
A scheduling model inspired by control theory
Sanjoy Baruah

Washington University in St. Louis

USA

Vincenzo Bonifaci

IASI-CNR

Italy

Alberto Marchetti-Spaccamela

Sapienza University of Rome

Italy

Victor Verdugo

ENS Paris, France

Universidad de Chile

ABSTRACT
Certain control computations may be modeled as periodic tasks

with the correctness requirement that for each task, the fraction

of jobs of the task that complete execution by their respective

deadlines be no smaller than a specified value. This appears to be

a correctness requirement that has not previously been studied in

the real-time scheduling theory community; this paper formulates

the problem and proposes some solution strategies.

CCS CONCEPTS
• Computer systems organization → Real-time systems; •
Software and its engineering→ Scheduling; •Theory of com-
putation → Scheduling algorithms;

KEYWORDS
Control tasks, periodic preemptive scheduling, scheduling with

dropout

ACM Reference format:
Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and Vic-

tor Verdugo. 2017. A scheduling model inspired by control theory. In Pro-
ceedings of RTNS ’17, Grenoble, France, October 4–6, 2017, 10 pages.
https://doi.org/10.1145/3139258.3139272

1 INTRODUCTION AND MOTIVATION
In feedback (or closed loop) control, the state of a plant is monitored,

the error — deviation of the monitored value from a desired value –

is determined, and a control signal that should decrease the error is

computed and applied to the plant; this entire process is repeated

periodically. The computation of the control signal in such control

loops is often modeled as a periodic task, with each iteration of the

loop represented by a job of the task. In many application systems

there are multiple control loops, each responsible for controlling a

different aspect of the system’s behavior, that run simultaneously

upon a shared platform; determining an appropriate strategy for

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

RTNS ’17, October 4–6, 2017, Grenoble, France
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5286-4/17/10. . . $15.00

https://doi.org/10.1145/3139258.3139272

scheduling these control computations is thus a periodic scheduling

problem.

The property of bounded input bounded output (BIBO) stability

is desired of certain control systems. (Loosely speaking, a control

system is BIBO stable if every bounded input to the system results

in a bounded output.) Branicky, Phillips, and Zhang [2] explored

the effect upon stability of skipping the computation of the control

signal during some iterations and instead reusing the value that

was used during the previous iteration. They obtained strategies

for determining a minimal fraction of control-signal computations

that must be completed in order to ensure stability; in follow-up

work, Majumdar, Saha, and Zamani [9] derived techniques for de-

termining the minimal fraction of such computations that must

be completed in order to additionally achieve optimal disturbance

rejection performance. The work in [2, 9] suggests the following

task model for the scheduling of control computations.

Task model. Each control loop is modeled as a control task τi
that is characterized by three parameters: τi = (Ci ,Ti , ri) ∈ N ×
N × Q+, where Ci is the WCET, Ti the period, and ri a positive

rational number ≤ 1 denoting the desired asymptotic completion

rate for task τi (i = 1, . . . ,n). Such a task generates jobs; the k’th
job generated by τi has a release time (k − 1) × Ti , an execution

requirement no greater thanCi , and a deadline k ×Ti , for all integer
k ≥ 1.

It is not required that all the jobs generated by τi execute. In-
stead, let k1,k2 denote positive integers with k1 ≤ k2, and let

compi (k1,k2) denote the number of jobs out of the k1’th, (k1+1)’th,
(k1 + 2)’th, · · · , (k2 − 1)’th, k2’th jobs generated by τi that do com-

plete execution by their deadlines in some schedule. Below, we de-

fine two alternative requirements for the schedule to be considered

correct. The first definition, which we term the weak requirement

(Definition 1), is a formalization of the notion considered in [2, 9];

it requires that for each task τi the ratio of completed jobs to the

number of released jobs is asymptotically at least ri . Formally, we

require

Definition 1 (Weak reqirement). for each τi ,

lim inf

k→∞

compi (1,k)

k
≥ ri . (1)

Note that this is an asymptotic notion of correctness, which

does not restrict what may happen within any finite sequence of

successive jobs. In particular, it suffers from the limitation that the

completed jobs of a task may “cluster” around contiguous periods.

Consider, for example, a task τi with ri = 1/2; as per the definition

of the weak correctness requirement above, a schedule that skips

https://doi.org/10.1145/3139258.3139272
https://doi.org/10.1145/3139258.3139272

RTNS ’17, October 4–6, 2017, Grenoble, France S. Baruah et al.

every alternate job is as correct as one that skips the first million

jobs and then schedules the next million.But this is likely not what

the control engineer would believe; examples such as this indicate

that something was likely lost in translation in [2, 9] from control

theory to periodic scheduling. For this reason, in this paper we

propose and also study a strenghtened notion of correctness, which

we call the strong requirement (Definition 2) that requires that jobs

of task τi are scheduled, roughly, every 1/ri periods over all long
enough intervals. Formally, we require

Definition 2 (Strong reqirement). there is a constant k∗

such that, for each τi , for each k ≥ k∗ and k0 ≥ 1,

compi (k0,k0 + k − 1) ≥ ⌊kri ⌋ . (2)

Moreover, the constant k∗ should be polynomially related to the input
parameters (i.e., n, the Ti ’s, and the r−1i ’s).

Differently from the weak requirement, in the strong require-

ment the existence of the constant k∗ guarantees an a priori bound

on the number of concurrent (or neighboring) jobs that can be

skipped. (For example, for the task mentioned above with ri = 1/2,

a schedule that skips the first million jobs and then schedules the

next million would only be acceptable if k∗ = 2 · 106 was polynomi-

ally related to the input parameters.) Ideally we would like to find a

schedule that verifies the above definition with a small value of the

constant k∗; we point out here that the results we derive in Sections

4 and sec:general-period-version-3 verify the above definiton with

k∗ = 1.

This research. In this paper we address the following problem,

which we call the scheduling with dropout problem: Given a
collection T of n control tasks of the kind described above, determine
whether the collection can be scheduled correctly upon a preemptive
uniprocessor. We will consider both notions of correctness – the

weak requirement of Definition 1 and the strong requirement of

Definition 2.

Some obvious extensions of this open problem are also of interest,

both individually and in combinations:

(1) Determine appropriate algorithms for scheduling collections
of control tasks, and design efficient schedulability conditions
for these scheduling algorithms.

(2) Consider the multiprocessor version of this problem.

(3) Consider more general task models. This could include pe-

riodic tasks with offsets; sporadic (rather than periodic) ar-

rivals; models in which tasks are characterized by a relative
deadline parameter in addition to WCET and period; and

further generalizations.

In Section 6 we briefly discuss the extension of some of our results

to multiprocessor implementations of control tasks; we postpone

consideration of the remaining extensions to future work.

Relationship to prior work. The arbitration of control tasks has

been studied in previous papers from the perspective of control per-

formance [3, 10]. In the real-time systems literature, several models

have previously been proposed that allow for the specification of the

fact that some jobs of a task may be skipped during execution. Such

models include the (m,k)-firm model [5], models that allow for the

specification of a skip factor [8], and the weakly-hard taskmodel [1].

However, it should be evident that the control tasks model that we

are considering differs widely from these prior models, all of which

require allowed job-drops within explicitly-specified intervals of

a certain number of successive jobs. In contrast, the control tasks

model only requires that the fraction of correctly-scheduled jobs

be no smaller than a specified ratio asymptotically for the weak re-

quirement, and within a polynomially-bounded, but not explicitly

specified, duration for the strong requirement. This characteris-

tic of a real-time requirement that is only required to hold over

large time intervals appears to be novel and previously completely

unexplored.

Organization. The remainder of this paper is organized as follows.

We start out in Section 2 with some relatively straightforward

results, and characterize the complexity of the problems considered.

In Section 3 we discuss a special case of the problem, in which all

tasks have equal periods, under the weak requirement; although

this case is of limited interest (both because of the equal-periods

restriction and the fact that the weak requirement appears to be

a gross over-simplification of the actual requirements of control

systems), this section introduces many of the ideas that are further

exploited in order to develop solutions for the general (i.e., not

equal-period) problem under the strong requirement — this we do

in Sections 4 and 5. In Section 6 we extend some of our results to

multiprocessor platforms.

2 PRELIMINARIES
A trivial sufficient schedulability condition is obtained by simply

not exploiting the ability to skip jobs. In that case, it is obvious that

n∑
i=1

Ci
Ti
≤ 1 (3)

is clearly a sufficient condition for the system {τ1,τ2, . . . ,τn } to be

schedulable upon a unit-speed processor. However, this condition

is not necessary: it is obtained by completely ignoring the fact that

for each i , a fraction (1 − ri) of the jobs of the i t́h control task may

be dropped without penalty.

We now discuss a necessary but not sufficient schedulability

condition based on the observation that the quantity

(
ri ×

Ci
Ti

)
,

which we will refer to as the weighted utilization of the i’th control

task, denotes a tight upper bound upon the fraction of the comput-

ing capacity of a shared unit-speed processor that may need to be

devoted to executing the i’th control task τi ; hence,

n∑
i=1

ri
Ci
Ti
≤ 1 (4)

is clearly a necessary condition for the system {τ1,τ2, . . . ,τn } to be
schedulable upon a unit-speed processor. However, this condition

is not sufficient: consider the system {τ1,τ2,τ3} with τ1 = τ2 = τ3 =
(6, 10, 1/2). The summation evaluates to 0.9, but this instance is not

schedulable since only one job can “fit" into each period while each

of the three tasks desires to be scheduled during half the periods.

We observe that this example serves as a counter-example to [9,

(Proposition 1)], which had claimed that Condition 4 is an exact

test. Indeed, it is easily shown that there cannot be a non-trivial

A scheduling model inspired by control theory RTNS ’17, October 4–6, 2017, Grenoble, France

sufficient schedulability condition that depends only upon the sum

of the weighted utilizations of the tasks.

Theorem 1. For any constant c > 0, there are infeasible instances
of the scheduling with dropout problem satisfying the property

n∑
i=1

ri
Ci
Ti
≤ c . (5)

Proof: Consider the instance with the two tasks

τ1 = (T ,T , 1/T) ,τ2 = (1,T , 1) .

The weighted utilizations of these two tasks sum to 2/T , which
can be made smaller than c by choosing T > 2/c . However, this
instance is clearly unschedulable since τ2 needs to execute in every

period, while τ1 needs to execute in some period, and both tasks’

jobs cannot be accommodated within any single period. □

We complete this section by proving that the decision problem

of determining whether the scheduling with droput problem is hard

even in the equi-period case when all rates are equal.

Theorem 2. The scheduling with dropout problem assuming the
strong requirement is NP-hard in the strong sense, even when Ti = T
for all i = 1, 2, . . . ,n and all rates are equal.

Proof: We reduce from the NP-complete problem 3-Partition [4,

SP15]: given a set A of 3m elements, a bound T ∈ Z+, and a

size si ∈ Z+ for each i ∈ A such that T /4 < si < T /2 and∑
i ∈A si = mT , decide whether A can be partitioned into m dis-

joint sets A1,A2, . . . ,Am such that, for 1 ≤ k ≤ m,

∑
i ∈Ak si = T .

For each element i ∈ A, we create a control task τi = (Ci ,Ti , ri),
where Ci = si , Ti = T , ri = 1/m.

Suppose the 3-Partition instance is feasible. Then consider the

following periodic schedule with periodmT : during [(k − 1)T ,kT],
execute the control tasks corresponding to the elements ofAk . Over
[0,mT], the completion rate of a task τi is 1/m, so the schedule

satisfies the strong requirement.

Conversely, assume that a schedule exists such that COMPi (1,k)
≥ ⌊kri ⌋ for all k ≥ k∗ and for all i = 1, 2, . . . ,n. Let K ≥ k∗ be a
multiple ofm. We make the following observations:

• Each task is completed at least K/m times during [0,KT];
• Similarly, each task is completed at leastK/m+1 times during

[0, (K +m)T];
• But since

∑n
i=1 (K/m)si = KT , each task is completed exactly

K/m times during [0,KT];
• Therefore, each task is completed at least once during [KT ,
(K +m)T].

Based on the last property, we construct a solution to the 3-Partition

instance: define Ak to be the set of tasks scheduled during [(K +
k −1)T , (K +k)T], for k = 1, 2, . . . ,m. It is straightforward to check

that this solution defines a feasible partition. □

3 SCHEDULING UNDER THEWEAK
REQUIREMENT

In this section, we discuss the relationship between the scheduling

with dropout problem assuming the weak requirement, and the

bin-packing problem. As a warm-up, we introduce our approach

by considering a simple case. Namely, we consider the case of

equi-period tasks, and we propose an algorithm for generating a

schedule satisfying the weak requirement for any instance T =

(τ1,τ2, . . . ,τn) of the scheduling with dropout problem for which

it holds that

n
max

i=1

Ci
T
+

n∑
i=1

ri
Ci
T
≤ 1. (6)

Even though the above result is of limited interest due to the

above discussed limitations of the weak requirement, we elaborate

upon it here since it provides a simple introduction to the techniques

that are strengthened and further elaborated when we consider the

strong requirement.

The bin-packing problem [6, 7], requires to partition a given

collection of items, each of a specified size, among a given number

of equi-sized bins of a specified capacity, in such a manner that the

sum of the sizes of the items placed in each bin does not exceed

the capacity of the bin. Bin-packing is known to be NP-hard in the

strong sense; several heuristics have been proposed for solving it

approximately. We focus here upon the Worst-Fit Increasing (WFI)

heuristic, which may be defined as follows:

Definition 3 (WFI bin-packing). Consider the items in non-
decreasing order of size (i.e., smallest item first). In considering an
item, place it in the bin in which it fits the “worst;" i.e., in which there
is the maximum spare capacity left after the item has been added1.
For notational convenience, we will assume that ties are broken in
favor of the lower-indexed bin.

The following theorem characterizes the kinds of partitioning

obtained under WFI bin-packings.

Theorem 3. Let s0, s1, . . . , sN−1 denote a collection of N items
sorted by non-decreasing size, that is to be bin-packed amongm bins
indexed 0, 1, . . . , (m − 1). Under the WFI bin-packing heuristic, the
items are placed in the bins in round-robin order starting with bin 0;
i.e., for each i, 0 ≤ i < N , item si is placed in the bin that is indexed
(i modm).

Proof: At any iteration t of the algorithm, let T ti be the load of bin i

at the end of iteration t . We denote by it the bin used at iteration t
and by pt the size of the item considered.

To prove the theorem, it is sufficient to show that for every

iteration t , it+1 = it + 1 (modm). This is equivalent to showing

T ti t+1 ≤ T
t
i t+2 ≤ · · · ≤ T

t
0
≤ · · · ≤ T ti t , and we prove this invariant

by induction on t . For t = 1, it is clearly true. At iteration t + 1,

we process the item on bin it+1 = it + 1, because the invariant

at iteration t guarantees that this is the least loaded bin. Suppose

there exists a bin д , it + 1 with T t+1i t+1 < T t+1д , and let h ≤ t the
iteration when the last item on д was processed. At the beginning

of iteration h, the load of bin д is Th−1д ≤ Th−1i t+1 and then we have

that

Th−1i t+1 + p
t+1 ≤ T t+1i t+1 < T

t+1
д = Thд = T

h−1
д + ph ≤ Th−1i t+1 + p

h ,

which is a contradiction, because ph ≤ pt+1. Hence, T t+1i t+1 ≥ T
t+1
ℓ

for every ℓ , it + 1. At iteration t + 1 the only bin which changes

1
It is easy to see that this corresponds to placing the item in the bin that has currently

been filled the least.

RTNS ’17, October 4–6, 2017, Grenoble, France S. Baruah et al.

its load is it + 1, and then we have that

T t+1i t+2 ≤ · · · ≤ T
t+1
m ≤ · · · ≤ T t+1i t ≤ T t+1i t+1,

which proves the invariant at t + 1, and thus the theorem. □

We continue with an illustrative example to show how the WFI

heuristic can be used to approach our problem.

Example. Consider the following instance of the scheduling with

dropout problem comprising three equi-period tasks:

τi Ci Ti ri = ai/bi
τ1 4 8 2/3

τ2 3 8 1/3

τ3 3 8 1/3

We will construct a schedule for this instance over three succes-

sive periods of the tasks, in which τ1’s jobs will be executed correctly
in two periods and τ2’s and τ3’s jobs will be executed correctly in

one period each; a complete schedule solving the scheduling with

dropout problem is then obtained by repeatedly executing this 3-

period schedule. To construct this 3-period schedule, we first map

the scheduling with dropout problem to a bin-packing problem in

which there are three bins of size 8 each, each bin representing an

interval of duration equal to the common period of all the tasks„

and four items – two of size 4 each representing jobs of τ1, one of
size 3 representing a job of τ2, and another of size 3 representing a

job of τ3. Note that packings that solve this bin-packing instance
must satisfy an additional property in order to constitute accept-

able solutions to the original scheduling with dropout problem: the

two items representing jobs of τ1 must be placed in different bins.
And while bin-packing algorithms do not generally allow for the

specification of such additional constraints (indeed, several pop-

ular bin-packing heuristics, such as First-Fit Decreasing (FFD) or

Best-Fit Decreasing (BFD), would assign both jobs of τ1 to the same

bin), this is ensured by using WFI packing which considers the

items in non-decreasing order of size
2
. The items would therefore

by considered in the order τ2,τ3,τ1,τ1; by Theorem 3, the two items

corresponding to jobs of τ1 are placed in different bins.

A schedule-generation algorithm for the weak requirement
in the equi-period case. We now describe our algorithm used

in the example above in detail; it is also represented in high-level

pseudo-code form in Figure 1. Let T denote the common period of

all the tasks in the equi-period instance

T =

{
τi =

(
Ci ,T ,

ai
bi

)}n
i=1

of the scheduling with dropout problem for which we seek to con-

struct a schedule. LetM denote the least common multiple of the

bi ’s:

M
def

= lcm(b1,b2, . . . ,bn).

We now describe how to construct a schedule over the interval

[0,M ×T); this schedule may be executed repeatedly to obtain a

schedule over the entire time-line.

2
Although this is not an issue in this example, if multiple tasks have theirCi parameters

equal then the items must be ordered such that all the items representing each task’s

jobs occur consecutively.

In order to construct this schedule, we first transform the task

instance τ into an instance of the bin-packing problem as follows:

• Corresponding to each of the M time-intervals [j ×T , (j +
1) × T) for 0 ≤ j < M , we define a bin, indexed j, of size
equal to T , that represents the interval.
• Corresponding to each task τi , 1 ≤ i ≤ n, we define αi ←
(ai/bi) ×M items each of sizeCi . Each such item represents

one job of τi .

We now pack the items amongst the bins using the WFI bin-

packing heuristic. That is,

• We order the items according to non-decreasing size; in case

of equal size we order according to non-decreasing index

of the corresponding task, thereby ensuring that all items

corresponding to each task are considered successively even

if multiple tasks have the same Ci values.
• We consider the items in this order, assigning each to the bin

that has been filled the least thus far – by Theorem 3, this is

equivalent to assigning the items to the bins in round-robin

order.

If the bin-packing fails (i.e., all the items cannot be assigned to bins),

we report failure – we are unable to construct a schedule. Otherwise,

we construct the schedule as follows: For each j, 0 ≤ j < M , we

execute a job of each task of which a corresponding item is placed

in j’th bin, over the interval [j ×T , (j + 1) ×T).

Theorem 4. Given an instance of the equi-period scheduling with
dropout problem that satisfies Condition (6), the algorithm of Figure 1
does not report failure, and it constructs a schedule satisfying the
weak requirement.

Proof: Note that αi ≤ M for each τi , since ai/bi = ri ≤ 1. Thus,

Theorem 3 together with the correspondence between the WFI bin-

packing heuristic and the scheduling algorithm of Figure 1 implies

that there are no 2 jobs of the same task that are scheduled in the

same time interval.

We show that if the input instance satisfies Condition (6), then

for all j the total execution times of jobs to be scheduled in time-

interval [j × T , (j + 1) × T) is at most T , and so the algorithm

will not report failure. Assume by contradiction that the claim is

not correct and let us consider the smallest instance that violates

the claim. Namely, the claim is not verified when the algorithm

is considering a job of task τn ; let [ĵ ×T , (ĵ + 1) ×T) be the time-

interval according to the WFI bin-packing heuristic selected by the

algorithm to schedule such a job and Ŵ be the load of this time-

interval before the assignment the last job of τn . Since the algorithm
fails when we assign such a job we have that the total processing

time assigned to the interval exceeds T that is Ŵ ≤ T < Ŵ +Cn .
Since the WFI assigns a job to the bin in which it fits the worst, it

follows that before assigning the last job of τn every time-interval

has a total load that is at least Ŵ ; therefore we have

MŴ ≤

n−1∑
i=1

αiCi + (αn − 1)Cn .

A scheduling model inspired by control theory RTNS ’17, October 4–6, 2017, Grenoble, France

Input. An equi-period instance T = {τi = (Ci ,T ,ai/bi)}
n
i=1 of the scheduling with dropout problem.

– LetM denote the least common multiple of the bi ’s:M
def

= lcm{bi }
n
i=1.

– Construct a bin-packing instance as follows:

– There areM bins, each of size T

– Corresponding to each task τi , 1 ≤ i ≤ n, there are αi
def

= (ai/bi) ×M items, each of size Ci .
– Pack the items amongst the bins using the WFI bin-packing heuristic. In case of equal-size items order according to non-decreasing

index of the task to which the item corresponds.

– If some item does not fit into the bins, then report failure; else for each j, 0 ≤ j < M , execute a job of each task of which a

corresponding item is placed in j’th bin, over the interval [j ×T , (j + 1) ×T).

Figure 1: Algorithm for equi-period instances

The total processing time of jobs assigned to interval [ĵ×T , (ĵ+1)×T)
is Ŵ +Cn , and using the previous bounds it follows that

Ŵ +Cn ≤
1

M

n−1∑
i=1

αiCi +
(αn − 1

M
+ 1

)
Cn

=
1

M

n∑
i=1

αiCi +
(
1 −

1

M

)
Cn

≤ T .

where the last inequality is obtained by observing that αi/M = ri
and applying Condition (6). This contradicts the assumption that

the assignment of the last job of τn gives an unfeasible schedule of

time-interval [ĵ ×T , (ĵ + 1) ×T).
By the above construction, the number of completed jobs of task

τi during the first k time-intervals is always at least ⌊k/M⌋ riM .

Thus, as k → ∞, the ratio of completed to released jobs approaches

ri , satisfying Condition (1). □

Note that since maxi Ci/T ≤ 1 and

∑
i riCi/T ≤ 1 are both

necessary conditions for schedulability, the sufficient bound of

Condition (6) is within a factor of 2 from an optimum bound.

4 GUARANTEEING THE STRONG
REQUIREMENT: THE EQUI-PERIOD CASE

The algorithm derived in Section 3 above generates schedules that

are correct under the weak requirement of Definition 1. As stated

earlier, it is our opinion that the strong requirement of Definition

2 represents a more realistic formalization of the scheduling re-

quirements of control loops than the weak requirement does. We

therefore now seek to modify our algorithm in order that the sched-

ules it generates satisfy the strong requirement (Definition 2), rather

than merely the weak one. In this section, we will retain the equi-

period restriction on the task instance; the ideas and results we

develop here will be used in the next section to develop an algo-

rithm for the correct scheduling, under the strong requirement, of

task instances in which all periods need not be equal.

We first observe that the algorithm of Figure 1 possesses the

property that the jobs of each task are scheduled in contiguous time-

intervals. For example, if ri = 0.5 then the WFI-based algorithm

schedules jobs of task τi forM/2 contiguous time-intervals and it

does not schedule jobs of τi for the subsequentM/2 time-intervals.

If M is large this might not be acceptable. In the following we

propose a modification of the WFI scheduling policy such that the

jobs of task τi are scheduled – roughly – every 1/ri time-intervals;

we assume that all tasks have the same period T , and by scaling

down the WCETs we can assume that T = 1.

We first transform the rates of the tasks by defining r ′i = 2
⌈log

2
ri ⌉

.

Note that ri ≤ r ′i < 2ri . If
∑
i r
′
iCi > 1 or if Cmax > 1, we reject the

instance, otherwise we continue.

We consider tasks in increasing order of their modified rates r ′i .
We proceed as follows: first we consider tasks with rate 1; for each

of this set of tasks, a job is scheduled in each bin (period).

Then we consider the items associated to jobs of task τi with
rate 0.5 having maximum processing time; we assign jobs of this

task to bins 0, 2, 4, 6 . . .: this increases the load of bins 0, 2, 4, 6 . . .

by Ci . Then we consider the items associated to the second task

τi′ with rate 0.5 and we assign items of this task to bins 1, 3, 5,

This increases the load of bins 1, 3, 5, 7, . . . by Ci′ . Note that after
this step, the load of all odd (even) bins is the same, and that the

difference between the most loaded and the least loaded bin is

bounded by Cmax. Subsequently we assign jobs of remaining tasks

with rate 0.5; such tasks are assigned either to bins 0, 2, 4, 6 . . . if

the load of an even bin is lower than the load of an odd bin, or to

bins 1, 3, 5, 7, . . . otherwise. Note that in this way we maintain the

invariant that the load of all even (odd) bins is the same and that

the difference between the most loaded and the least loaded bin is

bounded by Cmax.

The algorithm proceeds in a similar pattern. To assign jobs of a

task with rate 2
−h

we first find j , the bin with the least load among

bins 1, 2, . . . , 2h − 1; if there are ties, let j be the smallest indexed

bin with least load. We assign the jobs of the considered task to

bins j + k2h , k = 0, 1, . . ., thus increasing the load associated to

such bins. Note that we never need to consider bins with index

larger thanM
def

= 1/min{r ′
1
, . . . , r ′n }. The algorithm is summarized

in Figure 2.

Lemma 1. At each step, the algorithm of Figure 2 assigns the jobs
of a task to bins having minimum load during that step.

Proof: Recall that when the algorithm assigns jobs of a task τ , with

rate r ′ = 2
−h

it assigns the jobs of the considered task to bins

j + k2h , k = 0, 1, . . ., where j is the bin with the lowest load among

bins 0, 1, 2, . . . , 2h − 1. Therefore to prove the lemma it is sufficient

to show that before the algorithm assigns jobs of task τ with rate

RTNS ’17, October 4–6, 2017, Grenoble, France S. Baruah et al.

Input. An equi-period instance τ = {τi = (Ci ,T ,ai/bi)}
n
i=1 of the scheduling with dropout problem.

– For each task let k (i) be the smallest value 2
−k (i)

s.t. 2
−k (i) ≥ ri ;

let r ′i = 2
−k (i)

be the rounded rate of τi ;

letM
def

= 1/min{r ′
1
, . . . , r ′n }

– For h = 1, 2, . . . , log
2
M assign jobs of task of rate 2

−h
as follows: for each task τi s.t. r

′
i = 2

−h

– let j be the bin with minimum load among bins 1, 2, . . . , 2h−1

– assign jobs of τi to bins j + k2h , k = 0, 1, . . .

- If some item does not fit into the bins, then report failure; else for each j, 0 ≤ j < M , execute a job of each task of which a

corresponding item is placed in j’th bin, over the interval [j ×T , (j + 1) ×T).

Figure 2: A second algorithm for equi-period instances

r ′ = 2
−h

for all j, j = 1, 2, . . . , 2h − 1 the load of bins j + k2h ,
k = 0, 1, . . ., is the same.

We prove this by induction. Clearly the statement is obviously

true when all tasks of rate equal to 1 (i.e. h = 0) have been consid-

ered. It is easy to see that it is also true when all tasks with rate

r ′ = 0.5 have been considered. In fact at each iteration we either

assign jobs of a task with rate r ′ = 0.5 either to time-intervals

0, 2, 4, 6 . . . or to time-intervals 1, 3, 5, 7, Hence the load of time-

intervals 0, 2, 4, 6 . . . (1, 3, 5, 7, . . .) is the same.

Assume the claim is true before we consider the first task, say

τi , of rate r
′
i = 2

−h
and observe by induction that for all j, j =

1, 2, . . . , 2h−1, the load of bins j + s2h−1, for s = 1, 2, . . . is the same.

Therefore it is also true that for all j, j = 1, 2, . . . , 2h , the load of

bins j + s2h , for s = 1, 2, . . . is the same. □

We now derive a sufficient schedulability condition for this sched-

uling algorithm:

Theorem 5. Given an instance of the equi-period scheduling with
dropout problem that satisfies

n
max

i=1

Ci
T
+ 2

n∑
i=1

ri
Ci
T
≤ 1, (7)

the algorithm of Figure 2 does not report failure, and it constructs a
schedule satisfying the strong requirement.

Proof: As in the proof of Theorem 4, we will show that if the input

instance satisfies Condition (7) then for all j the total execution

times of jobs to be scheduled in time-interval [j ×T , (j +1)×T) is at
most T . Assume by contradiction that the claim is not correct and

let us consider the smallest instance that violates the claim. Namely,

assume the claim is not satisfied when the algorithm is considering

task τn ; let ĵ be the index of the bin selected by the algorithm for

the first job of task τn and let Ŵ be the load of this bin before the

assignment of the jobs of τn . Since the algorithm fails when we

assign these jobs, we have that the total processing time assigned

to bin ĵ exceeds T , that is, Ŵ ≤ T < Ŵ +Cn .
Since the algorithm chooses ĵ as the least loaded bin in 0, 1, . . .,

r ′n
−1
− 1, we have

MŴ ≤ M
n∑
i=1

r ′i Ci ≤ 2M
n∑
i=1

riCi .

The total processing time of jobs assigned to interval [ĵ×T , (ĵ+1)×T)
isŴ +Cn , and using the previous bound and Condition (7) it follows
that

Ŵ +Cn ≤ 2

n∑
i=1

riCi +Cn ≤ T .

This contradicts the assumption that the assignment of the jobs of

τn results in an infeasible schedule. □

Characterizing this algorithm. Note that since maxi Ci/T ≤ 1

and

∑
i riCi/T ≤ 1 are both necessary conditions for schedulability,

the sufficient bound of Condition (7) is within a factor of 3 from an

optimum bound.

Computational complexity. Observe that in order to determine

the slot for processing the first job of task τi we need to consider

O (1/rmin) periods, where rmin = mini r
′
i ; therefore, the time com-

plexity is O (n/rmin). Moreover, if we store the bin index selected

by the algorithm for the first job of each task, then at run-time, at

the beginning of each period, we can decide in constant time for

each task τi whether the job released by task τi should be executed

or dropped.

5 GUARANTEEING THE STRONG
REQUIREMENT: THE GENERAL CASE

We now move on to the case where the tasks may not share a

common period. One approach could be to convert this case to the

equi-period case; namely, let π denote the greatest common divisor

(gcd) of the periods of all the tasks in the instance under considera-

tion. One could replace each individual task τi = (Ci ,Ti , ri = ai/bi)

by a task τ ′i that has period π and WCET (CiTi π). Observe that the

instance obtained by replacing each task in this manner is an equi-

period one, in which each task has a period equal to π . One could
then invoke the algorithm of Figure 1; unfortunately, this approach

is not correct, as the following example shows.

Example 1. Consider the following instance of the scheduling with
dropout problem, comprising three tasks.

τi Ci Ti ri = ai/bi
τ1 5 10 1/2

τ2 2 5 1/4

τ3 3 5 1/4

A scheduling model inspired by control theory RTNS ’17, October 4–6, 2017, Grenoble, France

The greatest common divisor (gcd) of the periods of the tasks in
the instance under consideration is π = 5. Thus, each individual task
τi = (Ci ,Ti , ri = ai/bi) is replaced by a task τ ′i that has period π

and WCET (CiTi π). The obtained instance is an equi-period one, in
which each task has a period equal to π .

After applying this step, our example task system is replaced by
the following one:

τ ′i C′i T′i r′i
τ ′
1

2
1

2
5 1/2

τ ′
2

2 5 1/4

τ ′
3

3 5 1/4

If we use the algorithm of Figure 1 to construct a schedule for the
equi-period instance obtained above, then the value ofM is lcm(2, 4, 4)
= 4; whileα1 = (2/4)×4 = 2;α2 = (4/4)×4 = 1; andα3 = (4/4)×4 =
1.

Therefore the WFI bin-packing would look like this:

τ ′
2

τ ′
1

τ ′
1

τ ′
3

bin 0 bin 1 bin 2 bin 3

Unfortunately, this does not correspond to a correct schedule for our
scheduling with dropout problem, since the two executions of τ ′

1
fall

into bins that correspond to different periods of the original task τ1.
That is, the period of τ1 corresponding to bins 0 and 1 sees τ1 receive
2.5 units of execution, as does the period corresponding to the bins 2
and 3; τ1’s job therefore does not receive the five units of execution
needed to execute correctly in either period. □

In the sequel we consider a different approach, based on applying

the WFI heuristic to the tasks according to a special order, which

can be seen as an extension of the approach of Section 4. We start

out in Section 5.1 considering the special case when all periods are

integer powers of two; subsequently in Section 5 we remove this

restriction.

5.1 Special case: periods are powers of two
Wewill extend the approach of Section 4 to the general case.We first

consider the case when periods are powers of two; the algorithm

for this case is presented in Figure 3.

Initially, the algorithm rounds up the rates to powers of 2; namely,

for every task τi we round its rate to r ′i = 2
⌈log

2
ri ⌉

, so that ri ≤
r ′i < 2ri .

The algorithm processes the tasks in non-increasing order of the

ratios r ′i /Ti ; at stage h the algorithm considers all tasks s.t. r ′i /Ti =

1/2h and assigns the first job of each of these tasks to the time

interval [0, 2h]. Other jobs of the task are assigned by replicating the

first assignment in subsequent intervals [(j−1)2h , j2h], j = 1, 2,

At each stage h, the tasks s.t. r ′i /Ti = 1/2h are considered in

order of non-decreasing periods, breaking ties arbitrarily; since

r ′i /Ti = 1/2h , then, in the considered time interval [0, 2h] we must

assign exactly one job for each considered task.

In order to explain how the first job of each task is assigned we

need some additional notation; let L(t) be the total processing time

(load) assigned to interval [t , t + 1]. When considering task τi s.t.

r ′i /Ti = 1/2h , with period, say, 2k , the time interval [0, 2h] is divided

into 2
h−k

subintervals If = [f 2k , (f + 1)2k], f = 0, 1, . . . , 2h−k − 1

of length 2
k
;Wf denotes the total load assigned to If (i.e.Wf =∑

t ∈If L(t)).

The first job of τi is scheduled within the interval I ˆf = [
ˆf 2k , (ˆf +

1)2k], s.t.W
ˆf is minimum (breaking ties arbitrarily), and it is sched-

uled in such a way to minimize the maximum load L(t) for t ∈ I
ˆf .

This can be achieved by repeatedly assigning a small fraction of

the job to the time interval with minimum load until the job is fully

scheduled. The goal is to spread the load assigned to time interval

I
ˆf as evenly as possible.

Subsequent jobs of task τi are similarly scheduled at time inter-

vals [
ˆf 2k + j2h , (ˆf + 1)2k j2h], j = 1, 2, Observe that after all

tasks τi s.t. r
′
i /Ti = 2

−h
have been considered the load assigned to

time t , t > 2
h
, is equal to L(t) = L(t mod 2

h).

Theorem 6. Given an instance of the scheduling with dropout
problem in which the periods are powers of two, and that satisfies

n
max

i=1

Ci
Ti
+ 2

n∑
i=1

ri
Ci
Ti
≤ 1,

the algorithm of Figure 3 does not report failure, and it constructs a
schedule satisfying the strong requirement.

Proof: We first show that if a schedule can be constructed by the

algorithm, then it satisfies the rate requirement. Indeed, the algo-

rithm schedules a job of task τi everyTi/r
′
i time units; since r ′i ≥ ri ,

the claim follows.

We now show that the algorithm does not report failure. Without

loss of generality we can assume that the smallest period of a task is

1 and we will show that if the input instance satisfies the conditions

of the theorem, then for each t the total execution times of jobs to

be scheduled in time-interval [t , (t + 1)] is at most 1.

Assume by contradiction that the claim is not correct, and let

us consider the smallest instance that violates the claim. Then, by

renaming the tasks in the order they are processed by the algorithm,

we can assume that the algorithm reports failure when considering

task τn .
Let I

ˆf be the time interval selected by the algorithm for executing

the first job of τn and assume that τn is processed in stage h, i.e.,

r ′n/Tn = 2
h
.

Let L(t) (L′(t)) be the load at time t before (after) jobs of task τn
have been scheduled; similarly let Lmax (L

′
max

) be themaximum load

before (after) jobs of task τn have been assigned to time intervals.

Since after assigning task τn the solution is not feasible, it follows

that from some tc , Lmax ≤ 1 < L′
max
= L′(tc); then L(t) = L(t

mod 2
h) implies that there should be a t0, t0 ∈ I

ˆf , s.t. L
′(t0) =

L′
max
> Lmax.

RTNS ’17, October 4–6, 2017, Grenoble, France S. Baruah et al.

Input. An instance τ = {τi = (Ci ,Ti , ri)}
n
i=1 of the scheduling problem with dropout, such that each Ti is a power of 2

– For each task let k (i) be the smallest value 2
−k (i)

s.t. 2
−k (i) ≥ ri ;

let r ′i = 2
−k (i)

be the rounded rate of τi ;

– For h = 0, 1, 2, . . . assign the jobs of tasks τi s.t. T
′
i /r
′
i = 2

h
, as follows:

– let
ˆf be an index s.t.Wf , f = 0, 1, . . . , 2h−k − 1, is minimum

– schedule the first job of task τi within I
ˆf , in such a way to maximize the minimum load in [(f 2k − 1), f 2k+1], f = 1, 2, . . .

– if the load of any time-slot exceeds 1, report failure

– assign the j- job of τi by replicating the previous schedule in time interval [j · 2h , (j + 1) · 2h], j = 1, 2, . . .

Figure 3: Algorithm for the case where the periods are powers of 2

The crucial observation is that if L′(t0) = L′
max
> Lmax, then the

way the processing demand of the first job of task τn is scheduled

implies that
3

L′(t) = L′
max

for all t ∈ I
ˆf .

Assume that the algorithm assigns the first job of τn to I
ˆf and let

W
ˆf andW ′

ˆf
be the total load of I

ˆf before and after the assignment

respectively. Clearly we have

W ′
ˆf
=W

ˆf +Cn .

Note that the way the job is scheduled in I
ˆf implies that the load

over the whole interval after the assignment is the same for all time

instants belonging to the interval, i.e.,

L′
max
=W ′

ˆf
/2k .

Since the algorithm chooses I
ˆf as the interval with minimum

total load, then we have that the average load in it is no greater

than the average load in [0, 2h], that is

W
ˆf

2
k
≤

n−1∑
i=1

r ′i
Ci
Ti
.

Putting together the above inequalities we have

L′
max

= W ′
ˆf
/2k = (W

ˆf +Cn)/2
k

≤

n−1∑
i=1

r ′iCi/Ti +Cn/2
k

≤ 2

n∑
i=1

riCi/Ti +Cn/Tn

≤ 1.

This contradicts the assumption that the assignment of jobs of

τn results in the algorithm reporting failure. □

Characterization. Note, again, that the bound in Theorem 6 is

within a factor of 3 of an optimum bound and that the strong

requirement is satisfied with k∗ = 1.

3
We observe that in general it is not true that after assigning the first job of a task all

intervals that are in the considered time interval have the same load; however, this is

true if the assignment of a task increases the maximum load.

5.2 General case
We now show how to extend the algorithm of Figure 3 to the case of

general periods. We proceed in two steps; in the first one we round

the periods to powers of 2 and we apply the algorithm of Figure

3 to construct a schedule. The obtained solution, however, is not

feasible because it incurs the same problem that was highlighted in

the example at the beginning of this section (i.e., a job of task τi with
period Ti may be scheduled in an interval [t1, t2] of length Ti that
overlaps with two intervals [kTi , (k +1)Ti] and [(k +1)Ti , (k +2)Ti]
for some k . In the second step we adapt this solution by assigning

jobs of such tasks τi into properly aligned intervals.

Namely, for each taskτi we define amodified taskτ ′i = (Ci ,T
′
i , r
′
i)

with the same WCET and periods and rates that are powers of two.

We first modify the periods of each task; namely if the period of

τi is a power of two then the modified period T ′i is equal to Ti ; for
each task τi whose period is not a power of two we consider the

rounded period of τi to be T ′i = 2
b
, so that Ti/2 < T ′i ≤ Ti and b

is integer. Then we compute the rounded rate r ′i = 1/2a so that

ri/Ti ≤ r ′i /T
′
i < 2ri/Ti and a is integer.

We now apply the algorithm of Figure 3 to the above modified

instance of the problem, obtaining a solution S ′. Namely, for each

task τ ′i , we obtain an interval Ji = [ti , ti +T
′
i] where one job of τ

′
i

among those released in [0,T ′i /r
′
i] will be scheduled.

In order to obtain a feasible schedule from S ′ we now find an

assignment for the first job of τi , i = 1, 2, . . . ,n; we observe that
there exists an integer дi,1 such that the interval Ii = [дi,1Ti , (дi,1+
1)Ti] overlaps with Ji and such that in Ii ∩ Ji at least half of the first
job of τ ′i is scheduled in S

′
. The first scheduled job of τi is executed

in Ii ; note that this can be accomplished by doubling (at most) the

processor share assigned to τ ′i in S .
To schedule subsequent jobs of τi we proceed similarly. Namely,

the j-th job of τi that is released at jTi is scheduled if and only if

there exists an integer дi, j such that the interval Ji (h) = [(ti +
дi, jT

′
i /r
′
i), (ti +дi, jT

′
i /r
′
i) +T

′
i] overlaps with [jTi , (j + 1)Ti] and at

least half of h-th job of τ ′i is processed in Ji (h)ˆ[jTi , (j + 1)Ti].

Theorem 7. Given an instance of the scheduling with dropout
problem that satisfies

2

n
max

i=1

Ci
Ti
+ 8

n∑
i=1

ri
Ci
Ti
≤ 1,

A scheduling model inspired by control theory RTNS ’17, October 4–6, 2017, Grenoble, France

then the algorithm does not report failure, and it constructs a schedule
satisfying the strong requirement.

Proof: Let S be the solution found by the algorithm. We first show

that the algorithm is feasible. Namely, we show that for each time

instant t the total processing time assigned by the algorithm to

[t , t + 1] is bounded by 1.

Consider the solution S ′ that schedules the modified tasks ob-

tained by rounding periods and rates. Let L(t) and L′(t) be the

total load assigned to time interval [t , t + 1] in solution S and S ′,
respectively. By reasoning similarly to the proof of Theorem 6, we

have that for each t , L(t), the load assigned to time t in solution S ′

verifies

L′(t) ≤ max

i
(Ci/T

′
i) + 2

n∑
i=1

r ′iCi/T
′
i .

Since the algorithm schedules jobs of task τi to the time interval

that schedules at least half of the rounded task τ ′i it follows that

L(t) ≤ 2L′(t), for all t . Since Ti ≥ T
′
i and r ′i /T

′
i ≤ 2ri/Ti we have

L(t) ≤ 2L′(t) ≤ 2max

i
(Ci/T

′
i) + 4

n∑
i=1

r ′iCi/T
′
i

≤ 2max

i
(Ci/Ti) + 8

n∑
i=1

riCi/Ti

≤ 1

We then show the solution found by the algorithm verifies the

rate requirement. In fact the algorithm starts the schedule of a job

of task τi everyT
′
i /r
′
i +T

′
i time units at most; sinceT ′i r

′
i ≥ Tiri , the

claim follows. □

6 EXTENSION TO MULTIPROCESSOR
PLATFORMS

We finally show how to extend our results to a platform of m
identical processors. The following theorem generalizes the scaled

utilization bound of Theorem 1.

Theorem 8. For any ϵ > 0, there are instances of the scheduling
with dropout problem that are infeasible form identical processors
(assuming global scheduling) and yet satisfy

n∑
i=1

ri
Ci
Ti
≤ (m − 1) + 2ϵ . (8)

Proof: Let T = ⌈1/ϵ⌉ and consider an instance with (m + 1) tasks;
the first two tasks are defined as follows

τ1 = (T ,T , 1/T), τ2 = (1,T , 1);

the remaining tasks τ3, . . . ,τ(m+1) have parameters (T ,T , 1).
The weighted utilizations of the tasks sum to (m − 1) + 2/T .

However, this instance is clearly unschedulable according to either

the weak or the strong requirement, even if global scheduling is

assumed. □

We finally observe that our bin-packing approach to the problem

can be extended to provide sufficient schedulability conditions at

least in the equi-period case. In the sequel we extend the result of

Theorem 5 to multiprocessors.

To find a feasible schedule onm identical processors we use the

following algorithm:

(1) given a task set T = {τi = (Ci ,T ,ai/bi)}
n
i=1 consider a new

task set T′ = {τ ′i = (Ci ,mT ,ai/bi)}
n
i=1;

(2) apply algorithm of Figure 2 to T′, obtaining a uniprocessor

schedule S ′;
(3) each time slot of lengthmT in S ′ is subdivided into a schedule

of a time slot of length T on them machines.

Theorem 9. i) Given an equi-period task set T that satisfies

n
max

i=1

Ci
T
+ 2

n∑
i=1

ri
Ci
T
≤ m

there exists a global scheduling algorithm that constructs a correct
solution to T with respect to the strong invariant.
ii) Given an equi-period task set T that satisfies

max

i=1

Ci
T
+ 2

n∑
i=1

ri
Ci
T
≤

m

2

there exists a partitioned scheduling algorithm that constructs a correct
solution to T with respect to the strong invariant.

Proof: i) We proceed as described above and we define a modified

task set where each task has periodmT . Theorem 5 implies that the

algorithm of Figure 2 applied to T′ finds a feasible solution.

Recall that all tasks have the same period, and let A(k) be the set
of tasks scheduled by the algorithm in [kmT , (k + 1)mT]. This set
of tasks corresponds to a set of tasks with processing time at most

mT . Since the processing time of each task is less thanT , this set of
tasks can be scheduled using global scheduling onm processors.

ii) In this case the modified task set T′ is defined as follows:

T′ = {τ ′i = (Ci ,mT /2,ai/bi)}
n
i=1. Let A(k) be the set of tasks of T

′

scheduled by the algorithm in [kmT , (k + 1)mT]. This set of tasks
corresponds to a set of tasks with total processing time at most

mT /2 and each processing time is at most T /2. By partitioning the

set of tasks in A(k) using heuristics such as Best Fit (BF) or First Fit

Decreasing (FFD), one obtains a partition of the jobs A(k) intom
bins of size T . □

We expect that a similar approach can be used to extend the

results of Section 5 as well; thorough investigation of this is left as

future work.

7 SUMMARY AND CONCLUSIONS
The run-time behaviors of various sensing and actuation aspects

of many complex cyber-physical systems are governed by control

loops. As the functionalities performed by these cyber-physical

systems become increasingly more complex, such control loops

may become very computation-intensive; there is an increasing

need to carefully schedule such control loops upon the limited

computational platforms that may be available.

In this paper, we have considered a particular problem that has

previously been considered in the control literature (in, e.g., [2, 9])

– how does one co-schedule a collection of independent control

loops, each of which is allowed to skip occasional iterations, upon a

shared computational platform? We have proposed two scheduling-

theoretic formalizations of the notion of correctness that has pre-

viously been used in the control theory literature. The definition

of correctness used in earlier work [2, 9] is formalized here as

RTNS ’17, October 4–6, 2017, Grenoble, France S. Baruah et al.

the weak correctness requirement (Definition 1); we believe that

this definition does not do full justice to the actual expectations

of control engineers. We accordingly propose a stronger notion of

correctness, which we formalize as a strong correctness require-

ment (Definition 2). We characterize the computational complexity

of determining whether a given collection of control loops, each

represented as an implicit-deadline periodic task with an expected

rate of successful executions, can be scheduled correctly upon a

preemptive uniprocessor platform. We derive, prove correct, and

characterize approximation algorithms for doing such scheduling.

While we believe we have made significant progress in initiating

a formal scheduling-theoretic study of the problem of scheduling

control loops, there is a lot of work that remains to be done — this

includes efforts at more accurate characterization (and meaning-

ful formalization) of the problems, and efforts at obtaining more

efficient solutions. We expect that satisfactory progress in solv-

ing this problem would require close cooperation amongst domain

specialists in control and scheduling theory.

ACKNOWLEDGMENTS
This research is supported by NSF grants CNS 1409175 and CPS

1446631, AFOSR grant FA9550-14-1-0161, and ARO grant W911NF-

14-1-0499.

REFERENCES
[1] G. Bernat, A. Burns, and A. Liamosi, “Weakly hard real-time systems,” IEEE Trans-

actions on Computers, vol. 50, no. 4, pp. 308–321, 2001.
[2] M. Branicky, S. Phillips, and W. Zhang, “Scheduling and feedback co-design for

networked control systems,” in Proceedings of the 41st IEEE Conference on Decision
and Control, vol. 2, Dec 2002, pp. 1211–1217.

[3] A. Cervin, “Analysis of overrun strategies in periodic control tasks,” in IFAC
Proceedings, vol. 38, no. 1, pp. 219–224. Elsevier, 2005.

[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, 1979.

[5] M. Hamadaoui and P. Ramanathan, “A dynamic priority assignment technique for

streamswith (m, k)-firm deadlines,” in Proceedings of the 23rd Annual International
Symposium on Fault-Tolerant Computing (FTCS ’94). IEEE Computer Society

Press, Jun. 1994, pp. 196–205.

[6] D. S. Johnson, “Near-optimal bin packing algorithms,” Ph.D. dissertation, Depart-

ment of Mathematics, Massachusetts Institute of Technology, 1973.

[7] D. S. Johnson, “Fast algorithms for bin packing,” Journal of Computer and Systems
Science, vol. 8, no. 3, pp. 272–314, 1974.

[8] G. Koren and D. Shasha, “Dover
: An optimal on-line scheduling algorithm for

overloaded real-time systems,” Computer Science Department, New York Univer-

sity, Tech. Rep. TR 594, 1992.

[9] R. Majumdar, I. Saha, and M. Zamani, “Performance-aware scheduler synthesis

for control systems,” in Proceedings of the Ninth ACM International Conference on
Embedded Software, ser. EMSOFT ’11. ACM, 2011, pp. 299–308.

[10] T. Yoshimoto and T. Ushio, “Optimal arbitration of control tasks by job skipping in

cyber-physical systems,” in Proceedings IEEE/ACM Second International Conference
on Cyber-Physical Systems. IEEE, 2011, pp. 55–64.

	Abstract
	1 Introduction and motivation
	2 Preliminaries
	3 Scheduling under the weak requirement
	4 Guaranteeing the strong requirement: the equi-period case
	5 Guaranteeing the strong requirement: the general case
	5.1 Special case: periods are powers of two
	5.2 General case

	6 Extension to multiprocessor platforms
	7 Summary and conclusions
	Acknowledgments
	References

