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Abstract—The sporadic DAG task model exposes parallelism
that may exist within individual tasks to the run-time scheduling
mechanism, and is therefore considered a particularly suitable
model for representing recurrent real-time tasks that are to
be implemented upon multiprocessor platforms. This paper
proposes and evaluates an extension to the model to allow for
the concurrent modeling of conditional execution of pieces of an
individual task, along with the modeling of intra-task parallelism.
The Global Earliest Deadline First (GEDF) scheduling of systems
represented in this generalized model is studied, and a GEDF-
schedulability test is derived. With regards to GEDF scheduling
it is shown that there is no penalty, either in terms of worse
speedup factor or poorer run-time complexity, in generalizing
the sporadic DAG tasks model in this manner.

I. INTRODUCTION

The sporadic DAG task model [3] was introduced to permit
the representation of parallelism that may be present within
individual recurrent tasks. A task τi in this model is specified
as a 3-tuple (Gi, Di, Ti), where Gi is a directed acyclic graph
(DAG), and Di and Ti are positive integers representing the
relative deadline and period parameters of τi respectively.
The task τi repeatedly releases dag-jobs, each of which is
a collection of (sequential) jobs. Successive dag-jobs are
released a duration of at least Ti time units apart. The DAG
Gi is specified as Gi = (Vi, Ei), where Vi is a set of vertices
and Ei a set of directed edges between these vertices. Each
v ∈ Vi represents the execution of a sequential piece of
code (such execution is called a “job”), and is characterized
by a worst-case execution time (wcet). The edges represent
dependencies between the jobs: if (v1, v2) ∈ Ei then job v1
must complete execution before job v2 can begin execution.
(Job v1 is called a predecessor job of v2, and job v2 is called
a successor job of v1.) Jobs that are not predecessors or
successors of each other, either directly or transitively, may
execute simultaneously upon different processors. A release
of a dag-job of τi at time-instant t means that all |Vi| jobs
v ∈ Vi are released at time-instant t. If a dag-job is released
at time-instant t then all |Vi| jobs that were released at t must
complete execution by time-instant t+Di.

As stated above, the sporadic DAG tasks model assumes
that each release of a dag-job of τi causes the release of jobs
corresponding to each and every vertex in Vi. However, control
structures (such as conditional — if-then-else —constructs)
within the code that is being modeled by the task may mean
that different activations of the task (i.e., different dag-jobs)
cause different parts of the code to be executed. Assuming
that jobs corresponding to all the vertices in Vi will execute

during each such activation is pessimistic; there is a need
to be able to model the fact that different dag-jobs of the
same task may cause different collections of jobs to be
executed. To our knowledge, the multi-DAG model proposed
by Fonseca et al. [6] represents the first attempt at concurrently
modeling both intra-task parallelism and conditional execution
in recurrent real-time task systems. The multi-DAG model
models each recurrent task as a collection of “execution flows,”
each of which represents a different flow of control through
the code being modeled by the task; each such execution flow
is explicitly modeled as a separate DAG.

Although the multi-DAG model does indeed succeed in
achieving its goal of generalizing the sporadic DAG task model
to represent conditional control-flow constructs, this general-
ization comes at a significant price in terms of computational
complexity. As stated above, each possible flow of control
(called “execution flow”) through the code modeled by an
individual task is explicitly represented by a separate DAG,
and the number of such flows is an important parameter in
determining the efficiency of the schedulability analysis and
run-time scheduling algorithms proposed in [6]. But there may
in general be exponentially many different flows through a
graph. Consider for example code structured like this:

if (C1) then {S11} else {S12}
if (C2) then {S21} else {S22}
if (C3) then {S31} else {S32}
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
if (Cn) then {Sn1} else {Sn2}

where each (Ci) represents a boolean condition, and each
{Sij} a block of straight-line code. It is evident that such a
code fragment may have 2n different execution flows through
it; hence, requiring explicit enumeration of all execution flows
and having the number of such flows be a determinant in
the computational complexity of scheduling and schedulability
analysis algorithms means that these algorithms all have
exponential worst-case run-time.

Other related work. The scheduling problem of paral-
lel tasks on multiprocessor systems is receiving significant
attention in the RT community. Parallel task models have
been proposed to represent the task parallelism required by
paralleling programming models (e.g. OpenMP): we mention
the fork-join model [7] and the synchronous parallel model
[12], [1], [10], [5] that are more restrictive than the DAG
model. Regarding the DAG model, several results have been



recently obtained about schedulability tests for EDF and other
scheduling policies [3], [4], [8], [11], [2], [13], [9]. To the best
of our knowledge, all previous research on the DAG model
assumes that there are no conditional statements.

This research. We propose the conditional sporadic DAG task
model as an extension to the sporadic DAG task model [3] that
is capable of modeling certain conditional control-flow con-
structs (including the cascade of if-then-else commands
depicted above). We consider the Global Earliest-Deadline
First (GEDF) scheduling of task systems that are modeled as
collections of conditional sporadic DAG tasks; this is in con-
trast to the approach of [6], which develops entirely new (and
rather complicated) server-based mechanisms for the run-time
scheduling of systems of multi-DAG tasks. We quantitatively
evaluate the effectiveness of GEDF as a scheduling mechanism
for systems of conditional sporadic DAG tasks via the speedup
factor metric. We show that the tight speedup bound of

(
2− 1

m

)
that was obtained in [4] for the GEDF scheduling of traditional
(non-conditional) sporadic DAG task systems is easily shown
to hold for systems of conditional sporadic DAG tasks as well.
This means that at least from the perspective of speedup factor,
the added expressive capabilities of the conditional sporadic
DAG tasks model comes at no additional cost.

Deriving an effective GEDF schedulability test for condi-
tional sporadic DAG task systems turns out to be more chal-
lenging than showing the speedup bound – straight-forward
extensions of the techniques from [4] require the enumeration
of all paths through the DAG-representation of the task (as in
the approach of [6]), and result in exponential-time algorithms.
We develop a novel transformation strategy that converts each
conditional sporadic DAG task to a non-conditional one in
polynomial time, and tests the system of transformed tasks for
GEDF schedulability using the test provided in [4]. We show
that the resulting GEDF schedulability test for conditional
sporadic has a speedup factor equal to (2 − 1/m + ε) for
any constant ε > 0; once again, this is the same result as was
available for traditional (i.e., not conditional) sporadic DAG
task systems.

Organization. The remainder of this paper is organized as
follows. In Section II we formally define the conditional
sporadic DAG tasks model, a generalization of the sporadic
DAG tasks model of [3]. In Section III we review some prior
work, primarily from [4], on the GEDF scheduling of task
systems represented using the traditional (non-conditional)
sporadic DAG tasks model. In Sections IV and V we describe
how the results described in Section III may be extended to
hold for task systems that are represented using the conditional
sporadic DAG tasks model as well.

II. CONDITIONAL SPORADIC DAG TASKS

Conditional sporadic DAG tasks are a generalization to the
traditional sporadic DAG tasks [3] as described in Section I
above. As with the traditional sporadic tasks, each conditional
sporadic DAG task τi is specified as a 3-tuple (Gi, Di, Ti),
where Gi = (Vi, Ei) is a DAG, and Di and Ti are positive

integers. We require that Gi have a single source vertex and
a single sink vertex.1 Conditional vertices are special vertices
in Vi that are defined in pairs. Let (c1, c2) be such a pair in
the DAG Gi = (Vi, Ei). Informally speaking, vertex c1 can be
thought of representing a point in the code where a conditional
expression is evaluated and, depending upon the outcome of
this evaluation, control will subsequently flow along exactly
one of several different possible paths in the code. It is required
that all these different paths meet again at a common point in
the code, represented by the vertex c2. More formally,

1) There are multiple outgoing edges from c1 in Ei.
Suppose that there are exactly k outgoing edges from c1
to the vertices s1, s2, . . . , sk, for some k > 1. We call
k the branching factor of this conditional. Then there
are exactly k incoming edges into c2 in Ei, from the
vertices t1, t2, . . . , tk,

2) For each ` ∈ {1, 2, . . . , k}, let V ′` ⊆ Vi and E′` ⊆ Ei
denote all the vertices and edges on paths reachable from
s` that do not include vertex c2. By definition, s` is the
sole source vertex of the DAG G′`

def
= (V ′` , E

′
`). It must

hold that t` is the sole sink vertex of G′`.
3) It must hold that V ′`

⋂
V ′j = ∅ for all `, j, ` 6= j.

Additionally, with the exception of (c1, s`) there should
be no edges in Ei into vertices in V ′` from vertices not
in V ′` , for each ` ∈ {1, 2, . . . , k}. I.e., Ei

⋂
((Vi \ V ′` )×

V ′` ) = {(c1, s`)} should hold for all `.
Edges (v1, v2) between pairs of vertices neither of which are
conditional vertices represent precedence constraints exactly
as in traditional sporadic DAG tasks, while edges involving
conditional vertices represent conditional execution of code.
More specifically, let (c1, c2) denote a defined pair of con-
ditional vertices (recall that conditional vertices are always
defined in pairs).
• After the job c1 completes execution, exactly one of

its successor jobs becomes eligible to execute; it is not
known beforehand which successor job may execute.

• Job c2 begins to execute upon the completion of exactly
one of its predecessor jobs.

The branching factor for an “if-then-else” condition is 2.
Without loss of generality, we will assume in this paper that
all conditionals have branching factor 2; conditionals with
branching factor > 2 can always be converted to an equivalent
sequence of conditionals with branching factor two with no
more than a polynomial increase in the size of the DAG.

Some additional terminology: for each pair (c1, c2) of
conditional vertices in Gi, we refer to the subgraph of Gi
beginning at c1 and ending at c2 as a conditional construct in
Gi. Each conditional construct represents a branching choice
in the code that is being modeled by Gi. A canonical condi-
tional construct with branching factor 2 is depicted pictorially
in Figure 1. It is permitted in our model that conditional

1Note that any DAG with multiple sources and/ or sinks can trivially be
transformed to satisfy this requirement, by perhaps adding a dummy source
and/ or a dummy sink. Hence adding this requirement does not reduce the
expressiveness of the sporadic DAG tasks model.



constructs be nested: a conditional construct may contain
additional conditional constructs within it. (Later, we will
use the term inner-most conditional construct to denote a
conditional construct that does not contain any conditional
constructs within it.)

c2

s2 t2

t1s1

G0
2 = (V 0

2 , E0
2)

G0
1 = (V 0

1 , E0
1)

c1

Fig. 1. A canonical conditional construct with branching factor 2. Vertices s1
and t1 (vertices s2 and t2, resp.) are the sole source vertex and sink vertex
of G′

1 (G′
2, resp.).

The DAG for an example conditional sporadic DAG task
is depicted in Figure 2. Small solid circles denote “dummy”
vertices, which correspond to jobs with wcet equal to zero. Di-
amond and oval vertices denote start and end conditional ver-
tices, respectively; there are two pairs of conditional vertices
in this DAG, each with branching factor equal to two. (For
those reading this on a color medium, the upper conditional
construct is represented in blue; the lower conditional construct
in red.) The semantics of this DAG task are as follows. When-
ever a dag-job is released, the dummy source vertex has zero
execution requirement and therefore immediately completes
execution. Two vertices, with wcets 3 and 6 respectively, both
become eligible for execution. Once both these jobs have
completed, three jobs become eligible simultaneously.
• A conditional expression with a wcet of 1 is evaluated;

depending upon the outcome of this evaluation, either
three jobs each with wcet equal to 8, or two jobs each
with wcet equal to 10, are executed.
After these jobs complete, a single job with wcet equal
to 12 is executed.

• Another conditional expression that has a wcet of 2 is
evaluated. Depending upon the outcome of this evalua-
tion, either a single job with a wcet equal to 8, or two
jobs with wcet equal to 4 and 6 respectively, are executed.

• A single job with wcet equal to 12 is executed.

We seek to schedule a given collection of n conditional spo-
radic DAG tasks τ1, τ2, . . . , τn upon m unit-speed processors.
In this paper, we restrict our attention to constrained deadline
systems: those in which Di ≤ Ti for all tasks τi in the system.

Some additional notation and terminology:
• A chain in DAG task τi is a sequence of vertices
v1, v2, . . . , vk ∈ Vi such that (vj , vj+1) is an edge in
Gi, 1 ≤ j < k. The length of this chain is defined to
be the sum of the wcets of all the vertices in the chain.

We denote by leni the length of the longest chain in the
DAG Gi. For our example DAG task τ1 of Figure 2,
len1 = (6 + 1 + 10 + 0 + 12) = 29.

• Let Ji denote all possible complete collections of jobs
that comprise a single dag-job of τi. Thus each J ∈ Ji
denotes a collection of jobs obtained by completely
executing through the DAG Gi once, taking into account
the conditional branches within it. Observe that for each
J ∈ Ji, all the jobs in J have a common release time
and a common deadline. Note, too, that |Ji| may be
exponential in the number of vertices in Gi.

• Let voli be the maximum total wcet of a dag-job that
could be generated by τi, taking into account the condi-
tional branches within it. I.e., voli is the maximum, over
all J ∈ Ji, of the sum of the wcets of all the jobs in J .
For our example DAG task τ1 of Figure 2, a dag-job has
maximum total wcet if the upper branch (1 + (8× 3) +
0 = 25) is taken for the upper conditional, and the lower
branch (2+(4+6)+0 = 12) for the lower conditional. The
total maximum wcet is therefore 6+3+25+12+12+12 =
70, meaning that vol1 = 70.

• For each task τi we define a density δi = leni/Di and a
utilization Ui = voli/Ti.

• For a DAG sporadic task system τ we define its maximum
density δmax(τ) to be the largest density of any task in τ :
δmax(τ) = maxτi∈τ{δi}; and its utilization U(τ) to be
the sum of the utilizations of all the tasks in τ : U(τ) =∑
τi∈τ Ui.

For a traditional (non-conditional) sporadic DAG task system,
the volume is equal to the sum of the wcet parameters of all the
vertices in the DAG. Computing the volume of a conditional
sporadic DAG task is not as simple as it was for traditional
sporadic DAG tasks; in Section V-A, we will describe how
volume may be determined efficiently for conditional sporadic
DAG tasks. Once this is done, it is not difficult to see that
(with the exception of Ji), the remaining parameters defined
above – the length, density, and utilization of each task, and
the maximum density and total utilization of the task system
– can be computed very efficiently, in time linear in the
representation of the task system.

III. THE GEDF SCHEDULING OF TRADITIONAL
(NON-CONDITIONAL) SPORADIC DAG TASK SYSTEMS

Some recent work [4], [8] has provided insight into the mul-
tiprocessor GEDF scheduling of collections of traditional (i.e.,
not conditional) sporadic DAG tasks. It was shown that GEDF
has a speedup bound of (2−1/m) when implemented upon an
m-processor platform. In addition, a pseudo-polynomial time
GEDF-schedulability test with speedup bound of (2−1/m+ε)
for any constant ε > 0 was derived in [4]. We now briefly
review some techniques and results from [4]; we will sub-
sequently extend these techniques and results to the GEDF
schedulability analysis of systems of conditional sporadic
DAG tasks.

The notion of the work function [4] serves to characterize
the amount of work that could be generated by a sporadic
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Fig. 2. The DAG of an example conditional sporadic DAG task. Vertices denote jobs; the numbers within vertices denote the wcets of the jobs. Small solid
circles denote jobs with wcet equal to zero. Diamonds and ovals denote conditional start and end vertices respectively, and rectangles denote non-conditional
vertices. (The large rectangle encloses a single conditional construct in the DAG that will be referenced later in this document.)

DAG task. Let s denote any positive real number. Suppose
that we had an infinite number of speed-s processors available
upon which to execute a given sporadic DAG task system
τ . Let J denote any collection of jobs generated by τ . Let
S∞(J, s) denote the schedule obtained by allocating a speed-
s processor to each job in J the instant it is ready to execute,
and executing this job upon the allocated processor until it
completes execution.

Definition 1 (The work function). Let τi denote a sporadic
DAG task, and s any positive real number ≤ 1. Let J denote
any collection of jobs that is legally generated by τi.

For any interval I , let work(J, I, s) denote the amount
of execution occurring within the interval I in the schedule
S∞(J, s), of jobs with deadlines that fall within I .

For any positive integer t, let work(J, t, s) denote the
maximum value work(J, I, s) can take, over any interval I
of duration equal to t.

Finally, let work(τi, t, s) denote the maximum value of
work(J, t, s), over all job sequences J that may legally be
generated by the sporadic DAG task τi.

That is, work(τi, t, s) is defined as the largest value, over all
job sequences J that may be generated by τi, of the amount of
execution occurring within some interval of duration t in the
schedule S∞(J, s), of jobs in J that have deadlines within this
interval. Observe that schedule S∞(J, s) executes each job as
soon as it becomes available, thereby leaving as little work
to be done later as possible. Hence any schedule for J on
speed-s processors that meets all deadlines must complete at
least work(J, I, s) units of execution over the interval I; this
means that any schedule that can always meet all deadlines

of τi must be able to execute τi’s jobs for at least an amount
work(τi, t, s) over an interval of size t.
The main result of [4] may be stated as follows.

Theorem 1 ([4]). Sporadic DAG task system τ is GEDF
schedulable on m unit-speed processors if there is a constant
σ, δmax(τ) ≤ σ ≤ 1, such that∑

τi∈τ
work(τi, t, σ) ≤ (m− (m− 1)σ)× t (1)

for all values of t ≥ 0.

Hence to show that a given τ is EDF-schedulable upon
m unit-speed processors it suffices, according to Theorem 1
above, to produce a value for σ such that Condition 1 holds for
all t ≥ 0. The schedulability test presented in [4] essentially
reduces to determining whether σ ← m/(2m − 1) is such a
value. It was shown in [4] that this fact establishes a speedup
bound of (2−1/m) for the global EDF scheduling of sporadic
DAG task systems:

Corollary 1 ([4]). GEDF has a speedup factor of
(
2 − 1

m

)
when scheduling systems of sporadic DAG tasks upon m
preemptive processors.

Schedulability testing in pseudo-polynomial time. As stated
above, the schedulability test presented in [4] essentially
consists of determining whether σ ← m/(2m−1) causes Con-
dition 1 to hold for all t ≥ 0. As is evident from the statement
of Theorem 1, executing this GEDF schedulability test requires
the computation of the work function work(τ, t,m/(2m−1)),
for multiple values of t. It was shown in [4] how this could
be done efficiently in pseudo-polynomial time at the cost



of an additional speedup ε, for any constant ε > 0; the
resulting pseudo-polynomial time GEDF-schedulability test
has a speedup factor equal to (2− 1/m+ ε).

IV. GEDF SCHEDULING OF CONDITIONAL SPORADIC DAG
TASK SYSTEMS: PROPERTIES

In this section and the next, we describe how the concepts
and results described in Section III above may be extended to
apply to the scheduling and schedulability analysis of condi-
tional sporadic DAG task systems. In this section we extend
the definition of the work function to conditional sporadic
DAG tasks, and establish that Theorem 1 and Corollary 1
continue to hold for conditional sporadic DAG task systems.
In Section V we will derive a pseudo-polynomial GEDF
schedulability test with speedup factor (2− 1/m+ ε) for any
constant ε > 0, for conditional sporadic DAG task systems.

A work function for conditional sporadic DAG tasks.
The second sentence of the definition of the work function
(Definition 1) defines J as any collection of jobs that is legally
generated by the sporadic DAG task τi. The entire Defini-
tion 1 extends without modification to conditional sporadic
DAG tasks, with the understanding that this notion of “legal”
collections of jobs must satisfy the semantics of conditional,
rather than traditional, sporadic DAG tasks.

Extending Theorem 1 and Corollary 1. Inspection of the
proofs of Theorem 1 and Corollary 1 in [4] reveal that
both are based on considering worst-case behavior over all
collections of jobs that could legally be generated by a given
task system. And the only property of these collections of jobs
that is needed in these proofs is that if there is a precedence
constraint between a pair of jobs, then these jobs both have
the same release date and the same deadline. This property
is clearly satisfied by collections of jobs generated by sys-
tems of conditional sporadic DAG tasks; the proofs therefore
go through unchanged. Hence, we are immediately able to
conclude Theorem 2 and Corollary 2 as direct extensions of
Theorem 1 and Corollary 1 respectively to the conditional
sporadic DAG task model.

Theorem 2. Conditional sporadic DAG task system τ is
GEDF schedulable on m unit-speed processors if there is a
constant σ, δmax(τ) ≤ σ ≤ 1, such that∑

τi∈τ
work(τi, t, σ) ≤ (m− (m− 1)σ)× t

for all values of t ≥ 0.

Corollary 2. GEDF has a speedup factor of
(
2 − 1

m

)
when

scheduling systems of conditional sporadic DAG tasks upon
m preemptive processors.

V. A GEDF SCHEDULABILITY TEST FOR CONDITIONAL
SPORADIC DAG TASK SYSTEMS

Corollary 2 establishes that from the perspective of processor
speedup factor, generalizing the sporadic DAG task model
to allow for the additional representation of conditional con-
structs incurs no additional cost or penalty – this additional

capability is, in essence, had “for free.” However, this result
does not in itself tell us how we may test a given conditional
sporadic DAG task system for GEDF-schedulability; in this
section we will derive such an efficient (pseudo-polynomial
time) GEDF schedulability test for conditional sporadic DAG
task systems.

We find it helpful to first define an additional function for
constrained-deadline sporadic DAG tasks called the remaining
demand function, denoted rdem. This is defined as follows.
Recall that (i) Ji denotes all possible complete collections of
jobs that comprise a single dag-job of τi; (ii) for each J ∈ Ji,
all the jobs in J have have a common release date and a
common deadline – the release date and deadline of the dag-
job that generates them; and (iii) S∞(J, s) denotes, for any
collection of jobs J , a schedule obtained by allocating a speed-
s processor to each job in J the instant it is ready to execute,
and executing this job upon its allocated processor until it
completes execution.

Definition 2 (The rdem function rdem(τi, t, s)). Consider any
J ∈ Ji for a given conditional sporadic DAG task τi, and let
t denote any positive real number ≤ Di. Let rdem(J, t, s)
denote the amount of work remaining to be executed — i.e.,
the sum of the wcet’s of all the jobs in J minus the amount of
execution that has already occurred — in schedule S∞(J, s)
a duration t time units after the (common) release date of the
jobs in J . rdem(τi, t, s) is defined to be the maximum value
of rdem(J, t, s) over all collections of jobs J ∈ Ji.

That is, rdem(τi, t, s) denotes the maximum amount of work
that could remain to be executed, if a single dag-job of task τi
were to execute for t time units upon infinitely many speed-s
processors.

The significance of the rdem function arises from its rela-
tionship with the work function, as identified in the following
lemma.

Lemma 1. Let τi denote a constrained-deadline conditional
sporadic DAG task. For any s ≥ δi and for all t ≤ Di

work(τi, t, s) = rdem(τi, Di − t, s) (2)

Proof: Recall (Definition 1) that work(τi, t, s) is defined
as the maximum value, over all job sequences J that may be
generated by τi, of the amount of execution occurring within
some interval of duration t in the schedule S∞(J, s), of jobs
in J that have deadlines within this interval. For intervals of
duration ≤ Di, it is evident that this maximum is achieved
when some dag-job of τi has a deadline that coincides with
the rightmost endpoint of the interval of duration t:

-
6

?
0

(release of dag-job)
Di

(deadline of dag-job)

� -t
� -(Di − t)

Upon infinitely many speed-s processors, the maximum work



remaining to be done (Di − t) time units after the dag-job’s
arrival is, by definition, rdem(τi, Di− t, s). It is evident from
the definition of the work function and from the picture above
that this is also equal to work(τi, t, s).

Let us take a closer look at the work function work(τi, t, s)
for a conditional sporadic DAG task τi and s ≥ δi. It had
been pointed out in [4] that the scenario defining the value of
work(τi, t, s) has the deadline of some dag-job of τi coincide
with the rightmost endpoint of an interval of duration t, and the
other dag-jobs of τi released as closely as possible. There will
be bt/Tic complete dag-jobs of τi within such an interval (this
is illustrated in Figure 3 for an example task with Di = 15
and Ti = 20, for t ← 70). The maximum amount of work
for each such dag-job is clearly equal to voli (recall that voli
denotes the maximum total wcet of any dag-job that could be
generated by τi, taking into account the conditional branches
within it). It remains to determine the amount of execution
occurring in the remaining part of the interval (which is of
duration t mod Ti) on jobs that have deadlines within this
part of the interval (see again Figure 3 – the interval left over
after the bt/Tic = b70/20c = 3 complete dag-jobs have been
accounted for is the interval [5,15], of duration (70 mod 20) =
10).

Now if (t mod Ti) is ≥ Di, then it is evident that an
entire dag-job of τi will be accommodated within this interval,
thereby contributing an amount voli to work(τi, t, s). We
therefore have the following relationship:

work(τi, t, s) = voli × bt/Tic

+

{
voli, if (t mod Ti) ≥ Di

work(τi, t mod Ti, s), if (t mod Ti) ≤ Di

Since Lemma 1 is applicable in the case where (t mod Ti) ≤
Di, we can replace work(τi, t mod Ti, s) in this case by
rdem(τi, Di − (t mod Ti), s), to finally obtain

work(τi, t, s) = voli × bt/Tic

+

{
voli, if (t mod Ti) ≥ Di

rdem(τi, Di − (t mod Ti), s), if (t mod Ti) ≤ Di

(3)

We have thus reduced the problem of computing
work(τi, t, s) for all t to that of computing rdem(τi, t, s) for
values of t ≤ Di. It remains to specify how rdem(τi, t, s) is to
be computed for values of t ≤ Di. We will first illustrate this
with an example, computing rdem(τi, t, 1) for an example task
τi executing upon a platform of unit-speed processors. This
example task has parameters Di = 15 and Ti = 20, and a DAG
Gi that is depicted in Figure 4. (Observe en passant that this
DAG is the same as the part of the DAG in Figure 2 enclosed in
a large rectangle, representing the upper conditional construct
of that task.) According to Gi, a conditional expression having
wcet=1 is evaluated each time a dag-job of τi is released.
Depending upon the outcome of this evaluation, either three

jobs of wcet 8 each that may execute in parallel, or two jobs of
wcet 10 each that may execute in parallel, are to be executed.
There is no execution cost (and hence no wcet) associated
with recombining the branches; hence, the conditional vertex
depicting the end of the conditional construct has a wcet of
zero.

Let us determine rdem(τi, t, 1) as a function of t for this
example task τi. |Ji| = 2 for this task; i.e., there are two
possible flows of control through this DAG for a single dag-
job of this task, depending upon whether the upper or the
lower branch is taken upon evaluation of the conditional
expression. We separately consider the cases when the upper
or the lower branches are taken; the resulting functions are
depicted graphically in Figure 5.

• The upper branch is taken. The amount of work
remaining is depicted as the line beginning at the point
(0, 25) in Figure 5 (the blue line, for those reading this
on a color medium). At the beginning, there are 25 units
of work remaining to be done. Only one job – the one
corresponding to the conditional vertex – executes over
the interval [0, 1); hence the slope of the line during this
interval is −1. Once the conditional expression has been
evaluated, three jobs execute in parallel for eight time
units; hence the slope is −3.

• The lower branch is taken. The amount of work remain-
ing is depicted as the line beginning at the point (0, 21) in
Figure 5 (the red line). At the beginning, there are 21 units
of work remaining to be done. As in the case above, only
the job corresponding to the conditional vertex executes
over the interval [0, 1); hence the slope of the line during
this interval is −1. Once the conditional expression has
been evaluated, two jobs execute in parallel for ten time
units; hence the slope is −2.

It is immediately evident from Figure 5 that for values of t ≤
5, executing the upper branch leaves more work remaining to
be done after t time units (this is depicted as the blue line); for
values of t ≥ 5, executing the lower branch leaves more work
remaining to be done (the red line). I.e., the upper envelope
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Fig. 4. The DAG Gi of an example conditional DAG task τi. For this task,
Di = 15 and Ti = 20. Note that leni = 11 and corresponds to taking the
lower branch of the conditional, while voli = 25 and corresponds to taking
the upper branch.
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Fig. 5. Remaining work (y axis) as a function of time elapsed (x axis) since the release of a dag-job of the task τi.

of the two individual rdem functions2 corresponding to the
two different paths through the conditional code represents
the maximum amount of remaining work for all values of t,
and rdem(τi, t, 1) is therefore the upper envelope of the two
individual rdem lines plotted in Figure 5.

(It is interesting to understand what this means: different
paths through the conditional code represent the “worst case,”
in the sense of leaving the maximum amount of work re-
maining to be done, for different values of t. Hence it is not
possible to identify one particular path through the code such
that simply evaluating this path suffices for determining the
worst-case behavior of the task for all values of t.)

Let us now apply Equation 3 to compute work(τi, t, 1) for
the example task of Figure 4, for values of t = 65, 70, 72,
and 78. Observe that bt/Tic = 3 for all four values of t, and
so voli × bt/Tic = 25 × 3 = 75 for all values of t. While
(t mod Ti) is ≤ Di for t = 65, t = 70, and t = 72, it is > Di

for t = 78. By separately applying Equation 3 for each value
of t, we therefore get

work(τi, 65, 1) = 75 + rdem(τi, 10, 1) = 75 + 2 = 77

work(τi, 70, 1) = 75 + rdem(τi, 5, 1) = 75 + 12 = 87

work(τi, 72, 1) = 75 + rdem(τi, 3, 1) = 75 + 18 = 93

and work(τi, 78, 1) = 75 + voli = 75 + 25 = 100

2The upper envelope of a collection of functions is defined to be the
pointwise maximum of these functions.

The approach that we applied in computing the rdem function
depicted in Figure 5 for our example above – compute it sepa-
rately for both the possible flows of control through the DAG,
and take the upper envelope of the two computed functions
– is easily generalized to yield a simple methodology for
computing the rdem function (and thereby the work function)
for any constrained-deadline sporadic DAG task τi:

• Compute rdem(J, t, s) for each J ∈ Ji. It should be
evident that this can be easily done in polynomial time
for each given J ; we omit the details.

• rdem(τi, t, s) is then simply the upper envelope of the
individual rdem(J, t, s) functions computed above.

Although this approach is correct, it suffers from the same
problem as the multi-DAG model of Fonseca et al. [6]:
|Ji| — the number of distinct possible flows of control,
and hence the number of distinct collections of jobs J for
which we would need to compute rdem(J, t, s) — may be
exponential in the size of the DAG; the overall algorithm
would therefore take exponential time. We seek to do better;
hence instead of explicitly computing the rdem function in this
manner, we will exploit the insights we have gained above
regarding the properties of the rdem function to develop a
more efficient approach to GEDF schedulability analysis of
conditional sporadic DAG task systems. Rather than seeking
to directly determine whether a given task system satisfies
Theorem 2 (doing so requires the explicit computation of
the work function), we will instead efficiently transform each
conditional sporadic DAG task τi to a non-conditional one τ ′i .



These two tasks will be “equivalent” in the sense that they will
both have the same len, vol, deadline and period parameters,
and they will satisfy the property that for all t ≥ 0 and all
s ≥ δi,

work(τi, t, s) = work(τ ′i , t, s) (4)

It will then follow that a conditional sporadic DAG task
system τ will satisfy Theorem 2 if and only if the non-
conditional sporadic DAG task system τ ′ that is obtained by
so transforming each task in τ satisfies Theorem 1. We can
then apply the pseudo-polynomial time GEDF schedulability
test for non-conditional sporadic DAG task systems of [4] to
the non-conditional sporadic DAG task system τ ′, to obtain
a pseudo-polynomial time GEDF schedulability test for con-
ditional sporadic DAG task systems that has speedup factor
(2− 1/m+ ε) for any constant ε > 0.

We first illustrate this transformation for our example task
of Figure 4. Consider a task τj with Dj = Di = 15 and
Tj = Ti = 20, that has the DAG Gj depicted in Figure 6.
It is readily verified that the remaining work function of this
task is identical to the upper envelope of the two remaining
work functions depicted in Figure 5. Hence tasks τi and τj
have identical rdem functions (and therefore, identical work
functions), and τj is thus a non-conditional sporadic DAG task
that is “equivalent” to τi in the sense that both have the same
work functions.

How did we obtain τj? Essentially, by inspection of Fig-
ure 5; we set out to construct a non-conditional sporadic DAG
task with rdem function equal to the upper envelope of the two
rdem functions plotted in Figure 5:
• Since the upper envelope has a slope of −1 over the

interval [0, 1), we introduced a single vertex with wcet =
(1− 0) = 1.

• The slope of the upper envelope is then −3 over the
interval [1, 5); this is modeled by adding a second “layer”
of three vertices, each with wcet = (5 − 1) = 4, as
successor vertices.

• The slope of the upper envelope is subsequently −2 over
the interval [5, 11); this is modeled by adding a third
layer of two vertices, each with wcet = (11− 5) = 6, as
successor vertices.

• The final layer with a single vertex with wcet = 0
represents the end of the conditional construct.

• (Notice that we have added edges from each vertex in
each layer to all vertices in the immediately succeeding
layer.)

4

4

4

6

6

1 0

Fig. 6. The DAG Gj of an example conditional DAG task τj .

Before we comment further, observe two simple properties
of the basic transformation defined above:

(VP) The volume of τ ′i is equal to the volume of τi.
(LP) The length of τ ′i is equal to the length of τi.

At first glance, this approach does not appear to offer
any additional efficiency over the earlier methods, since in
order to compute the upper envelope of the individual rdem
function we must first explicitly compute these individual rdem
functions for all the (possibly exponentially many) possible
control flows. One further result is necessary in order to be able
to achieve our goal of efficiently transforming a conditional
sporadic DAG task to an equivalent non-conditional one; we
illustrate the use of this result via an example, prior to formally
proving it.

As we had pointed out earlier, it may be verified that the
DAG in Figure 4 appears as one conditional construct in the
larger DAG of Figure 2 – the one that is enclosed within a
larger rectangle. If we were to replace that entire conditional
construct in the DAG of Figure 2 with the DAG of Figure 6, we
would obtain a conditional DAG with one fewer conditional
construct, for which (by Theorem 3 below) the work function
is identical to the work function of the DAG of Figure 2.

We can do likewise for the other (lower) conditional con-
struct in the DAG of Figure 2; Figure 7 depicts the application
of a similar transformation to this lower conditional construct.
Finally, Figure 8 depicts the non-conditional DAG result-
ing from applying both transformations (and some cosmetic
changes – deletions of the dummy source and sink vertices).

The transformation algorithm. We now describe our al-
gorithm for transforming a conditional sporadic DAG task
τi to an equivalent non-conditional sporadic DAG task τ ′i .
D′i ← Di, and T ′i ← Ti. To obtain G′i, we start out with
the DAG Gi and repeatedly

1) identify an innermost conditional construct;
2) construct a non-conditional DAG that is equivalent to

this innermost conditional construct (we describe below
how this may be done); and

3) replace the identified innermost conditional construct
with the constructed equivalent non-conditional DAG

until there are no remaining conditional constructs in the DAG.

Constructing an equivalent non-conditional DAG. Let us
suppose that we seek a non-conditional DAG that is equivalent
to an innermost conditional construct that is notated as in
Figure 1.
• Separately construct the rdem functions for the col-

lections of jobs corresponding to all the vertices in
{c1, c2} ∪ V ′1 and {c1, c2} ∪ V ′2 respectively. Each rdem
is piecewise linear, with the number of linear segments
bounded from above by the number of vertices in the
graph, and each linear segment has a negative integer
slope.

• Determine the upper envelope of these two rdem func-
tions. This upper envelope is piecewise linear, each linear
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Fig. 7. Transforming the lower conditional construct of the DAG of Figure 2.

segment has a negative integer slope, and the total number
of linear segments is bounded from above by the number
of vertices in {c1, c2} ∪ V ′1 ∪ V ′2 .

• Construct a DAG G′′ = (V ′′, E′′) that has the same rdem
function as the upper envelope determined above. This
graph is constructed as a “layered” one, with as many
layers as there are linear segments in the upper envelope
plus 1. The number of vertices in the k’th layer is equal
to the (negation of the) slope of the k’th segment of the
upper envelope, and each vertex is labeled with a wcet
equal to the duration of the time axis spanned by this k’th
segment. The last layer consists of a single sink vertex
with wcet = 0. There is an edge from each vertex to each
vertex in the immediately succeeding layer.

This DAG G′′ = (V ′′, E′′) is the equivalent non-conditional
DAG.

Theorem 3. Let τi denote a constrained-deadline conditional
sporadic DAG task, and τ̂i denote the (perhaps conditional)
sporadic DAG task obtained by replacing an innermost con-
ditional construct in the DAG Gi of τi by an equivalent non-
conditional DAG as described above.
For all t, 0 ≤ t ≤ Di, rdem(τi, t, s) = rdem(τ̂i, t, s) (and
therefore work(τi, t, s) = work(τ̂i, t, s) for all t as well).

Proof Sketch: Let us assume that the innermost conditional
construct that is replaced in τi is notated as in Figure 1.
Recall that Ji denotes all possible complete collections of
jobs that comprise a single dag-job of τi. Consider any pair
J1 ∈ Ji, J2 ∈ Ji of such complete collections of jobs
comprising a single dag-job of τi, that differ only in the
choices they make with regard to the conditional construct
that is selected for replacement. That is, exactly one of J1, J2
contains (jobs corresponding to) all the vertices in V ′1 , while
the other contains (jobs corresponding to) all the vertices
in V ′2 ; other than these differences, they both contain (jobs
corresponding to) exactly the same collection of vertices.

Let us denote the difference between the sum of the wcets
of all the jobs in V ′1 and the sum of the wcets of all the jobs
in V ′2 by ∆.

Consider the functions rdem(J1, t, s) and rdem(J2, t, s) as
functions of t. At time-instant 0, these differ by exactly an
amount equal to ∆. Observe that the schedules S∞(J1, s) and
S∞(J2, s) are identical prior to the instant that they both begin
the execution of the job corresponding to the conditional vertex
c1 of Figure 1; hence at that instant (let us denote this instant

as to), we have that rdem(J1, to, s) and rdem(J2, to, s) differ
by exactly ∆.

Examining the schedules S∞(J1, s) and S∞(J2, s) at times
> to and prior to the execution of vertex c2 in either schedule,
we observe that
• Those jobs that belong in both J1 and J2 execute at the

same times in both schedules; hence, the decrease in the
remaining demand due to the execution of these jobs pro-
ceeds in exactly the same manner in both rdem(J1, t, s)
and rdem(J2, t, s).

• Of course, the execution of the jobs belonging to exactly
one of J1 or J2 proceeds differently in the schedules
S∞(J1, s) and S∞(J2, s); the manner in which these
executions happen is represented in the rdem functions
that were separately constructed for the collections of
jobs corresponding to the vertices in {c1, c2} ∪ V ′1 and
{c1, c2} ∪ V ′2 respectively.

At times > to and prior to the execution of vertex c2 in either
schedule, we can therefore consider the rdem functions for
each of J1 and J2 as the sum of a part that is identical in both,
and a part that is equal to the rdem functions that were sep-
arately constructed for the collections of jobs corresponding
to the vertices in {c1, c2} ∪ V ′1 and {c1, c2} ∪ V ′2 respectively.
And as was argued in the case when we considered a single
conditional construct in isolation (and therefore had only
two possible flows of control), the upper envelope of both
individual rdem functions represents a tight upper bound on
the rdem function over both the flows of control that are
represented by the part of J1 and J2 that differ from each other.
The correctness of the theorem follows from the observation
that by construction, the DAG G′′ = (V ′′, E′′) that replaces
the conditional construct has an rdem function exactly equal
to this upper envelope.

A. Computing voli for conditional sporadic DAG tasks

We had stated in Section II that while the volume of a
traditional sporadic DAG task is simply equal to the sum of
the wcet parameters of all the vertices in the DAG, determining
the volume of a conditinoal sporadic DAG task is not quite
as straightforward. The approach we adopt to computing it
is to first transform the conditional sporadic DAG task to a
non-conditional sporadic DAG task, as described in Section V
above. (Note that this transformation is needed in any case



12

12

6

3

4

4

4

6

6

1 0

2

2
62 0

Fig. 8. The DAG of Figure 2 with both conditional constructs removed.

for GEDF schedulability analysis.) Once the transformation
has been completed, we obtain the volume of the conditional
sporadic DAG task by simply adding the wcets of all the
vertices in the transformed, non-conditional, DAG.

VI. SUMMARY AND CONCLUSIONS

We have proposed and evaluated a task model for repre-
senting recurrent real-time task systems for execution upon
multiprocessor platforms, that is capable of both (i) exposing
internal parallelism in the task workload to the scheduling
mechanism; and (ii) accurately modeling conditional con-
structs that may be present within individual tasks. This
model, the conditional sporadic DAG tasks model, is a strict
generalization of the sporadic DAG tasks model [3]. We show
that GEDF is a suitable algorithm for the run-time scheduling
of conditional sporadic DAG task systems — it has a speedup
factor of (2 − 1/m) upon m-processor platforms, and we
present a sufficient GEDF-schedulability test that has pseudo-
polynomial run-time and a speedup factor (2− 1/m+ ε) for
any constant ε > 0.
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DETAILED PROOF OF THEOREM 3
Proof. For a fixed value of s, let us use the shorthand fJ(t) =
rdem(J, t, s). We already observed that

rdem(τi, t, s) = max
J∈Ji

fJ(t), (5)

where Ji is the set of possible complete collections of jobs
comprising a single dag-job of the original task τi. Similarly,

rdem(τ̂i, t, s) = max
Ĵ∈Ĵi

fĴ(t), (6)

where Ĵi is the set of possible complete collections of jobs
comprising a single dag-job of the transformed task τ̂i. Our
goal is to show that the right-hand sides of (5) and (6) (and
hence, their left-hand sides) are equal.

There is a natural bijection between job collections in Ĵi and
pairs of job collections in J : we associate to Ĵ ∈ Ĵi the pair
J1, J2 ∈ Ji such that all the jobs generated from conditionals
branches, except the one being transformed, are the same in
J1, J2 as they are in Ĵ . Then, J1 and J2 correspond to the
two possible completions of these set of jobs with the jobs
generated inside the conditional branch being transformed.
In particular, J1, J2 differ only in the jobs belonging to the
conditional construct being transformed.

Thanks to this bijection, by (5) and (6), to prove the claim
it is enough to show that

fJ(t) = max{fJ1(t), fJ2(t)} for all t. (7)

We now analyze in more detail the structure of the functions
fJ , fJ1 , fJ2 and of the corresponding schedules S∞(Ĵ , s),
S∞(J1, s), S∞(J2, s). To do so, we need to distinguish the
jobs according to whether they 1) precede –or are unrelated
to– the conditional section being transformed; 2) belong to
the conditional section or to its replacement; or 3) follow the
conditional section. More formally, if G′ and G′′ stand for the
original and transformed DAGs, respectively, we define:

1) A (A1, A2 resp.) to be the set of jobs of Ĵ (J1, J2 resp.)
whose corresponding vertices are not reachable from c1
in G′′ (G′); and α(t) (α1(t), α2(t)) to be the cumulative
remaining demand of A (A1, A2) at time t in schedule
S∞(Ĵ , s) (S∞(J1, s), S∞(J2, s)).

2) B (B1, B2) to be the set of jobs of Ĵ (J1, J2) whose
corresponding vertices are reachable from c1 but not
from c2, plus c2, in G′′ (G′); and β(t) (β1(t), β2(t))
to be the cumulative remaining demand of B (B1, B2)
at time t in schedule S∞(Ĵ , s) (S∞(J1, s), S∞(J2, s)).

3) C (C1, C2) to be the set of jobs of Ĵ (J1, J2) whose
corresponding vertices are reachable from c2, excluding
c2, in G′′ (G′); and γ(t) (γ1(t), γ2(t)) to be the
cumulative remaining demand of C (C1, C2) at time
t in schedule S∞(Ĵ , s) (S∞(J1, s), S∞(J2, s));

4) t1 (t2 resp.) to be the instant at which S∞(J1, s)
(S∞(J2, s) resp.) completes the job corresponding to
the conditional vertex c2.

Note that the sets A,B,C form a partition of Ĵ and
therefore, for all t,

fĴ(t) = α(t) + β(t) + γ(t).

Similarly, for all t it holds that

fJ1(t) = α1(t) + β1(t) + γ1(t)

fJ2(t) = α2(t) + β2(t) + γ2(t).

Without loss of generality, assume that t1 ≥ t2. We observe
that:

(P1) α(t) = α1(t) = α2(t) for all t. The jobs in A, A1

and A2 correspond to the same vertices of the original
and transformed DAGs, and are scheduled at exactly the
same times in all three schedules S∞(Ĵ , s), S∞(J1, s)
and S∞(J2, s).

(P2) β(t) = max(β1(t), β2(t)) for all t. This follows by
construction of the transformed inner DAG, and by the
fact that execution of conditional vertex c1 starts at the
same time in each of the three schedules.

(P3) β(t) = β1(t) ≥ β2(t) for all t ≥ t2. At any time t
with t2 ≤ t < t1, the jobs in B1 have not all completed
in S∞(J1, s), while all jobs in B2 have completed in
S∞(J2, s), so β1(t) > 0 = β2(t). And for t ≥ t1, β(t) =
β1(t) = β2(t) = 0.

(P4) γ(t) = γ1(t) ≥ γ2(t) for all t. The jobs in C, C1 and
C2 correspond to the same vertices of the original and
transformed DAGs. The start time of any job j is given
by the length of the longest chain of jobs from the source
to j. The start time of a job of C1 in S∞(J1, s) cannot
be earlier than the start time of the corresponding job of
C2 in S∞(J2, s), since t1 ≥ t2. Using property (LP) of
the basic transformation, we also have that the start time
of a job j ∈ C in S∞(Ĵ , s) equals the start time of the
corresponding job j1 ∈ C1 in S∞(J1, s).

(P5) γ(t) = γ1(t) = γ2(t) for all t < t2. Before t2, no job
of C, C1, or C2 has yet received execution in any of the
three schedules.

Combining the above points we obtain that, when t < t2,

fĴ(t) = α(t) + β(t) + γ(t)

= α(t) + max(β1(t), β2(t)) + γ(t) (by (P2))
= max(α(t) + β1(t) + γ(t), α(t) + β2(t) + γ(t))

= max(α1(t) + β1(t) + γ1(t), α2(t) + β2(t) + γ2(t))

(by (P1), (P5))
= max(fJ1(t), fJ2(t)),

while for t ≥ t2,

fĴ(t) = α(t) + β(t) + γ(t)

= α1(t) + β1(t) + γ1(t) (= fJ1(t))

(by (P1), (P3), (P4))
≥ α2(t) + β2(t) + γ2(t) (= fJ2(t)).

(by (P1), (P3), (P4))

Therefore, we have shown that (7) holds for all t.


