
A generalized parallel task model for recurrent
real-time processes

Sanjoy Baruah∗, Vincenzo Bonifaci†, Alberto Marchetti-Spaccamela‡, Leen Stougie§, Andreas Wiese‡
∗University of North Carolina, Chapel Hill, USA. Email: baruah@cs.unc.edu

†IASI-CNR, Rome, Italy. Email: vincenzo.bonifaci@iasi.cnr.it
‡Sapienza University of Rome, Italy. Email: alberto@dis.uniroma1.it, wiese@dis.uniroma1.it

§Vrije Universiteit Amsterdam and CWI, The Netherlands. Email: l.stougie@vu.nl

Abstract—A model is considered for representing recurrent
precedence-constrained tasks that are to execute on multiproces-
sor platforms. A recurrent task is specified as a directed acyclic
graph (DAG), a period, and a relative deadline. Each vertex
of the DAG represents a sequential job, while the edges of the
DAG represent precedence constraints between these jobs. All
the jobs of the DAG are released simultaneously and need to
complete execution within the specified relative deadline of their
release. The task may release jobs in this manner an unbounded
number of times, with successive releases occurring at least the
specified period apart. The scheduling problem is to determine
whether such a recurrent task can be scheduled to always meet
all deadlines upon a specified number of processors that are
dedicated for the use of this task.

This problem is shown to be computationally intractable, but
amenable to efficient approximate solutions. EDF is shown to
be a good approximate scheduling algorithm. Polynomial and
pseudo-polynomial schedulability tests, of differing effectiveness,
are presented for determining whether a given task can be
scheduled by EDF to always meet all deadlines on a specified
number of processors.

I. INTRODUCTION

Many real-time systems can be modeled as being composed
of a finite number of independent recurrent processes or tasks,
each of which generates a potentially infinite sequence of jobs.
Different formal models have been proposed for representing
such recurrent tasks; these models differ from one another in
the restrictions they place on the jobs that may be generated
by a single task.

Since its origins in the late 1960’s and early 1970’s [10],
[9], [8], [2], real-time scheduling theory has primarily been
concerned with determining how multiple recurrent tasks can
be scheduled on a shared uni- or multi-processor platform. As
processor manufacturers seek to provide large improvements
in performance without corresponding increases in power and
energy requirements, however, scaling trends in processor
design have tended to move away from increasing clock
frequencies to increasing the number of cores per processor.
This is a continuing trend, with no immediate end in sight.
The exact form that the resulting massively parallel multicore
CPU’s will take has not yet been determined (Will all the
cores be identical, or will different cores be specialized to
form different functions? Will some be dedicated to certain
functionalities, with the rest being general-purpose processors?
What kinds of on-chip connectivity between the cores will

there be?); however, it seems likely that individual tasks will
be allowed to execute exclusively upon dedicated cores or
groups of cores. Such an execution environment allows for
the possibility of having more expressive task models than
the relatively simple recurrent task models considered thus far
in the real-time scheduling literature (see, e.g., [12], [13] for
an excellent survey on models for representing recurrent real-
time tasks). Such new models may allow for partial parallelism
within a task, as well as for precedence dependencies between
different parts of the task. Unfortunately, such models are not
particularly well understood; as Saifullah et al. [11] recently
observed, “the growing importance of parallel task models
for real-time applications poses new challenges to real-time
scheduling theory that has mostly focused on sequential task
models.”

In this paper, we study a parallel task model that we call
the sporadic DAG model. Each recurrent task in this model
is modeled as a directed acyclic graph (DAG) G = (V,E)
which executes upon a platform consisting of m identical
processors that are dedicated to the exclusive use of this
particular task. Each vertex v ∈ V of the DAG corresponds to
a sequential job, and is characterized by a worst-case execution
time (WCET) pv . Each (directed) edge of the DAG represents
a precedence constraint: if (v, w) is a (directed) edge in the
DAG then the job corresponding to vertex v must complete
execution before the job corresponding to vertex w may begin
execution. Groups of jobs that are not constrained (directly or
indirectly) by precedence constraints in such a manner may
execute in parallel if there are processors available for them
to do so. The task is further characterized by a (relative)
deadline parameter D and a period T . The interpretation
of these parameters is as follows. We say the task releases
a dag-job at time-instant t when it becomes available for
execution. When this happens, we assume that all |V | of the
jobs become available for execution simultaneously, subject to
the precedence constraints. During any given run the task may
release an unbounded sequence of dag-jobs; all |V | jobs that
are released at some time-instant t must complete execution
by time-instant t+D. A minimum interval of duration T must
elapse between successive releases of dag-jobs. In this paper
we study the setting of one sporadic DAG task.

This research. It has long been known [15] that the preemp-

tive scheduling of a given collection of precedence-constrained
jobs (i.e., DAGs) on a multiprocessor platform is NP-hard in
the strong sense; this intractability result is easily seen to hold
for the sporadic DAG model as well. However, very efficient
approximation algorithms (discussed in Section IV-A) that
have bounded deviation from optimal behavior are known for
scheduling non-recurrent DAGs. While these approximation
algorithms are easily extended to deal with the scheduling
of sporadic DAG tasks for which the deadline parameter D
is no larger than the period parameter T (see Section IV-A
for details), they do not, in general, extend to the case when
D > T . Much of the research described in this paper is
therefore concerned with dealing with this case. We show (in
Section V) that the “synchronous arrival sequence”, in which
successive dag-jobs are released exactly the period T time-
units apart, does not necessarily correspond to the worst-case
behavior of a sporadic DAG task; hence, we cannot determine
schedulability properties by simply studying this one behavior
of the task. We then consider the earliest deadline first (EDF)
scheduling [8], [2] of sporadic DAG tasks on identical mul-
tiprocessors. We show that EDF has a speedup bound (this
metric is formally defined in Section II below) no larger than
2 for scheduling sporadic DAG tasks. We derive two different
sufficient schedulability tests for determining whether EDF
can schedule a given sporadic DAG task upon a specified
identical multiprocessor to always meet all deadlines. These
tests have different run-time complexity—one has polynomial
run-time while the other has run-time pseudo-polynomial in
the representation of the task—and effectiveness (as quantified,
again, by the speedup bound metric).

The remainder of this paper is organized as follows. In
Section II, we formally define the notation and terminology
used in describing our task model. We also formalize the
concepts of feasibility, schedulability, and schedulability tests,
and the speedup bound metric. We briefly survey some related
work in Section III. In Section IV we show that the problems
we seek to solve are highly intractable; hence, we are unlikely
to be able to obtain efficient algorithms for solving them
exactly. (This fact provides justification for the fact that most
of our algorithms provide approximate solutions, rather than
exact ones.) In Section V we show that the synchronous
arrival sequence of a sporadic DAG task need not represent its
worst-case behavior. We present, and evaluate, a polynomial-
time EDF schedulability test in Section VI, and a pseudo-
polynomial one in Section VII. Also in Section VII, we
show that the speedup bound of EDF is no larger than 2 for
scheduling sporadic DAG tasks.

II. MODEL AND DEFINITIONS

In the sporadic DAG model, a task is specified as a 3-tuple
(G,D, T), where G is a directed acyclic graph, and D and T
are positive integers.
• The DAG G is specified as G = (V,E), where V is a

set of vertices and E a set of directed edges between
these vertices (it is required that these edges do not form
any cycle). Each v ∈ V denotes a sequential operation (a

j1

j2

j3

j4

j5

1

1

1

1

2

D = 4; T = 2

Fig. 1. An example sporadic DAG task. The number above each vertex
denotes the WCET of the corresponding job.

“job”). Each job v ∈ V is characterized by a processing
time (also known as worst-case execution time or WCET)
pv ∈ N. The edges represent dependencies between the
jobs: if (v1, v2) ∈ E then job v1 must complete execution
before job v2 can begin execution. (We say a job becomes
eligible to execute once all its predecessor jobs have
completed execution.)

• A period T ∈ N. A release or arrival of a dag-job of
the task at time-instant t means that all |V | jobs v ∈
V are released at time-instant t. The period denotes the
minimum amount of time that must elapse between the
release of successive dag-jobs: if a dag-job is released
at t, then the next dag-job may not be released prior to
time-instant t+ T .

• A deadline D ∈ N. If a dag-job is released at time-instant
t then all |V | jobs that were released at t must complete
execution by time-instant t+D.

Throughout this paper we assume that the input consists of
one sporadic DAG task. If D > T , the task may release a
dag-job prior to the completion of all jobs of the previously-
released dag-jobs. We do not require that all jobs of a dag-job
complete execution before jobs of the next dag-job can start
executing.

Some additional notation and terminology:
• A chain in the sporadic DAG task (G,D, T) is a sequence

of nodes v1, v2, . . . , , vk such that (vi, vi+1) is an edge
in G, 1 ≤ i < k. The length of this chain is defined to
be the sum of the WCETs of all its nodes:

∑k
i=1 pvk .

• We denote by len(G) the length of the longest chain in
G. Note that len(G) can be computed in time linear in
the number of vertices and the number of edges in G,
by first obtaining a topological sorting of the vertices of
the graph and then running a straightforward dynamic
program.

• We define vol(G) =
∑
v∈V pv . That is, vol(G) is the

total WCET of each dag-job. It is evident that vol(G)
can be computed in time linear in the number of vertices
in G.

Example 1. An example sporadic DAG task is depicted in
Figure 1. The DAG G for this task consists of five vertices
labeled {j1, . . . , j5}, and four directed edges denoting prece-

dence constraints. Observe that D > T for this task. The
longest chain is of length len(G) = 4; the sequence of nodes
j1, j3, j5 is an example of such a longest chain. By summing
all the WCET’s, we can see that vol(G) = 6.

Feasibility and schedulability. Since the period parameter T
of the sporadic DAG task (G,D, T) specifies the minimum,
rather than exact, duration that must elapse between the release
of successive dag-jobs, it is evident that a sporadic DAG may
generate infinitely many different collections of dag-jobs. A
sporadic DAG is said to be feasible on m speed-s processors if
a schedule exists on m speed-s processors for every collection
of dag-jobs that may be generated by the sporadic DAG. For
a given scheduling algorithm A, the sporadic DAG is said
to be A-schedulable on m speed-s processors if algorithm A
meets all deadlines when scheduling every collection of dag-
jobs that may be generated by the sporadic DAG on m speed-s
processors.

For scheduling algorithm A an A-schedulability condition
(or test) determines, for a given sporadic DAG task (G,D, T)
and a specified number m of speed-s processors, whether
(G,D, T) is A-schedulable on m speed-s processors. An exact
A-schedulability test correctly identifies all A-schedulable
tasks; a sufficient test identifies some but not necessarily all
A-schedulable tasks.

Speedup bounds. We will see (Section IV) that the sporadic
DAG scheduling problem is highly intractable: NP-hard in
the strong sense. It is therefore highly unlikely that we will
be able to design efficient algorithms for solving the problem
exactly, and our objective is therefore to come up with efficient
algorithms that solve the problem approximately. A metric
we will use for quantifying the quality of an approximation
algorithm is its speedup bound:

Definition 1 (Speedup bound). An algorithm A for scheduling
sporadic DAGs is said to have a speedup bound b (b ≥ 1) if any
task that is feasible on m speed-1 processors is A-schedulable
on m speed-b processors.

An A-schedulability test is said to have a speedup bound b if
any task that is feasible on m speed-1 processors is determined
by the test to be A-schedulable on m speed-b processors. (Note
that a sufficient, but not exact, A-schedulability test may have
a larger speedup bound than the speedup bound of algorithm
A.)

III. RELATED RESEARCH

There are several models that have been proposed to study
the parallel execution of threads in real-time task systems. In
[6] the authors model the fork-join parallelism of a task as
a sequence of sequential and parallel segments representing
the sequential execution of the main thread and of parallel
threads respectively. Namely, when the main thread of the task
forks into many parallel threads during the execution, then
a sequential segment forks in many parallel segments; when
the parallel threads finish their execution, the corresponding
segments join the sequential segment representing the main

thread. In [6] a stretching algorithm has been proposed to
transform parallel tasks into sequential tasks when possible.

The model of [11] is the closest to the one studied in
this paper and generalizes the fork join model. The authors
introduced a DAG model of tasks, where each job is made
up of nodes that represent work, and edges that represent
dependences between nodes. Therefore, a node can execute
only after all of its predecessors have been executed. They
propose a decomposition algorithm to assign local deadlines
for the different parallel segments and to transform them into
sporadic sequential tasks. In the case of implicit deadline tasks
they also provide a speed-up bound for this decomposition
algorithm of 4 when the tasks are scheduled using global
EDF and of 5 for partitioned deadline monotonic scheduling,
respectively.

In [12] the authors introduce a model that uses directed
graphs to represent the release structure of jobs in terms of
order and timing. Namely a task is represented by a directed
graph where each vertex represents one type of job that can
be released by the task and edges represent the order in
which jobs generated by the task are released. The main
result is to show that the feasibility problem can be decided
in pseudopolynomial time. In [13] the authors study the
computational complexity of the extension to the model which
allows to express global inter-release separation constraints
between non-adjacent job releases. Both [12], [13] consider
uniprocessor platforms only.

We finally observe that the new demand function that we
propose in Section VII can be reinterpreted as an extension to
parallel workloads of the demand function introduced in [1],
which was designed for the setting of sequential tasks.

IV. COMPUTATIONAL COMPLEXITY

The uniprocessor version of the sporadic DAG task feasibil-
ity problem – given a sporadic DAG task (G,D, T), determine
whether it can be scheduled on a single preemptive speed-s
processor – is quite tractable: it is straightforward to show that
a necessary and sufficient condition is that

vol(G)

min(D,T)
≤ s.

If this condition evaluates to true, then an earliest deadline
first (EDF) strategy – at each instant, schedule some eligible
job belonging to the dag-job with the earliest deadline –
will schedule the system to always meet all deadlines. It
hence follows that the above condition is also an exact EDF-
schedulability test on preemptive uniprocessors.

However, the multiprocessor scheduling of sporadic DAG
tasks is highly intractable. When D ≤ T , determining
feasibility is easily seen to be equivalent to the makespan
minimization problem for preemptive scheduling of a set
of precedence constrained jobs on identical processors, or
P |prec, pmtn|Cmax in scheduling notation [5]. Therefore, the
problem is NP-hard in the strong sense and remains so even
when the scheduler is given a speedup 4/3− ε, for any ε > 0,
by a result of Lenstra and Rinnooy Kan [7].

Fact 1. The sporadic DAG feasibility problem is NP-hard
in the strong sense. Under the assumption that P 6= NP, no
polynomial-time algorithm for scheduling sporadic DAGs can
have a speedup bound smaller than (4/3− ε) for any ε > 0.

In fact, assuming a reasonable complexity-theoretic conjec-
ture that is somewhat stronger than P 6= NP, a recent result of
Svensson [14] implies that even a speedup (2− ε) polynomial
time test is ruled out, for any ε > 0.

We remark that, when the number of processors is not part
of the input (i.e., it is a fixed constant), the complexity of the
feasibility problem is related to that of a long standing open
problem, known in scheduling notation as Pm|prec, pj =
1|Cmax, which appears as open problem “OPEN8” from the
original list of Garey and Johnson [3] and is still open.

A. The case D ≤ T
If the relative deadline D of a sporadic DAG is no larger

than its period T , then all the jobs of one dag-job must have
completed execution before the next dag-job is released. The
problem of scheduling the sporadic DAG therefore reduces to
determining whether each individual dag-job can be scheduled
on the available processors to complete within D time units of
the dag-job’s release, and is thus equivalent to the makespan
minimization problem for preemptive scheduling of a set
of precedence constrained jobs on identical processors (the
P |prec, pmtn|Cmax problem in scheduling notation [5]). It
is known that Graham’s list scheduling algorithm (LS) [4],
which is easily implemented to have polynomial run-time, has
a speedup bound of 2 for this problem; in conjunction with the
recent result of Svensson [14] cited above, this is likely to be
the best we can do in polynomial time. For the remainder of
this paper, we therefore restrict our attention to sporadic DAGs
that have relative deadline greater than period (D > T).

V. IDENTIFYING THE WORST-CASE BEHAVIOR

Since a sporadic DAG may legally generate infinitely many
different collections of dag-jobs, it would be helpful to be
able to identify a single collection as representing the “worst-
case” collection, in the sense that if this worst-case collection
is feasible (respectively, A-schedulable by some algorithm
A), then all legal collections are also feasible (resp., A-
schedulable). One reasonable candidate for the status of such
worst-case behavior is the synchronous arrival sequence, in
which successive dag-jobs arrive as soon as they are able
to do so – i.e., exactly T time units apart. (Intuitively, the
synchronous arrival sequence is a reasonable candidate since
it maximizes the amount of execution that needs to be com-
pleted over a given interval.) However, the synchronous arrival
sequence does not consider the parallelism between different
jobs; it turns out that as a consequence the synchronous
arrival sequence need not in fact correspond to the worst-case
behavior of a sporadic DAG:

Lemma 1. A sporadic DAG task might be infeasible on m
processors even when its synchronous arrival sequence is
feasible on m processors.

Proof: Consider again the sporadic DAG task of Figure 1.
Suppose we wish to schedule this task on 3 processors. We
present below a schedule in Gantt-chart like notation for the
synchronous arrival sequence.

P1

P2

P3

0 1 2 3 4 5 6 7 8 9 10 11

j1

j2 j3

j4

j5

As the schedule demonstrates, the synchronous arrival se-
quence is feasible. Jobs j1 and j2 first execute in parallel for
one time unit. This is followed by job j3 executing sequentially
for two time units, after which jobs j4 and j5 execute in
parallel for one time unit. All jobs complete execution within
four time units of the release of the DAG-job to which they
belong.

However, if one dag-job is released at time 0 and the second
dag-job is released at time 3 (instead of 2), then one of the
two dag-jobs cannot complete on time:

0 1 2 3 4 5 6 7 8 9

j1 j2 j3 j4

j5

The problem, as illustrated in the schedule above, is that
if the first dag-job completes by its deadline then the sec-
ond dag-job cannot exploit the parallelism of j1 and j2 by
executing them in parallel. This requires that these jobs of
the second dag-job execute sequentially one after the other,
thereby causing the dag-job to miss its deadline (which is at
time-instant 7).

VI. A POLYNOMIAL-TIME EDF-SCHEDULABILITY TEST

In this section, we present a simple sufficient test for
determining whether a given sporadic-DAG task (G,D, T) is
EDF-schedulable on m unit-speed processors, and show that
this test can be implemented efficiently to have polynomial
run-time. In Section VI-A we adapt this test to answer the
related question: given sporadic-DAG task (G,D, T), how
many processors do we need to assign to it in order to ensure
that it is EDF-schedulable on the assigned processors? In
Section VI-B we show that this test has a speedup bound of
(3 − 1/m); in Section VI-C we modify our test so that the
modified test has an improved speedup bound of 2.5.

We consider a canonical implementation of EDF: at each
point in time t, consider the set of eligible jobs, i.e., the
jobs that have not yet completed execution but for which
all predecessors in G have already completed execution. If
the number of eligible jobs is ≤ m, then we schedule them
all. Otherwise we schedule the m eligible jobs with earliest
absolute deadlines, ties broken arbitrarily.

Since we are assuming that D > T , we observe that

2D > dD/T eT (1)

Theorem 1 below provides a sufficient schedulability test for
EDF.

Theorem 1. Any sporadic DAG (G,D, T) with D > T
satisfying

(m− 1)
len(G)

D
+ 2

vol(G)

T
≤ m (2)

is EDF-schedulable on m unit-speed processors.

Proof: Suppose that EDF fails to meet all deadlines while
scheduling some sequence of dag-jobs released by (G,D, T).
Consider the first job j which misses its deadline dj . Without
loss of generality we may assume that there are no jobs with
a deadline after dj . Consider the time interval I = [rj , dj) —
during this interval, EDF is only executing jobs with deadlines
within I . Denote by X the total amount of time during I
where all m processors are busy. Let Y := (dj − rj) − X ,
i.e., Y denotes the total amount of time during I where at
least one processor is idle. Consider any longest chain in G
and let V ′ ⊆ V denote all nodes on the chain. Observe that
len(G) =

∑
j∈V ′ pj .

Let x1 denote the ratio len(G)/D, and x2 the ratio
vol(G)/T .

The crucial observation is that at each instant during I when
not all processors are busy, EDF must be executing some job
released at time rj corresponding to a node in V ′. Hence,
Y ≤ len(G) ≤ x1D. The total work performed by EDF during
I is at least

mX + Y

= m(D − Y) + Y

= mD − (m− 1)Y

≥ mD − (m− 1)len(G) (Since Y ≤ len(G))
= mD − (m− 1)x1D (By definition of x1)
= (m− (m− 1)x1)D

> (m− (m− 1)x1)
dD/T e

2
T (By (1) above)

= (m− (m− 1)x1)
dD/T e

2

vol(G)

x2
(By definition of x2)

=
m− (m− 1)x1

2x2
dD/T e vol(G)

As we have observed earlier in this proof, during the interval
I EDF is only processing jobs with deadlines in I . The
cumulative execution requirement of these jobs is bounded
from above by dD/T e vol(G). For a deadline miss to occur,
it is therefore necessary that

m− (m− 1)x1
2x2

< 1

⇔ m− (m− 1)x1 < 2x2

By negating the condition above and rearranging terms, we
conclude that

m ≥ (m− 1)x1 + 2x2

is a sufficient condition for the sporadic DAG to be EDF-
schedulable on m unit-speed processors, as claimed in the
lemma.

Theorem 1 suggests the following polynomial-time suffi-
cient EDF-schedulability test:

EDFSCHED
(
(G,D, T),m

)
compute len(G)
compute vol(G)
if Condition (2) holds return (schedulable)
return (not known to be schedulable)

A. Determining the number of processors

Recall from Section I that we had discussed the problem of
implementing recurrent tasks such as sporadic DAG tasks upon
multicore platforms with a very large number of processors,
upon which some processors are dedicated to the exclusive use
of particular tasks. One important resource-allocation question
that arises in such platforms is that of determining how many
processors are to be assigned to a given task, in order to
ensure that it meet its deadlines. Theorem 1 can be used for
answering this question for EDF-scheduled systems: Given a
sporadic DAG task (G,D, T), we can compute len(G) and
vol(G), and then seek the smallest m satisfying Condition (2).
Algebraic simplification of Condition (2) reveals that this
smallest number of processors is equal to⌈

(2vol(G)/T)− (len(G)/D)

1− (len(G)/D)

⌉
. (3)

B. A speedup bound

We now derive a speedup bound for the EDF-schedulability
test EDFSCHED. Recall from Definition 1 that a schedulability
test is said to have a speedup bound b if any task that can be
scheduled by an optimal algorithm on m unit-speed processors
is determined schedulable by the test on m speed-b processors.
We will prove (Theorem 2 below) that EDFSCHED has a
speedup bound of (3− 1/m).

First, we establish two necessary conditions for G to be
feasible upon a platform comprised of speed-x processors.

Lemma 2. If (G,D, T) is feasible on m speed-x processors,
then

1) len(G) ≤ xD, and
2) vol(G) ≤ xmT .

Proof: If len(G) > xD, then the longest chain of each dag-job
released by the task will fail to meet its deadline on speed-x
processors if each job on this chain needs to execute for its
WCET.

If vol(G) > mxT , then the total execution requirement of
the synchronous arrival sequence would eventually exceed the
available computing capacity of the platform.

Lemma 2 defines necessary conditions for a sporadic DAG
task to be feasible; we will now use Theorem 1 to show that

these conditions become sufficient with a speedup of (3 −
1/m):
Lemma 3. Any sporadic DAG (G,D, T) that is feasible on m
speed-(m

3m−1) processors is determined to be EDF-schedulable
on m unit-speed processors by Algorithm EDFSCHED.
Proof: Suppose that (G,D, T) is s feasible on m speed-
(m
3m−1) processors. By Lemma 2 above with x ← (m

3m−1),
it must be the case that len(G) ≤ (m

3m−1)D and vol(G) ≤
(m
3m−1)mT . We will use these inequalities to evaluate the LHS

of Condition (2).

LHS = (m− 1)
len(G)

D
+ 2

vol(G)

T

≤ (m− 1)

(
m

3m− 1

)
+ 2m

(
m

3m− 1

)
=

m2 −m+ 2m2

3m− 1

=
m(3m− 1)

3m− 1
= m = RHS

and the lemma is proved.

Observing that (3 − 1/m) is the multiplicative inverse of
m

3m−1 , we conclude
Theorem 2. The EDF-schedulability test EDFSCHED has a
speedup bound of (3− 1/m).

C. An improvement

We now derive an additional result that can sometimes
improve upon the performance of Algorithm EDFSCHED, in
the sense that this result allows us to determine the EDF-
schedulability of some sporadic DAG tasks that may not be
deemed schedulable by Algorithm EDFSCHED. We will also
see (Theorem 4) that incorporating this improvement into the
schedulability test results in a test with a superior (i.e., smaller)
speedup bound.
Theorem 3. Any sporadic DAG task (G,D, T) satisfying the
following properties

1) len(G) ≤ 2D/5
2) vol(G) ≤ 2mT/5

is EDF-schedulable on m unit-speed processors.
Proof: Suppose for contradiction that EDF fails to meet
all deadlines while scheduling some sequence of dag-jobs
released by the sporadic DAG. Let j be the first job that misses
its deadline dj . W.l.o.g. we assume that there are no jobs with
a deadline later than dj . Consider the interval I := [rj , dj).
Denote by X the total amount of time during I where all
processors are busy. Let Y := (dj − rj)−X , i.e., Y denotes
the total amount of time during I where not all processors are
busy.

We first observe that Y ≤ 2
5 D. This follows from the

observation that whenever a processor is idle EDF must
be executing a job belonging the longest chain of the last
activation of G and hence Y ≤ len(G), which is assumed
≤ 2

5 D.

Condition Y ≤ 2
5 D implies that X ≥ 3

5 D. Now since
the total amount of execution occurring over the interval I is
≥ (mX + Y), we conclude that

The total work done by EDF during I is ≥ 3m

5
D. (4)

We now distinguish between two cases: first, when D ≥ 2T
and next when D < 2T .

§1. First we assume that D ≥ 2T and notice that in this case⌈
D
T

⌉
≤ 3

2 ·
D
T . Therefore the total amount of execution that

could be required during the interval I is bounded from above
by ⌈

D

T

⌉
vol(G) ≤ 3

2

D

T
vol(G)

≤ 3

2

D

T
× 2

5
mT (by assumption 2)

≤ 3

5
Dm

By (4) above, this is no larger than the amount of work done
during I; this contradicts the assumption that EDF fails.

§2. In the second case, we assume D < 2T . Let us define
γ < 1 such that D = (1 + γ)T ; we identify two sub-cases:
§2.1. First assume that γ ≥ 1

2 and observe that in such a case⌈
D

T

⌉
≤ (2− γ)D

T
.

Then the total execution that could be required during the
interval I is bounded from above by⌈

D

T

⌉
vol(G) ≤ (2− γ)D

T
vol(G)

≤ (2− γ)D
T
× 2

5
mT (by assumption 2)

≤ 3

2
× 2

5
Dm (by definition of γ)

≤ 3

5
Dm

which, in conjunction with condition (4) above, again contra-
dicts the assumption that EDF fails.

§2.2. Finally, assume that D < 2T and γ < 1/2. In this
case, we complete at most γTm units of execution during
the interval [rj , rj + γT); during the interval [rj + γT, dj)
EDF completes less than vol(G) units of execution (since only
the last dag-job is available during this interval, and we are
assuming that EDF fails). Hence, the total work processed is
bounded by

γ mT + vol(G) ≤ γ mT +
2

5
mT (by assumption 2)

= γ m
D

1 + γ
+

2

5
m

D

1 + γ
(by definition of γ)

= mD

(
γ + 2

5

1 + γ

)
≤ mD

3

5

EDFSCHED
(
(G,D, T),m

)
1 compute len(G)
2 compute vol(G)

3 if
(
len(G) ≤ 2D

5

)
and

(
vol(G) ≤ 2mT

5

)
return (schedulable)

4 if Condition (2) holds return (schedulable)
5 return (not known to be schedulable)

Fig. 2. The improved sufficient EDF-schedulability test.

where the last step follows from the observation that since
the function f(γ) =

γ+ 2
5

1+γ is monotonically increasing, its
value within the interval [0, 12) is upper bounded by f(12) =
1
2+

2
5

1+ 1
2

= 3
5 . This, taken in conjunction with condition (4), again

contradicts the assumption that EDF fails.

The result of Theorem 3 can be incorporated into Al-
gorithm EDFSCHED — the improved algorithm is listed in
Figure 4. Lines 1, 2, 4, and 5 of the pseudo-code are unchanged
from the previous version; Line 3 incorporates the result
derived in Theorem 3.

By combining Lemma 2 with Theorem 3 and observing
that 5

2 = 2.5 is the multiplicative inverse of 2
5 , we have the

following improved speedup bound.

Theorem 4. The EDF- schedulability test EDFSCHED of Fig-
ure 2 has a speedup bound of 2.5.

VII. EDF SCHEDULABILITY TESTING IN
PSEUDO-POLYNOMIAL TIME

In this section we prove (Theorem 5) that the EDF schedul-
ing algorithm has a speedup bound no larger than 2 for
scheduling sporadic DAG tasks. This proof introduces a novel
notion of the computational demand and load of a sporadic
DAG task. We subsequently build upon these ideas to obtain
a pseudo-polynomial time schedulability test for EDF – this
test is presented in Figure 4.

A. Defining a Demand Bound Function and Load

We will now define a novel demand function that, for a
given collection of dag-jobs, captures the amount of work due
in each time interval. This is accomplished in a manner that
accounts for the precedence constraints.

Preprocessing: Reduction to unit WCETs. Given sporadic
DAG task (G,D, T), we replace each vertex of G with WCET
pv > 1 by a chain of pv vertices each having unit WCET. It is
evident that this transformation takes pseudo-polynomial time.

Figure 3 shows the result of performing these preprocessing
steps on the DAG of Figure 1. The vertex j3, with WCET 2,
is split into a chain of two vertices. There are four layers
numbered 0, 1, 2, and 3.

Preprocessing: Organization into layers. We then structure G
in layers. Each node v ∈ V with no predecessor is assigned to
layer `(v) = 0. For each other node v, we inductively define

j1

j2

j4

j5

j31 j32

Layers 0 1 2 3

Fig. 3. Pre-processing the sporadic DAG task of Figure 1. Each vertex has
a WCET of 1. The vertex layers are labeled.

its layer as `(v) = 1 + maxu∈V :(u,v)∈A `(u). Let Vi = {v ∈
V : `(v) = i}.

The layers have the property that if dag-job j is released
at time rj , then the job corresponding to node v of j cannot
be started before time rj + `(v) by any unit speed scheduling
algorithm, independently of the number of available proces-
sors. The quantity rj + `(v) is called the shifted release time
of the job. The transformation is similar in spirit to one used
by Saifullah et al. [11].

Definition 2 (Shifted release times demand). For a collection
of dag-jobs R and an interval [a, b], the shifted release times
demand, SDR[a, b], is the cumulative execution requirement of
the unit-sized jobs j of the dag-jobs in R that have both their
deadlines and their shifted release times within the interval
[a, b].

Observe how the quantity SDR[a, b] captures the contribu-
tion of some jobs whose actual release time is strictly before
a. Therefore, it is a proper refinement of the standard notion
of demand.

Definition 3 (Shifted release times demand bound function).
For any L ∈ N, the shifted release times demand bound
function is defined as follows

SDBF(L) := sup
R,a

(
SDR[a, a+ L]

)
, (5)

where R ranges over all sequences of dag-jobs that can legally
be generated by the DAG task (G,D, T).

Definition 4 (The load λ). Define the load λ of a sporadic
DAG task to be

λ := sup
L

SDBF(L)

L
(6)

In Section VII-D we will describe how a task’s load parameter
λ can be determined in time pseudo-polynomial in the repre-
sentation of the task; the significance of this parameter arises
from the following (straightforward) result:

Lemma 4. If a sporadic DAG task is feasible on m unit speed
processors, then λ ≤ m for this task.

Proof: Suppose λ > m, and consider some L for which
SDBF(L) > Lm. Consider a sequence of dag-jobs R and
a time a defining SDBF(L) for this value of L; mL is a

lower bound on the amount of execution that any scheduling
algorithm needs to complete within the interval [a, a + L],
when scheduling the sequence of dag-jobs R. The sequence
of dag-jobs R cannot therefore be successfully scheduled on
m unit-speed processors.

B. A speedup bound for EDF

In Lemma 5 below, we present a sufficient EDF-
schedulability condition for a sporadic DAG task (D,G, T)
on speed-2 processors, given the parameters λ and len(G) for
the task. We will then use this result to prove that EDF has
a speedup bound no larger than two for scheduling sporadic
DAG tasks.
Lemma 5. Any sporadic DAG task (G,D, T) with load λ ≤ m
and len(G) ≤ D is successfully scheduled by EDF on m
speed-2 processors.
Proof: Suppose that sporadic DAG task (G,D, T) has λ ≤ m
and len(G) ≤ D, and EDF fails to schedule some dag-
job sequence of this task. Let R denote a minimal dag-job
sequence on which EDF misses a deadline. Let j denote a job
which misses its deadline dj . Since R is minimal, there are no
jobs in R with a deadline later than dj . Denote by t∗ the latest
instant strictly before dj such that all pending jobs at time t∗

have shifted release time ≥ t∗. (Such an instant must exist,
since the time-instant 0 satisfies this property.) Since EDF
runs with speed 2, we can view the interval [t∗, dj) as being
composed of “half-slots” each of duration 1/2 time units. We
partition this interval into maximal intervals X1, ..., Xk and
Y1, ..., Yk such that each interval Xj has the property that
during each half-slot t ∈ Xj all processors are busy, and
correspondingly each interval Yj has the property that at each
half-slot t ∈ Yj at least one processor is idled. We define
X :=

∑
i |Xi| and Y :=

∑
i |Yi|. We consider separately the

two cases: X ≥ Y , and X < Y . For each case, we will derive
a contradiction, thereby showing that it is not possible that
EDF fails to schedule R.

Case X ≥ Y . In this case, X ≥ (dj − t∗)/2. Since EDF
runs with speed 2 processors, the total amount of execution
completed by EDF on the speed-2 processors during the
interval [t∗, dj] must be strictly more than m(dj − t∗) (note
here that dj − t∗ > 0). But by the definition of t∗, during
[t∗, dj] EDF processes only jobs that contribute to SDR[t

∗, dj].
But since

SDR[t
∗, dj] ≤ SDBF(dj − t∗) (By definition of SDBF)

≤ λ× (dj − t∗) (By definition of load λ)
≤ m(dj − t∗)

we obtain a contradiction.

Case X < Y . The crucial observation here is that during each
half-slot in Yj (for any interval Yj) the algorithm completes the
pending jobs1 of at least one layer of each currently pending

1Recall that after our preprocessing step, each such job has WCET equal
to 1.

EDFSCHEDPP
(
(G,D, T),m

)
1 obtain G′ from G, by doubling each vertex’s WCET
2 preprocess G′ to have unit WCET’s
3 compute len(G′)
4 if (len(G′) > D) return (not known to be schedulable)
5 compute λ for (G′, D, T) as described in Section VII-D
6 if (λ > m) return (not known to be schedulable)
7 return (schedulable)

Fig. 4. The pseudo-polynomial-time sufficient EDF-schedulability test.

(and in particular unfinished) dag-job – otherwise the proces-
sors would all be busy during Yj . Let t′ denote the earliest
instant after t∗ such that

∑
j |Yj∩ [t∗, t′)| >

∑
j |Xj∩ [t∗, t′)|.

That is, t′ is the earliest instant > t∗ such that over [t∗, t′),
there are strictly more half-slots with at least one processor
idled than there are with all processors busy. (Such a t′ is
guaranteed to exist since we are assuming that Y > X .)
Observe that t′ ≤ dj since otherwise we would have a
contradiction to the minimality of t′.

Observe that the interval [t∗, t′) contains 2(t′ − t∗) half-
slots. Of these, more than half — i.e., > (t′ − t∗) — have
at least one processor idled (by definition of t′). As noted
above, EDF completes the pending jobs of at least one layer
of each currently pending dag-job. Since there can be no more
than (t′ − t∗) layers with shifted release times in [t∗, t′), this
implies that at t′ we would have completed all work on all
pending jobs except the ones with shifted release time t′ or
larger. If t′ < dj then this contradicts the definition of t∗ as
the latest point in time strictly before dj with that property.
If t′ = dj then all pending jobs have a shifted release date of
dj or larger and by assumption there is at least one pending
job. But this is only possible if len(G) > D, contradicting our
assumption.

As a direct consequence of Lemma 5 and Lemma 4 we obtain

Theorem 5. EDF has a speedup bound no larger than two for
scheduling sporadic DAG tasks.

Proof: Suppose that sporadic DAG task (G,D, T) is feasible
on m unit-speed processors. We conclude, based on Lemma 4
above, that λ ≤ m for this task. We also note that len(G)
is necessarily ≤ D. Hence it follows from Lemma 5 that
(D,G, T) is EDF-schedulable on m speed-2 processors.

C. A pseudo-polynomial time EDF schedulability test

We now describe how to use the result of Lemma 5
to obtain a sufficient EDF-schedulability condition on unit-
speed processors. The basic idea is to compute len(G) and λ
assuming that the task were executing on a platform comprised
of speed-0.5 processors; if the len(G) and λ so computed
satisfy the conditions that len(G) ≤ D and λ ≤ m, then
Lemma 5 allows us to conclude that it is EDF-schedulable on
m unit-speed processors.

Layers 0 1 2 3 4

Fig. 5. Another sporadic DAG task (D = 7, T = 2). The DAG has already
been pre-processed to have unit WCETs.

The crucial observation is that since a job takes twice as
long to execute upon a speed-0.5 processor as on a unit-
speed one, computing len(G) and λ assuming execution on
speed-0.5 processors is equivalent to computing len(G′) and
λ on unit-speed processors of the sporadic DAG (G′, D, T),
in which G′ is obtained from G by doubling the WCET that
labels each vertex of G. This observation leads to the sufficient
EDF-schedulability test in Figure 4. We have already observed
that the preprocessing (Line 2) takes pseudo-polynomial time;
we will see in Section VII-D below that determining λ
(Line 5) can also be done in time pseudo-polynomial in the
representation of the DAG task. It is evident that the remaining
steps take polynomial time, allowing us to conclude that
Algorithm EDFSCHEDPP has pseudo-polynomial run-time.

We note that Algorithm EDFSCHEDPP can also be used to
answer the question considered in Section VI-A: how many
processors must be assigned to a given task, in order to ensure
that it meet its deadlines? If a task fails the test of Line 4, then
we cannot schedule it to meet all deadlines; else, we can assign
it dλe processors.

D. Computing the load

In this section we describe how we may determine the load
λ for a given sporadic DAG task (G,D, T) in time pseudo-
polynomial in the representation of the task. But first, we
obtain a characterization of the collections of dag-jobs that
define the shifted release times demand bound functions (the
SDBF(L) values):

Lemma 6. For any L ≥ 0, SDBF(L) is equal to SDR[a, a+L]
for values of R and a satisfying the following two properties:
• dag-jobs in R are released as soon as possible (i.e.,

exactly T time units apart); and
• the time-instant a+L is the deadline of some dag-job in
R.

Proof: These can be validated by observing that for any a,R
not satisfying these properties, the total computational demand
over an interval of length L can only increase by first moving
the interval [a, a+L] leftwards (i.e., backwards in time) until
the right end of the interval coincides with a deadline in R,

2 3 1 4 5

2 3 1 4 5

2 3 1 4 5

2 3 1 4 5

2 3 1 4 5

T T T T D

L

Fig. 6. Computation of SDBF(L) for the DAG task of Figure 5. Each row of
the drawing corresponds to a dag-job; time-slots are labeled with the demand
of the corresponding layer of the graph. Each doubly-framed area corresponds
to a total demand vol(G); the shaded area represents f(G, r). In this example,
D = 7, T = 2, L = 12, q = 2, r = 1.

and then moving dag-job arrivals rightwards (forward in time)
as much as possible subject to the period constraint.

As a consequence of Lemma 6, SDBF(L) can be computed
in time polynomial in L, by simply considering a sequence of
dag-jobs that arrive as soon as possible and that together span
an interval of length no more than (L+ T).

§1. We first describe how to determine supL<D(SDBF(L)/L).
For pseudo-polynomial values of L, Lemma 6 implies that we
can determine SDBF(L)/L exactly in pseudo-polynomial time.
Furthermore, since there are only pseudo-polynomially many
distinct values of L that are ≤ D, we can determine

sup
L≤D

SDBF(L)

L

in pseudo-polynomial time by determining the ratio
SDBF(L)/L separately for each each value of L ≤ D.

§2. We now describe how to determine supL≥D(SDBF(L)/L).

§2.1. Let r denote any integer 0 ≤ r ≤ T−1. Consider all L ≥
D that satisfy (L−D) mod T ≡ r. Any such L can be written
as L = D + qT + r, for some q ∈ N. Considering only such
values of L, determining supL(SDBF(L)/L) is equivalent to
finding

sup
q∈N

(
W

qT +D + r

)
,

where W is the maximum number of jobs having shifted
release time and deadline in an interval of length qT +D+ r.
The key observation is that W = q · vol(G) + f(G, r), where
f(G, r) is a quantity that depends only on the graph G and r,
not on q (see Figures 5 and 6 for an illustration). We can also
conclude, using an argument essentially identical to that used
in the proof of Lemma 6, that f(G, r) can be computed in time
polynomial in (D+r). Hence determining supL(SDBF(L)/L)
for all these values of L is equivalent to determining

sup
q∈N

q vol(G) + f(G, r)

q T +D + r
.

Since the right hand side is monotonic in q, the supremum
equals

max

(
vol(G)

T
,
f(G, r)

D + r

)
.

§2.2. Above, we described how we would determine
supL(SDBF(L)/L) for all these values of L ≥ D that can
be expressed as L = D + qT + r, for a given r. We now
repeat the above process for each r ∈ N, 0 ≤ r < T ; since
there are only pseudo-polynomially many such r, this takes
pseudo-polynomial time.

§3. The largest value from among those obtained in steps §1
and §2 above is the value of λ; since each step above takes
pseudo-polynomial time and there are pseudo-polynomially
many steps, we have shown that λ can be determined in time
pseudo-polynomial in the representation of the sporadic DAG
task (G,D, T).

E. Combining the tests

In this paper, we have derived polynomial and pseudo-
polynomial sufficient schedulability tests for determining
whether a sporadic DAG task is EDF schedulable on an
identical multiprocessor platform. We now explain how we
envision these tests being used in concert. Given a sporadic
DAG task (G,D, T) and a number m of unit-speed processors,
we would first compute, in polynomial time, the quantities
vol(G) and len(G). If len(G) > 1 or vol(G) > m, we
declare the task non-schedulable, while if len(G) ≤ 2/5 and
vol(G) ≤ (2m)/5, we declare it EDF-schedulable. Else, we
determine, again in polynomial time, whether Condition (2) is
satisfied; if so, we declare the task EDF-schedulable. Failing
this, we finally call EDFSCHEDPP (Figure 4). In this manner,
the computationally most expensive (pseudo-polynomial time)
test is only called when the polynomial-time test fails to return
an authoritative answer.

VIII. SUMMARY AND CONCLUSIONS

Recent advances in computer architecture and fabrication
technology have made it possible to build multi-core proces-
sors with perhaps thousands of computing cores in a single
CPU. The presence of large core-counts offers new oppor-
tunities for executing more computation-intensive workloads
in real time. However, in order to better exploit multi-core
computing capabilities it is necessary that more expressive for-
mal models that are more capable of exposing the parallelism
within these workloads be used. In this paper, we have studied
one such model in some detail. This model combines the DAG-
based models that have been widely studied in the “traditional”
scheduling (Algorithms, and Operations Research) commu-
nities, with the recurrent models used in real-time systems.
By allowing for the expression of both dependencies and
parallelism within the workload, as well as for representing the
recurrent nature of many real-time processes, such a recurrent
DAG task model seems particularly appropriate for modeling
real-time workloads on multiprocessor platforms.

If the deadline parameter of a recurrent DAG task is no
larger than its period, then at most one dag-job may be active

at any given instant in time. For such tasks, we were able
to exploit prior results from traditional scheduling theory to
obtain efficient (i.e., polynomial-time) scheduling algorithms
and schedulability tests that have good speedup bounds. If
the deadline parameter may exceed the period, however, prior
techniques are no longer adequate. We have introduced a series
of novel concepts and techniques for dealing with such tasks,
and have applied these concepts and techniques to the analysis
of sporadic-DAG tasks that are scheduled using EDF. We are
hopeful that some of these techniques will be useful in solving
scheduling problems for parallel recurrent workload models
more general than the one considered in this paper.

We end by listing a couple of generalizations that seems
particularly pertinent:

- Each vertex may have a different relative deadline param-
eter and/or a release time specified.

- There may be multiple sporadic DAG tasks sharing a
given collection of processors.

ACKNOWLEDGMENT

The authors would like to thank Enrico Bini for bringing
the problem studied in this paper to their attention.

REFERENCES

[1] V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller, “A constant-
approximate feasibility test for multiprocessor real-time scheduling,”
Algorithmica, vol. 62, no. 3–4, pp. 1034–1049, 2012.

[2] M. Dertouzos, “Control robotics : the procedural control of physical
processors,” in Proceedings of the IFIP Congress, 1974, pp. 807–813.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: W.H. Freeman, 1979.

[4] R. Graham, “Bounds on multiprocessor timing anomalies,” SIAM Jour-
nal on Applied Mathematics, vol. 17, pp. 416–429, 1969.

[5] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy
Kan, “Optimization and approximation in deterministic sequencing and
scheduling: A survey,” Annals of Discrete Mathematics, vol. 5, pp. 287–
326, 1979.

[6] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-
time tasks on multi-core processors,” in RTSS. IEEE Computer Society,
2010, pp. 259–268.

[7] J. K. Lenstra and A. H. G. Rinnooy Kan, “Complexity of scheduling
under precedence constraints,” Operations Research, vol. 26, no. 1, pp.
22–35, 1978.

[8] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming
in a hard real-time environment,” Journal of the ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[9] C. L. Liu, “Scheduling algorithms for hard real-time programming of
a single processor,” JPL Space Programs Summary 37-60, vol. II, pp.
31–37, 1969.

[10] ——, “Scheduling algorithms for multiprocessors in a hard real-time
environment,” JPL Space Programs Summary 37-60, vol. II, pp. 28–31,
1969.

[11] A. Saifullah, K. Agrawal, C. Lu, and C. D. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” in Proc. IEEE Real-
Time Systems Symposium, 2011, pp. 217–226.

[12] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The digraph real-time
task model,” in Proceedings of the IEEE Real-Time Technology and
Applications Symposium (RTAS). Chicago: IEEE Computer Society
Press, 2011, pp. 71–80.

[13] ——, “On the tractability of digraph-based task models,” in Proceedings
of the EuroMicro Conference on Real-Time Systems. Porto, PT.: IEEE
Computer Society Press, July 2011.

[14] O. Svensson, “Hardness of precedence constrained scheduling on iden-
tical machines,” SIAM Journal on Computing, vol. 40, no. 5, pp. 1258–
1274, 2011.

[15] J. Ullman, “NP-complete scheduling problems,” Journal of Computer
and System Sciences, vol. 10, no. 3, pp. 384 – 393, 1975.

