoven, the
Netherlands. E-mail: bonifaci@dis.uniroma1.it. This work was partially supported by the
Future and Emerging Technologies Unit of EC (IST priority - 6th FP), under contract no.
FP6-021235-2 (project ARRIVAL).

1

stability requirement can be seen as requiring the algorithm to have an optimal
throughput, since no algorithm with suboptimal throughput can keep the system
stable if the load remains high for a sufficient amount of time. One would also
like the average delay experienced by the requests to be as small as possible.

The optimization part of this problem could be seen as an online server
routing problem [4, 8] with the average flow time objective. However, it is well-
known from the online algorithm literature that there cannot be constant com-
petitive algorithms for this problem. Thus, pure competitive analysis is unable
to distinguish the behavior of different algorithms. Restrictions to the offline
adversary and alternative models have been proposed that try to overcome this
issue [6, 9].

In this work we propose a new approach that, while abandoning competitive
analysis, still assumes worst case behavior of the inputs. The approach is based
on adversarial queueing theory, which has been recently proposed to analyze
online packet routing problems [2, 5]. We propose an adversarial queueing
model specific for online server routing, and in this framework we analyze the
stability and the performance of several natural algorithms. This allows us to
easily distinguish between algorithms that would fare equally badly from the
point of view of competitive analysis.

The rest of the paper is structured as follows. In Section 2, we discuss
previous related work. The model itself is presented in Section 3. In Section 4
several natural algorithms are introduced and analyzed in terms of the model.
Section 5 presents a lower bound on the number of unserved requests that
explains why the upper bounds of Section 4 are essentially best possible. We
end with some directions for further research.

2 Related work

The adversarial queueing theory framework was first formulated by Borodin
et al. [5], who considered packet routing problems in networks with continu-
ous packet arrivals. The model replaces the probabilistic assumptions usual
in queueing theoretical analyses with worst case inputs. Thus the name ad-
versarial queueing theory was proposed to stress that while the issue studied
is that of stability – the crucial issue of queueing theory – the approach is of
adversarial nature. Following the work of Borodin et al., Andrews et al. [2] con-
sidered several natural algorithms in this framework and gave many stability
and instability results.

In the context of online server routing problems, the model that comes closer
to the one we propose is the reasonable load model by Hauptmeier et al. [6].
Roughly speaking, they assume that every set of requests that come up in a
sufficiently large time period can be served in a time period of at most the
same length. Under this assumption, they consider the dial-a-ride problem for
the minimization of maximum (or average) flow time, and they distinguish the
behavior of two algorithms, Replan and Ignore, that would be indistinguishable
by pure competitive analysis. We also give similar results for Replan, Ignore

2

and several other algorithms. Other results in related directions of research,
albeit in quite different models, are given by Alborzi et al. [1] and Irani et al.
[7].

Experimental results for different disk scheduling policies were given by Teo-
rey and Pinkerton [10]. More recently, new algorithms for disk scheduling have
been proposed by Andrews et al. [3].

3 The model

An online server routing system consists of a triple (G, A, P), where G is a
graph, A is an adversary and P is an online algorithm. We now further detail
each of these components.

The undirected, connected graph G = (V,E) represents the space where
requests are injected by the adversary and where the server operated by the
online algorithm moves. A special vertex o ∈ V is marked as the origin. We let
n be the number of vertices of G and δ its diameter.

We use a discrete time model. At every time step, the server operated by
the algorithm can either cross an edge or serve a single request from its current
location (but not both). At time 0, the server is located at the origin.

We consider two types of adversaries, a stronger one used in all the posi-
tive results and a weaker one for the negative results; this difference can only
strengthen the results. A strong adversary of rate λ ∈ (0, 1] and burst µ > 0
can, during any time interval I, inject at most λ|I| + µ requests overall any-
where on the vertices of the graph. A weak adversary of rate λ ∈ (0, 1] can,
during any time interval I, release at most dλ|I|e requests overall anywhere on
the vertices of the graph. The sequence generated by the adversary is denoted
by σ = σ1σ2 · · · . Every request σj is a pair (rj , xj) ∈ Z+ × V , where rj is the
release date of the request (the time it becomes available) and xj its location
(a vertex of G). We denote by Cj the completion time of request σj , i.e., the
time unit following the one during which the server started processing σj . If the
request is never served by the algorithm, we conventionally define Cj = ∞.

More formally, the model can be described as follows. At every time step t,
the current configuration Ct of the system is a vertex s(t) ∈ V plus a collection
of sets {U t

v : v ∈ V }, such that s(t) is the position of the server at time t and
U t

v is the set of requests waiting at v at the time t. From the configuration Ct

we obtain the configuration Ct+1 as follows. The adversary adds new requests
to some of the sets Uv; then the algorithm either chooses s(t + 1) such that
{s(t), s(t+1)} ∈ E or it removes a request from Us(t) and leaves s(t+1) = s(t).
A time-evolution of G, of rate λ and burst µ, is a sequence of such configurations
C0, C1, . . . , such that for all intervals I, no more than λ|I| + µ requests are
introduced during I in G. By the system (G, A, P) we mean the time-evolution
of G induced by adversary A and algorithm P with initial configuration s(0) = o
and U0

v = ∅ for all v ∈ V .
Our results are centered around the following concepts.

3

Definition 3.1. An online server routing system (G, A, P) is stable if there
exists a constant Q (which may depend on the system) such that∑

v∈V

|U t
v| ≤ Q

for all t ∈ Z+, that is, the total number of unserved requests is bounded by Q
at all times. Otherwise we say that the system is unstable.

Definition 3.2. An algorithm P is universally stable if for every graph G and
every strong adversary A of rate λ and burst µ with λ < 1, the system (G, A, P)
is stable.

Definition 3.3. Given a system (G, A, P), the average flow time up to time t
of the system is

F̄ (t) =
1

N(t)

N(t)∑
j=1

(min(t, Cj)− rj)

where N(t) is the number of requests injected by the adversary up to time t. A
system has bounded average flow time if there exists a constant F such that the
average flow time up to time t is at most F for all t.

The connection between stability and average flow time is given by the fol-
lowing.

Proposition 3.1. If a system (G, A, P) is stable and there exists η ∈ (0, 1] such
that N(t) ≥ ηt for all t ∈ Z+, then the system has bounded average flow time.

Proof. In the expression for the average flow time of the system up to time t,
we can sum over time instead of summing over requests to obtain

F̄ (t) =
1

N(t)

t−1∑
i=0

∑
v∈V

∣∣U i
v

∣∣ .

Since the system is stable,
∑

v

∣∣U i
v

∣∣ ≤ Q for all i, thus F̄ (t) ≤ tQ/N(t) ≤ Q/η
and the system has bounded average flow time.

4 Stability results

In this section we consider several natural algorithms for the online server rout-
ing model we have introduced, and we classify each of them according to sta-
bility. A summary of the results is presented in Table 1.

As a preliminary result, we remark that, in Definition 3.2, it is necessary to
consider only adversaries with rate λ strictly less than 1, as otherwise for any
algorithm the system can be unstable.

Proposition 4.1. Let P be any algorithm and G any nontrivial graph. Then
there exists an adversary A of rate 1 such that the system (G, A, P) is unstable.

4

Algorithm Univ. Reference
stable?

fifo no Th. 4.3
sstf no Th. 4.4
replan no Th. 4.5
ignore yes Th. 4.6
tree-scan yes Th. 4.7

Table 1: Universal stability of different server routing algorithms.

Proof. The adversary injects at every time step a request on a vertex that is
distinct from the current location of the server. The server must change location
infinitely often, but every time it does, the number of unserved requests increases
by one.

In the following, we assume without loss of generality that at every vertex
of the graph there is a queue holding the requests pending at that vertex and
that the algorithm always serves the oldest request of a queue.

A general term used in the algorithms is that of “emptying” the queue at a
given vertex v of the graph. By this we mean that a request in v is served at
every time step until no more requests in v are available. This process takes a
finite amount of time because the rate of the adversary is strictly less than one.
Moreover, some of the algorithms we consider are undefined in the case of ties.
In those cases, we assume the worst tie-breaking rule for the positive results and
the best for the negative ones.

The following technical lemma is useful when establishing instability results.
Given two adversaries A1, A2, their union A1∪A2 is the adversary that releases
the requests of both adversaries.

Lemma 4.2. Let A1 be a weak adversary of rate λ ≤ 1/2. Then for every
v ∈ V and every ε ∈ (0, 1/6), there exists a weak adversary A2 of rate ε releasing
requests in v such that A1 ∪A2 is a weak adversary of rate at most 2/3 + ε.

Proof. We define A2 as follows: it releases requests in v only at time steps
during which A1 does not release any request, and so that its rate is ε; this is
always possible by taking ε sufficiently small. Apart from these constraints, the
precise release dates of the requests of A2 are irrelevant for the lemma.

We have to prove that for any interval I of length t, the requests released
by A1 ∪A2 are at most d(2/3 + ε)te.

Consider any such interval I. If t = 1, the claim holds simply because A1

and A2 never release a request during the same time step.
For all other t, notice that the number of requests released by A1 (resp. A2)

is at most dλte (resp. dεte). We prove the claim by showing that dλte+ dεte ≤
d(2/3 + ε)te. Notice that ε ≤ 2/3− λ. When t ≥ 1/(2/3− λ),

dλte+ dεte ≤ dλt + 1 + εte ≤ dλt + (2/3− λ)t + εte ≤ d(2/3 + ε)te .

5

When t < 1/(2/3− λ), notice that dεte = 1. If t is even, say t = 2q,

dλte ≤ dt/2e = q ≤ (4/3)q = (2/3)t.

If t is odd, t = 2q + 1 where q ≥ 1,

dλte ≤ dt/2e = q + 1 ≤ (4/3)q + 2/3 = (2/3)t.

Thus, in both cases,

dλte ≤ (2/3)t < (2/3)t + εt

from which it follows

dλte+ dεte = dλte+ 1 ≤ d(2/3)t + εte .

Algorithm 1 fifo - First In First Out
The server processes the requests in the same order as their release dates.

In the context of single-machine scheduling, the fifo algorithm (Algorithm
1) is optimal for the minimization of the maximum flow time of jobs. However, a
similar approach fails in server routing because of the costs incurred by moving
between distant requests.

Theorem 4.3. For every nontrivial graph G, there is a weak adversary A such
that (G, A, fifo) is unstable.

Proof. Consider any edge {v, w} of the graph, and suppose that the server starts
in w. Fix λ ∈ (1/2, 1). The requests are given alternatively in v and w at rate
λ. Note that fifo serves requests at a rate of at most 1/2, since it needs to
move after serving each request. But λ > 1/2, thus the system is unstable. In
general, if the graph has diameter δ, fifo is unstable at every rate greater than
1/(δ + 1).

Another natural algorithm is sstf or Shortest Seek Time First (Algorithm
2). The algorithm attempts to greedily minimize the distance traveled between
the service of any two requests.

Algorithm 2 sstf - Shortest Seek Time First
sstf works in phases. At the beginning of each phase, let v be the vertex with
a nonempty queue that is nearest to the current position of the server. At every
step during the phase, the server moves along a shortest path from the current
vertex to v. When it reaches v, it proceeds to empty v. When v has been
emptied, the phase ends.

6

Theorem 4.4. For every graph G of diameter at least 3 there is a weak adver-
sary A such that (G, A, sstf) is unstable.

Proof. Consider any chain v0v1v2v3 of length 3 in G, and suppose that the server
starts in v1. A first adversary A1 gives requests alternatively in v0 and v1, at a
rate of 1/2, so that as soon as a request is served in vi a new request appears
in v1−i. By Lemma 4.2, for any ε > 0 there exists an adversary A2 of rate ε
releasing requests in v3 such that A1 ∪A2 has rate at most 2/3 + ε. Notice that
requests of A1 keep the server between v0 and v1, so that requests in v3 will
never be served. Thus the system (G, A1 ∪A2, sstf) is unstable.

Two classical strategies for generic online service are replan and ignore
(Algorithms 3 and 4). Although for the purpose of minimizing the average flow
time they perform equally badly from the point of view of competitive analysis,
the following results establish ignore as a more robust algorithm. These results
are similar to those of Hauptmeier et al. [6].

Algorithm 3 replan

replan maintains a shortest walk on the set of vertices that have unserved
requests. Whenever the current vertex is nonempty, replan serves a request
there. Otherwise, it moves the server along the shortest walk. Whenever a new
request is released, the shortest walk is recomputed.

Algorithm 4 ignore

ignore works in phases. At the beginning of each phase, let o be the current
position of ignore. ignore computes a shortest schedule on the set of currently
unserved requests starting and ending at o. During the phase, ignore follows
the schedule, ignoring temporarily requests released after the beginning of the
phase. When the schedule has been completed, the phase ends.

Theorem 4.5. For every graph G of diameter at least 3 there is a weak adver-
sary A such that (G, A,replan) is unstable.

Proof. Consider any chain v0v1v2v3 of length 3 in the graph, and suppose that
the server starts in v0. The first adversary A1 gives the following requests:
(0, v3), (3, v0), (6, v3), and (9 + 3i, v0) for all i ≥ 0. The sequence is such that
starting from time 9, the server will never reach v3 again. The rate of A1 is 1/3;
thus, by Lemma 4.2, for any sufficiently small ε > 0 there exists an adversary
A2 of rate ε releasing requests in v3 such that A1 ∪A2 has rate at most 2/3 + ε.
The requests released by A2 do not change the behavior of replan, since they
are always scheduled after the requests released by A1. Thus the requests of A2

are never served and the system is unstable.

Theorem 4.6. ignore is universally stable.

7

Proof. Consider any graph of n vertices and any strong adversary of rate 1− ε
and burst µ. We start by proving by induction that at the beginning of every
phase the number of unserved request is bounded by

2(1− ε)(n− 1)/ε + µ/ε.

Let [t, t′) be a phase, let z be the number of requests served during the phase
and let u be the number of unserved requests at the beginning of the phase.
Then, by definition of ignore,

t′ − t ≤ 2(n− 1) + z (1)

since when ignore does not serve a request, its server moves along a shortest
closed walk spanning all the requests unserved at time t, and this walk cannot
be longer than twice the number of edges of a spanning tree of the graph. By
definition, ignore serves all those requests, which means that

z = u. (2)

The number of requests unserved at time t′ is then at most

u + (1− ε)(t′ − t) + µ− z ≤ 2(1− ε)(n− 1) + µ + u− εz by (1)
≤ 2(1− ε)(n− 1) + µ + (1− ε)u by (2)
≤ 2(1− ε)(n− 1)/ε + µ/ε by induction.

To conclude the proof we need to show that the duration of each phase is
bounded by a constant. But that is true because the duration of each phase is
at most 2n + u, where u is the number of unserved requests at the beginning of
the phase, and we just proved that u is bounded.

Finally, we propose an algorithm called tree-scan (Algorithm 5) that can
be seen as a generalization of the algorithm Scan frequently used in disk schedul-
ing [10]. Notice that tree-scan, differently from an algorithm such as ignore,
does not use phases and is greedy, in the sense that it always serves a request
from the current location of the server if possible.

Algorithm 5 tree-scan

Let W be a closed Eulerian walk on the graph obtained by doubling all the
edges of a spanning tree of G.
At every time step, if the current vertex has a nonempty queue, tree-scan
serves a request on the current vertex. Whenever the current vertex v has an
empty queue, tree-scan moves the server to the vertex following v in the walk
W .

Theorem 4.7. tree-scan is universally stable.

8

Proof. Again, consider any graph of n vertices and any strong adversary of rate
1− ε and burst µ. The proof is by induction on time steps. Consider any time
t′. Let t be the latest time before t′ during which the server was located at s(t′)
and such that between t and t′ tree-scan visited the whole graph (if there is
no such t, let t = 0). Let z be the number of requests served during [t, t′). Then

t′ − t ≤ z + 2(n− 1), (3)

since at each time step either the algorithm serves a request or it moves to the
next vertex in the walk W . Also, let u be the number of unserved requests
at time t. The inductive hypothesis is that u ≤ 2(1 − ε)(n − 1)/ε + µ/ε. All
requests unserved at time t are served at time t′ because the algorithm always
serves requests when visiting a vertex and during the interval [t, t′) the server
visited the entire graph; thus

z ≥ u. (4)

The number of requests unserved at time t′ is then at most

u + (1− ε)(t′ − t) + µ− z ≤ 2(1− ε)(n− 1) + µ + u− εz by (3)
≤ 2(1− ε)(n− 1) + µ + (1− ε)u by (4)
≤ 2(1− ε)(n− 1)/ε + µ/ε by induction.

5 A lower bound

In this section we show that, for every λ > 1/2, there is an adversary of rate λ
that can force the number of outstanding requests to grow up to Θ(n) on any
n-vertices graph, regardless of the algorithm used for service.

Theorem 5.1. Let P be any algorithm and G a graph on n vertices. For every
ε ∈ (0, 1/2), there exists a weak adversary A of rate 1 − ε such that eventually
the total number of unserved requests in the system (G, A, P) is at least

(1− 2ε)(n− 1)/ε + 1.

Proof. We break the construction of A into phases. A v-phase starts when the
server moves to v ∈ V and ends when it moves to some other vertex. At time t
in a v-phase, A injects a request at a vertex w ∈ V \{v} minimizing |U t

w|, as long
as this is compatible with the rate of A. We prove the claim by showing that in
any phase, either the total number of unserved request increases, or there were
already more than (1− 2ε)(n− 1)/ε + 1 requests pending.

Consider any v-phase. Let uv, u−v (u′v, u′−v, resp.) be the number of
unserved requests at v and V \ {v} at the start (end, resp.) of the phase. If zv

is the number of requests served during the phase at v, we have by construction

u′v = uv − zv (5)
u′−v = u−v + (1− ε)(1 + zv) (6)

zv ≤ uv. (7)

9

Suppose that the total number of unserved requests in the system does not
increase, that is

u′v + u′−v − (uv + u−v) ≤ 0. (8)

Combining (8) with (5) and (6),

(1− ε)(1 + zv)− zv ≤ 0.

Solving for zv, we get
zv ≥ (1− ε)/ε

and by (7), we obtain
uv ≥ (1− ε)/ε

so that the number of unserved requests at v at the beginning of the phase is
already at least (1−ε)/ε. But then consider the first time t that |U t

v| ≥ (1−ε)/ε.
By the way the adversary is defined, this can happen only when n − 2 other
vertices contain at least (1− ε)/ε− 1 = (1− 2ε)/ε requests each.

A consequence of Theorem 5.1 is that, when λ > 1/2, the upper bound on
the number of outstanding requests for ignore and tree-scan given in the
proofs of Theorems 4.6 and 4.7 is best possible up to a factor that depends on
λ but not on n.

6 Further directions

Our model suggests several open problems, as it can be easily generalized in
a number of directions. For example we may consider the dial-a-ride problem
[8], in which requests have both a source and a destination and the server is a
vehicle with some capacity; this allows to study applications such as elevator
scheduling. In this case, of course, the rate constraint on the adversary should
be reformulated appropriately, as done in Hauptmeier et al. [6]. Also, in our
model the processing time of a request is directly related to the speed of the
server: serving a request takes the same time as moving to an adjacent vertex.
It is natural to ask about the impact of arbitrary processing times.

Finally, in our opinion the most interesting problem suggested by our model
is the following: consider the online server routing problem on a graph, where
the objective is now minimization of the maximum number of unserved requests
at any time. Can we find a competitive algorithm for this problem? The com-
petitive ratio would necessarily depend on the characteristics of the graph (oth-
erwise it is easy to prove that no such algorithm can exist). In any case, we
think that such a competitive algorithm would be interesting because it would
be able to maintain a near-optimal number of unserved requests not only under
heavy load conditions (like ignore or tree-scan), but also under light load.

10

References

[1] H. Alborzi, E. Torng, P. Uthaisombut, and S. Wagner. The k-client prob-
lem. Journal of Algorithms, 41(2):115–173, 2001.

[2] M. Andrews, B. Awerbuch, A. Fernández, T. Leighton, Z. Liu, and J. M.
Kleinberg. Universal-stability results and performance bounds for greedy
contention-resolution protocols. Journal of the ACM, 48(1):39–69, 2001.

[3] M. Andrews, M. A. Bender, and L. Zhang. New algorithms for disk schedul-
ing. Algorithmica, 32(2):277–301, 2002.

[4] V. Bonifaci. Models and Algorithms for Online Server Routing. PhD thesis,
Technical University Eindhoven, The Netherlands, 2007. Available at http:
//www.dis.uniroma1.it/∼bonifaci/papers/phdthesis-tue.pdf.

[5] A. Borodin, J. M. Kleinberg, P. Raghavan, M. Sudan, and D. P. Williamson.
Adversarial queuing theory. Journal of the ACM, 48(1):13–38, 2001.

[6] D. Hauptmeier, S. O. Krumke, and J. Rambau. The online dial-a-ride prob-
lem under reasonable load. In G. Bongiovanni, G. Gambosi, and R. Pe-
treschi, editors, Proc. 4th Italian Conference on Algorithms and Complex-
ity, volume 1767 of Lecture Notes in Computer Science, pages 125–136.
Springer-Verlag, 2000.

[7] S. Irani, X. Lu, and A. Regan. On-line algorithms for the dynamic traveling
repair problem. Journal of Scheduling, 7(3):243–258, 2004.

[8] S. O. Krumke. Online optimization: Competitive analysis and beyond.
Habilitation Thesis, Technical University of Berlin, 2001.

[9] S. O. Krumke, L. Laura, M. Lipmann, A. Marchetti-Spaccamela, W. E.
de Paepe, D. Poensgen, and L. Stougie. Non-abusiveness helps: an O(1)-
competitive algorithm for minimizing the maximum flow time in the online
traveling salesman problem. In K. Jansen, S. Leonardi, and V. V. Vazirani,
editors, Proc. 5th Int. Workshop on Approximation Algorithms for Combi-
natorial Optimization, volume 2462 of Lecture Notes in Computer Science,
pages 200–214. Springer-Verlag, 2002.

[10] T. J. Teorey and T. B. Pinkerton. A comparative analysis of disk scheduling
policies. Communications of the ACM, 15(3):177–184, 1972.

11

http://www.dis.uniroma1.it/~bonifaci/papers/phdthesis-tue.pdf
http://www.dis.uniroma1.it/~bonifaci/papers/phdthesis-tue.pdf

	Introduction
	Related work
	The model
	Stability results
	A lower bound
	Further directions

