
On the Power of Lookahead

in On-line Server Routing Problems

Luca Allulli a,∗, Giorgio Ausiello a, Vincenzo Bonifaci a,b,1,

Luigi Laura a

aDipartimento di Informatica e Sistemistica, Sapienza Università di Roma.

Via Ariosto 25, 00185 Roma, Italy.

bDipartimento di Ingegneria Elettrica, Università dell’Aquila.

Monteluco di Roio, 67040 L’Aquila, Italy.

Abstract

We study the usefulness of lookahead in online server routing problems: if an on-
line algorithm is not only informed about the requests released so far, but also
has a limited ability to foresee future requests, what is the improvement that can
be achieved in terms of the competitive ratio? We consider several online server
routing problems in this setting, such as the online traveling salesman and the
online traveling repairman problem. We show that the influence of lookahead can
change considerably depending on the particular objective function and metric space
considered.

Key words: on-line algorithms, competitive analysis, lookahead, traveling
salesman problem

1 Introduction

In several practical circumstances we need to solve a problem without having,
initially, complete knowledge of the problem instance since the instance is
gradually revealed over time. In such cases the solution algorithm will operate

∗ Corresponding author.
Email addresses: allulli@dis.uniroma1.it (Luca Allulli),

ausiello@dis.uniroma1.it (Giorgio Ausiello), bonifaci@dis.uniroma1.it
(Vincenzo Bonifaci), laura@dis.uniroma1.it (Luigi Laura).
1 This work was partially supported by the Future and Emerging Technologies Unit
of EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

Preprint submitted to Theoretical Computer Science February 27, 2008

on the basis of the known data and will progressively reorganize its behavior
as new information is provided. Situations of this kind occur in computer
systems and networks management, in financial decision making, in robotics
etc. Problems that have to be solved without knowing the whole instance in
advance are called on-line problems and the solution algorithms are called on-
line algorithms [14, 18]. In order to measure the quality of on-line algorithms
the notion of competitive analysis has been introduced, in which the value of
the solution obtained by an on-line algorithm is compared to the value of the
best solution that can be achieved by an optimum off-line algorithm having
full knowledge of the problem instance ahead of time [32].

An important class of on-line problems that has received much attention in
recent years is the class of on-line vehicle routing problems. In this type of
problems we imagine that a vehicle (also called on-line server) has to serve
a sequence of requests which are released over time in a metric space, with
the aim of minimizing a given objective function (e.g. the completion time).
Examples of problems of this kind that have been extensively studied are
the on-line traveling salesman problem (Ol-Tsp, [6]), the on-line traveling
repairman problem (Ol-Trp, [27]) and the on-line dial-a-ride problem [17].

A natural question that arises when dealing with on-line problems is whether
providing an algorithm with limited clairvoyance, that is the capability to
foresee future requests, may help in achieving a better competitive ratio. In
this paper we address the issue of determining how much clairvoyance helps
an on-line server in the solution of vehicle routing problems and we show pos-
itive and negative results depending on the type of problem and the type of
objective function. In particular we show that, although for both the homing
and the nomadic versions of Ol-Tsp [6] no time lookahead can guarantee
a competitive ratio better than 2, in the nomadic case, classical on-line al-
gorithms provided with time lookahead indeed outperform the correspondent
version without lookahead both on the real plane and on the real line. In the
case of the Ol-Trp, instead, where the objective function is the net latency
(or equivalently, the average waiting time of the requests) we show, among
others, a strong negative result that holds in any d-dimensional space, d ≥ 2,
stating that for such a space no constant competitive ratio can be achieved,
whatever the size of the lookahead time window.

It is worth noting that a different but related way in which an on-line algorithm
can somehow emulate the capability to see future requests is by behaving in a
lazy manner, that is, not moving or moving at low speed and thus allowing the
arrival of more information on the input instance before making decisions. In
the paper we also discuss the relationships between clairvoyance and laziness
in particular classes of on-line problems.

Such results concerning clairvoyance and laziness of on-line algorithms are

2

particularly interesting for vehicle routing problems and for other problems
such as scheduling, in which the temporal aspect of the system cannot simply
be captured by a sequence of discrete events, as is the case for other on-line
problems, due to the fact that the time passing between two events cannot be
neglected – usually because it influences the objective function. These prob-
lems are best modeled as real-time online problems [8].

The paper is organized as follows. In Section 2 the on-line version of the
classical traveling salesman problem is introduced and competitiveness results
for variants of this problem are reviewed. Besides, adversarial models that
are motivated by the real time context are also discussed. In Section 3 we
introduce suitable notions of clairvoyance for the Ol-Tsp and we show positive
and negative results for clairvoyant algorithms, while in Section 4 we show the
limits to the power of clairvoyance in the case of Ol-Trp. Finally in Section 5
we briefly discuss the relationship between clairvoyance and laziness in on-line
algorithms for real-time on-line problems.

2 On-line server routing problems

In this section we present the basic notions and results related to the Ol-

Tsp and its variations. We present the problems in the classical framework
provided by competitive analysis, and we also discuss alternative adversarial
approaches. We conclude the section by defining zealous algorithms and by
discussing their performance in terms of competitive analysis.

The Ol-Tsp has been introduced by Ausiello et al. in [6]. In Ol-Tsp we
are given a metric space M = (X, d), where X is a set of points and d
is a distance function on X, with a distinguished point O ∈ X, called the
origin; and a set of requests σ = {σ1, . . . , σn}. Each request consists of a pair
σi = (xi, ti) ∈ X ×R

+
0 , where xi is the position of σi, and ti is its release time.

A server is located in the origin at time 0, and thereafter moves in the metric
space, at most at unit speed, in order to serve all the requests, i.e. to visit
each point xi where a request is placed, not earlier than the release time ti of
the request. The additional constraint can be required that the server returns
to the origin after having served all the requests. The goal of the server is to
find a feasible schedule that minimizes an objective function, which in some
way measures the quality of the schedule.

As usual the metric space M satisfies the following properties: i) it is sym-
metric, i.e., for every pair of points x, y in M , d(x, y) = d(y.x), where d(x, y)
denotes the distance from x to y; ii) d(x, x) = 0 for every point x in M ; iii) it
satisfies the triangle inequality, i.e., for any triple of points x, y and z in M
it holds that d(x, y) ≤ d(x, z) + d(z, y). Furthermore the metric space M can

3

be continuous, i.e., have the property that the shortest path from x ∈ M to
y ∈ M is continuous, formed by points in M and has length d(x, y). Examples
of continuous metric spaces include the Euclidean plane, the real line or a line
segment. A discrete metric space is represented by a metric graph in which all
the edges have positive weights and requests are always located at the vertices.

Many objective functions have been proposed in literature for the traveling
salesman problem. Here we will mainly refer to the completion time, i.e. the
time when the server completes its service, and the latency, i.e. the sum of the
times each request has to wait to be served since time 0, namely

∑n
i=1 τi (see

also [20] and [31]). Note that while the completion time is, so to say, a “selfish”
measure, aimed at reducing the time spent by the server, the latency can be
considered an “altruistic” measure, aimed at reducing the overall waiting time
of the customers. If we consider the completion time, there are two distinct
versions of the problem, depending on whether the server has to return to the
origin at the end. These problems are known as the Homing on-line Traveling
Salesman Problem (H-Ol-Tsp) and the Nomadic 2 on-line Traveling Sales-
man Problem (N-Ol-Tsp), respectively; we call on-line Traveling Repairman
Problem (Ol-Trp) the problem in which we want to minimize the latency
[1].

We say that an on-line algorithm A is ρ-competitive (ρ ∈ R
+) if, for any input

instance σ, A(σ) ≤ ρ · OPT(σ); we denote by A(σ) and OPT(σ) the cost, on
input σ, of the solution found by A and of the optimal solution, respectively.

Table 1 contains an overview of the main competitiveness results concerning
the problems defined above (the values are rounded to the second decimal
digit). Considering the three problems it clearly appears that the Homing
version of Tsp is in a sense the easiest one, because in all cases competi-
tiveness upper bounds matching the corresponding lower bounds have been
established, while the Nomadic version still presents gaps between upper and
lower bounds. Intuitively we can argue that this is due to the value of the
information (implicitly exploited by the on-line server in H-Ol-Tsp) that the
adversary has to return to the origin at the end of its tour, information that
is lacking in N-Ol-Tsp. More interesting appear the large gaps still existing
in the case of the latency problem, both for general metric spaces and for
particular metric spaces, such as the real line; these gaps resist as the major
open problems in this domain.

Minimizing the net latency. A problem strictly related to the Ol-Trp

is the NL-Ol-Trp, in which the objective function to minimize is the net
latency, i.e. the sum of the times each request has to wait to be served since
its release time, namely

∑n
i=1(τi−ti), where τi is the time instant when request

2 Also known as the Wandering Traveling Salesman Problem [24].

4

H-Ol-Tsp

Metric space Lower bound Upper bound Ref.

general 2 2 [6]

real line 1.64 1.64 [30]

N-Ol-Tsp

Metric space Lower bound Upper bound Ref.

general 2.03 2.42 [30]

real line 2.03 2.06 [30]

Ol-Trp

Metric space Lower bound Upper bound Ref.

general 2.41 5.83 [17, 27]

real line 2.41 5.83 [17, 27]

Table 1
Known competitiveness results

σi is served. Note that, if we define T =
∑n

i=1 ti to be the sum of all the release
times, that is a constant term, it is easy to see that the objective function
can be rewritten as

∑n
i=1(τi − ti) = (

∑n
i=1 τi) − T that is the latency minus

T , i.e. the latency minus a constant term; therefore minimizing latency or
net latency should be exactly the same. However, constant terms alter the
competitive ratio and it is not hard to see that there cannot be a competitive
algorithm for the NL-Ol-Trp.

Proposition 1 There is no competitive algorithm for the NL-Ol-Trp.

PROOF. Consider the real line as the metric space. Assume wlog that at
time 1 the on-line server is in the positive half of the line: a request is released
in position −1, and the adversary serves it immediately. There are no other
requests, and the net latency of the adversary is 0, while the on-line server
pays a positive cost.

5

2

We will further discuss the NL-Ol-Trp in Section 4.

Related problems. The traveling salesman problem can be seen as a special
case of a broader family of vehicle routing problems known as dial-a-ride:
here a server, in a metric space, is presented a sequence of rides; each ride is a
triple σi = (ti, si, di), where ti is the time at which the ride σi is released, and
si and di are, respectively, the source and the destination of the ride. Every
ride has to be executed (served) by the server, that is, the server has to visit
the source, start the ride, and end it at the destination. The capacity of the
the server is an upper bound on the number of rides the server can execute
simultaneously. In the literature unit capacity, constant capacity c ≥ 2, and
infinite capacity for the server are usually considered. This family of problems
can be used to model, for example, a taxi service (unit capacity), an elevator
scheduling and delivery service (constant capacity) or a postal service (infinite
capacity). Ascheuer, Krumke and Rambau [5] and, independently, Feuerstein
and Stougie [17] started the study of on-line dial-a-ride problems, and up to
date results can be found in [16, 30].

Another generalization of the Ol-Tsp is the well known Quota Tsp problem
(a generalization of the k-Tsp [19]): here the goal of the traveling salesman
is to reach a given quota of sales while minimizing the traveling time. The
on-line Quota Tsp has been addressed in [7], where best possible bounds and
algorithms for several metric spaces are presented.

Another direction in which the Ol-Tsp can be generalized is by dropping
the constraint that the underlying space is symmetric (while maintaining the
triangle inequality). This way one obtains the on-line Asymmetric Tsp. This
problem has been studied in [9] both in the homing and nomadic version: for
the former, the authors provide a best possible competitive algorithm; for the
latter, they show that in general no on-line competitive algorithm is possible;
indeed, the competitive ratio has to be a function of the amount of asymmetry
of the space, i.e. of the smallest K such that d(x, y) ≤ Kd(y, x) for all locations
x, y.

Alternative adversarial models. It is well known that competitive analysis
has been criticized for being too pessimistic, since it is often possible to build
up pathological input instances that only an off-line server can serve effectively,
thanks to its clairvoyance. Competitive analysis can be seen as a game between
the on-line algorithm and an off-line adversary: the latter builds up an input
instance that is difficult for the on-line algorithm, while serving it effectively.
Using such a metaphor, the off-line adversary is often too powerful with respect
to the on-line algorithm. In order to limit, in some way, the power of the off-

6

line adversary, restricted types of adversary have been proposed that are not
allowed to behave in an excessively unfair way with respect to the on-line
algorithm. Here we mention only the ones that are specific in the context of
on-line real time problems.

Blom et al. [10] introduce the fair adversary, that is restricted to keep its server
within the convex hull of the requests released so far. In this way sequences
like the one we present in the proof of Theorem 4 are no longer allowed: it is
not possible for the adversary to move its server “without an evident reason”
from the perspective of the on-line player. The authors show that against the
fair adversary the on-line server achieves better competitive ratios.

Krumke et al. [28] propose the non-abusive adversary for the on-line Tsp,
where the objective is to minimize the maximum flow time, i.e. maxi(τi − ti);
note that for this problem there are no competitive algorithms against general
(or fair) adversaries. A non-abusive adversary may only move in a direction if
there are yet unserved requests on this side. Krumke et al. present an algorithm
that is competitive against the non-abusive adversary.

An alternative technique for overcoming the excessive power of the adversary,
frequently used in on-line optimization, is the so called resource augmentation:
instead of limiting the power of the adversary, the idea is to increase the
resources of the on-line algorithm, such as speed or number of servers. Resource
augmentation has been used for online problems such as scheduling since the
early work of Graham [21]. See [11, 13] for resource augmentation results for
online vehicle routing problems.

A completely different approach to avoid pathological worst case input se-
quences consists in assuming a bound on the rate with which requests can be
injected into the system. This approach has been pursued first in [22]. Later, in
[12], a similar approach has been pursued in the larger context of adversarial
queueing theory [15].

Zealous algorithms. A peculiarity of real-time on-line problems, like the ones
we discuss in this paper, is that a server is allowed to decide whether to serve a
request or not, and it can even wait idle. At a first glance, it may sound unusual
that an algorithm should decide to wait instead of serving pending requests;
but consider the following case: the server is in the origin, and the only request
released so far is far away from its current position; therefore it seems not a
bad idea to “wait a little”, or alternatively to move “slowly” towards it, to
see if other requests show up in order to serve all of them together. Here
the real-time aspect of the problem combines with the fact that moving a
server could damage the quality of the overall service; this might not happen
if we consider other real time problems like scheduling, if we allow jobs to be
interrupted (even if we might start them again from scratch later). Now, if we

7

concentrate on vehicle routing problems, the benefits of waiting could depend
on the objective function; intuitively, if we want to minimize latency it could
be more “dangerous” to move the server towards an isolated request far away,
while, if completion time is the objective function, serving a distant request
might be less insecure.

How can we measure, in a real time problem, the importance of waiting, or,
more precisely, the importance of the capability to wait? To do so, we recall
from the work of Blom et al. [10] the notion of zealous algorithm for on-line
routing problems; informally, a zealous algorithm is not allowed to wait 3 .

Definition 2 (Zealous algorithm) When there are unserved requests, the
direction of a server operated by a zealous algorithm (a zealous server) changes
only if a new request becomes known, or if the server is either in the origin
or it has just served a request. A zealous server is allowed to move only at
maximum (i.e., unit) speed.

Zealous algorithms are a natural and well-defined class of algorithms, and they
are usually easy to analyze because of their restricted behavior. Such analyses
are useful to measure the importance of waiting by studying how much, for
a given problem, the algorithms that are not allowed to wait are penalized.
In Table 2, we summarize the best bounds known for zealous algorithms. By
comparing these results with those in Table 1, one may observe that non-
zealous algorithms perform better in all but the first case. This corresponds
to the intuition that, in online server routing problems, waiting usually helps
(see also [30]).

3 The on-line TSP with lookahead

The standard concept of lookahead as originally defined for problems in the
step-by-step model of online computation (see for example [2, 3, 25]) must be
reconsidered in order to obtain meaningful results in our real-time model. In
the step-by-step setting request lookahead is typically used: the on-line algo-
rithm can see, at any time, the next k requests that will be released in the
future, for some k ∈ N. If we export this definition to real-time problems
we obtain a concept of lookahead that is unrealistic and scarcely meaningful.
Unrealistic is the assumption that a real-world application would be able to
see the next k requests independently of when they will be released. Scarcely
useful because it is unlikely that the quite bizarre additional information pro-
vided by request lookahead yields meaningful performance improvement to
on-line algorithms [4].

3 Originally, in [10], the authors used the term diligent instead of zealous.

8

H-Ol-Tsp

Metric space Lower bound Upper bound Ref.

general 2 2 [6]

real line 1.75 1.75 [6, 10]

N-Ol-Tsp

Metric space Lower bound Upper bound Ref.

general 2.05 2.5 [6, 30]

real line 2.05 2.33 [6, 30]

Ol-Trp

Metric space Lower bound Upper bound Ref.

general 3 open [29]

real line 3 open [29]

Table 2
The competitiveness of zealous algorithms

A different, more natural definition of lookahead for real-time problems is time
lookahead, that we introduce in the following.

Definition 3 (Time lookahead) An on-line algorithm A for a real-time
problem has time lookahead ∆ ∈ R

+ if, at any time t ≥ 0, A has received
in input all the requests with release time at most t + ∆.

An algorithm with time lookahead ∆ can see what happens in a time window
of length ∆ in the future. Observe that, in order to be a meaningful value,
∆ should be related to some characteristic quantity of the problem or of the
instance. Our results depend on the ratio between ∆ and the time that a
server employs to traverse the entire metric space, i.e. the diameter D of the
metric space (under the usual assumption that the server moves at unit speed).
Obviously this kind of analysis makes sense if the metric space is bounded.
Jaillet and Wagner [23] give a very similar definition of lookahead, but they
essentially compare ∆ with the optimal cost of each input instance. We will
discuss their approach further on in Section 5.

9

3.1 General Metric Spaces

We now study the influence of time lookahead in the Ol-Tsp. We begin with
a lower bound, which holds for both the homing and the nomadic variants
of the problem. We prove that no on-line algorithm for the Ol-Tsp can be
better than 2-competitive in the general metric space.

While the result is the same for both the variants of the Ol-Tsp, its impact
is very different. In the homing version, an optimal 2-competitive algorithm
without lookahead exists, as shown by Ausiello et al. [6]: thus lookahead is
useless in this case. Instead, our lower bound leaves room for improving the
nomadic case, because it is lower than the current lower bound of about 2.03
for algorithms with no lookahead [30] (which is not matched by any algorithm,
currently). We will later show that lookahead is indeed useful in the nomadic
case, and that the lower bound of 2 is matched for a sufficiently large value of
∆.

Before going into the proof, let us remark the bad news: the lower bound of 2
holds for any value of ∆. It is a bit surprising that large amounts of lookahead
do not help to further improve the competitive ratio of the problem.

The lower bound of 2 for the H-Ol-Tsp without lookahead has been proved
by Ausiello et al. [6] first, and later, with a different proof, by Lipmann [30].
Our proof is inspired by the second approach.

Theorem 4 No deterministic algorithm for the H-Ol-Tsp or the N-Ol-

Tsp can be better than 2-competitive, independently of the amount of time
lookahead.

PROOF. Consider a star graph G = (V, E) with N +1 nodes: a central node
v0 and N peripheral nodes v1, . . . , vN (see Figure 1). Each peripheral node
vi is connected to the central node by an edge ei = {v0, vi} of length 1/2.
Let A be any algorithm for the H-Ol-Tsp or the N-Ol-Tsp on G with time
lookahead ∆.

At time ∆, N requests are presented, one in each peripheral node. Let tstop =
∆ + N − 1. For any time t ≤ tstop, if A serves one request in vertex vi at time
t, then a new request is presented in the same vertex vi at time t + ∆; A can
see it immediately, according to its lookahead. Thus, at any time t ≤ tstop, A

is aware of exactly N requests that either have been released but not served
or will be released in the future. In particular, at time tstop, A must still serve
N requests, and cannot finish before time tstop + N − 1 = ∆ + 2N − 2.

On the other hand, an off-line adversary can complete its service not later

10

v0

d(v0, vi) = 1/2
v1

v2

. . .

. . .

vN

Figure 1. The star graph G

1.6

2

2.4

0 0.5 1 1.5 2

ρ
(∆

/D
)

∆/D

Figure 2. The competitive ratio of ReturnHome as a function of ∆/D

than time 2∆+N . In fact it can serve requests in the following order: first the
requests in those vertices that are never touched by A before time tstop, if any;
then, all the other requests, visiting peripheral vertices once and in the same
order A visits them for the last time. This way, giving to the off-line adversary
a delay of at least ∆ over A, it can serve the newly presented requests in every
peripheral vertex along with the old ones. Thus the adversary finishes not
later than time (1/2 + 2∆) + (N − 1) + 1/2: the first term is a time sufficient
to reach the first request and to gain a delay of ∆ over A; the second term is
a time sufficient to serve all the requests, and the last term is a time sufficient
to return home, if the problem is the H-Ol-Tsp.

The lower bound on the competitive ratio

A(σ)

OPT(σ)
≥ 2N + ∆ − 2

N + 2∆

can be made arbitrarily close to 2 by choosing a sufficiently large N .

2

We now focus on the N-Ol-Tsp case, for which we show that lookahead is
indeed helpful. We give an algorithm that matches the lower bound of 2 when
∆ = D, i.e. when there is enough lookahead so that the server can traverse the

11

entire metric space when it foresees a new request, and reach the request before
its release time. We remark that the current best algorithm for the N-Ol-Tsp

without lookahead is the (1 +
√

2)-competitive ReturnHome by Lipmann [30].
The competitive ratio of our algorithm, which is indeed a natural extension of
ReturnHome, depends on its amount ∆ of lookahead: it is 1+

√
2 when ∆ = 0,

it continuously and monotonically decreases when ∆ ∈ [0, D] and it remains
2 for ∆ ≥ D (Figure 2).

Like ReturnHome, our algorithm (Algorithm 1) depends on a parameter α. It
is not a zealous algorithm: in order to remain sufficiently close to the origin,
so that it can quickly come back “home” when a new request is foreseen, it
will stay at any time t within a ball of radius αt centered in the origin. The
optimal value for the parameter α depends on the ratio δ = ∆/D.

Algorithm 1 ReturnHomeα with time lookahead ∆

At every time t ∈ R
+, algorithm ReturnHomeα (RHα) is either idle or it is

following a tour T . RHα is a parametric algorithm, with parameter α ∈ (0, 1].
RHα maintains the invariant that, at any time t, its server stays within a
distance of αt from the origin (ball-constraint). This is achieved by always
moving at the highest possible speed that does not violate the constraint (see
also example 5).
Initially, RHα is idle. Independently of its current state, as soon as RHα foresees
a new request according to its lookahead, it immediately returns to the origin,
and waits for the new request to be actually released. Then, it begins to follow
the minimum-length tour T over all the released but not yet served requests.

Example 5 Assume that α = 1/2 and ∆ = 0. Consider an instance on the
Euclidean line R, with a request released at time 1 in point +2. ReturnHomeα

waits idly in the origin until time 1, then it starts moving at full speed towards
the request, up to time 2. At time 2 the server is at distance 1 = α · 2 from
the origin and the ball-constraint becomes active. The server proceeds at speed
1/2 up to point +2, which is thus reached only at time 4. If at this time a new
request is released in the origin, the server moves at unit speed towards the
origin, unhampered by the ball-constraint.

Theorem 6 For every δ ≥ 0, there is α ∈ (0, 1] such that RHα is an algorithm
with lookahead δD which is ρ(δ)-competitive for N-Ol-Tsp on any metric
space with diameter D, where

ρ(δ) = max

{

2, 1 +
1

2

(√
δ2 + 8 − δ

)}

.

PROOF. We distinguish two cases, depending on whether the server has to
reduce its speed during the last tour, i.e. the tour scheduled after the last

12

request is released.

Case 1. The server reduces its speed during the last tour.
Let σr = (xr, tr) be the last request that forces RHα to regulate its speed.
Since RHα regulates its speed only when it is necessary, σr is served
at time xr

α
. Thereafter, RHα completes the optimum tour at full speed:

let |Tr| be the length of the remaining part of the tour. We have that
RHα(σ) = xr

α
+ |Tr| ≤ 1

α
(xr + |Tr|). On the other hand, the off-line adversary

pays at least xr + |Tr| to get to xr and serve the remaining requests. Therefore:
RHα(σ)
OPT(σ)

≤ 1
α
.

Case 2. The server does not reduce its speed during the last tour.
Assume that the last request is released at time t + δD; it is foreseen by
RHα at time t, thanks to its lookahead. RHα will immediately come back
to the origin, and will start following the optimal tour T at the first time
t0 ≥ t + δD when the server is in the origin. The completion time of RHα is
thus RHα(σ) = t0 + |T |. Now we give two lower bounds on the optimal cost.
Since the off-line adversary must visit all the requests, it pays at least |T |.
Since it must serve the last request not earlier than its release time, it pays at
least t + δD. Hence, the competitive ratio of RHα can be bounded by:

RHα(σ)

OPT(σ)
=

t0 + |T |
OPT(σ)

≤ t0
t + δD

+
|T |
|T | =

t0
t + δD

+ 1.

In the following, we give an upper bound on t0
t+δD

. We distinguish two subcases,
depending on t. Intuitively, if t is small, i.e. not much time has elapsed since
time 0, the server is near the origin and can quickly return home; otherwise, t0
is comparable to t + δ, because the metric space is bounded and RHα cannot
be too far away from the origin.

• If αt ≤ D, we use the fact that

t0 ≤ max{t + αt, t + δD}

thanks to the ball constraint. Thus t0
t+δD

≤ max{ t+αt
t+δD

, 1}; the latter quan-
tity is monotonically increasing in t, and reaches its maximum, max{1 +
α 1−δ

1+αδ
, 1}, when αt = D.

• If αt > D, we use the fact that

t0 ≤ max{t + D, t + δD},

because the metric space has diameter D. Thus t0
t+δD

≤ max{ t+D
t+δD

, 1}; the
latter quantity is monotonically decreasing in t, and, as before, the maxi-
mum of the expression is max{1 + α 1−δ

1+αδ
, 1}.

13

From Case 1 and Case 2 we infer that

RHα(σ)

OPT(σ)
≤ max

{

1

α
, 2 + α

1 − δ

1 + αδ
, 2

}

.

For any value of δ ≥ 0, this expression is minimized by choosing α =√
δ2+8+δ−2
2(δ+1)

.

2

Notice that whenever the lookahead is at least as large as the diameter of
the space (i.e., δ ≥ 1) the Theorem yields a 2-competitive algorithm, thus
matching the lower bound of Theorem 4.

3.2 The Line Segment

As we said earlier, the general lower bound of 2 for large amounts of lookahead
is rather disappointing. Fortunately there are specific metric spaces where
lookahead plays a more natural role: the larger the amount of lookahead, the
better the competitive ratio of the algorithms. One such metric space is the
one-dimensional interval, or line segment.

We now present a simple algorithm for the line segment with a competitive
ratio that tends to 1 as δ = ∆/D increases. Our algorithm is parametric
with respect to an objective function: it contains an optimization step where
optimization is performed with respect to the chosen function. This allows us
to tune the algorithm for both the homing and the nomadic version of the
Ol-Tsp, and, as we will see in the next section, for the Ol-Trp.

Algorithm 2 OptimizeEarlierRequestsOnlyf

At time 0, algorithm OptimizeEarlierRequestsOnlyf (henceforth simply OERO)
foresees all the requests that will be released up to time ∆. It computes the
optimal schedule over these requests, with respect to the objective function f ,
and begins to follow it. After time ∆, if new requests are released, then OERO

switches to another mode, even if it has not completed the scheduled tour: it
continuously sweeps the line segment from one extreme to the other at full
speed, serving all the requests it encounters.

Theorem 7 If f is the completion time in the nomadic case,
OptimizeEarlierRequestsOnlyf with time lookahead ∆ = δD is a (1 + 2/δ)-
competitive algorithm for the N-Ol-Tsp defined on an interval of length
D.

14

PROOF. Let σ be the input instance. If no requests are released after time
∆, OERO is clearly 1-competitive. Otherwise, we have that OPT(σ) ≥ δD.
Let σ∗ = (x∗, t∗) be the last request served by OERO. Since after time ∆ an
active request waits at most 2D time units before being served, we have that
OERO(σ) ≤ t∗ + 2D. Obviously OPT(σ) ≥ t∗. Then we obtain OERO(σ) ≤
OPT(σ) + (2/δ)OPT(σ) = (1 + 2/δ)OPT(σ).

2

For the H-Ol-Tsp one further specification is needed. As soon as all the
active requests have been served, OERO comes back to the origin; if afterwards
other requests appear, OERO resumes sweeping the interval. The result is the
following.

Theorem 8 If f is the completion time in the homing case,
OptimizeEarlierRequestsOnlyf with time lookahead ∆ = δD is a (1 + 2/δ)-
competitive algorithm for the H-Ol-Tsp defined on an interval of length
D.

PROOF. Let σ be the input instance. If no requests are released after time
∆, OERO is clearly 1-competitive. Otherwise, we have that OPT(σ) ≥ δD.
Let σ∗ = (x∗, t∗) be the last request served by OERO. Since after time ∆ an
active request waits at most 2D time units before being served, we have that
OERO(σ) ≤ t∗ + 2D + d(O, x∗). Obviously OPT(σ) ≥ t∗ + d(O, x∗). Then we
obtain OERO(σ) ≤ OPT(σ) + (2/δ)OPT(σ) = (1 + 2/δ)OPT(σ).

2

4 The on-line TRP with lookahead

4.1 General Metric Spaces

As we discussed earlier (Proposition 1), no on-line competitive algorithm for
the net latency objective function exists. The reason for such a negative result
is basically the excessive power of the off-line adversary, which essentially can
issue a request wherever it wants and serve it at no cost, while the on-line
algorithm must traverse the metric space to reach the request. In order to
be “fair”, it is very natural to request the adversary to disclose requests in
advance.

15

Lookahead makes sense even from a practical point of view. For most real
world applications modeled by a vehicle routing problem where net latency
would be a meaningful objective function, it is reasonable to assume some form
of lookahead: customers asking for good service should notify their requests
in advance.

Consequently, we wonder whether a sufficiently large amount of lookahead
allows an algorithm to be competitive for this important objective function.
Unfortunately the answer is negative, at least in any metric space in which we
can embed a bidimensional ball: in the next theorem we show that no compet-
itive on-line algorithm exists for the NL-Ol-Trp in this case, independently
of the amount of lookahead.

Theorem 9 Let Ω be a open set of R
n, n ≥ 2; let A be an on-line algorithm

for the NL-Ol-Trp on Ω with time lookahead ∆. Then, for all ∆ ∈ R
+, A is

not competitive for the NL-Ol-Trp in Ω.

PROOF. Let us introduce some notation. We will refer to the on-line al-
gorithm as A, to the adversary as B (with slight abuse we use the terms
“algorithm” and “server” as synonyms). For any server Y ∈ {A, B}, we will
denote by pY (t) the position of Y at time t.

Here is an overview of the proof. We will construct a set G of 2N points such
that, in order to visit any subset of N points, a minimum time of ∆ is needed.
The adversary will release some initial requests: at least one request in each
point of G. Furthermore, the adversary will select a subset G− ⊂ G containing
N points, and will force A to serve the requests in G− first: otherwise A won’t
be competitive. While A serves the starting requests in G−, B serves all the
other starting requests; afterwards, B begins to follow A with a delay of ∆. In
the meanwhile, new requests are generated. If A serves some requests at time
t, then B releases a new request in the same point at time t + ∆. B is able
to serve all the new requests on the fly, thanks to its delay of ∆ with respect
to A; on the other hand, A is continuosly late, in the sense that in every time
interval of length 2∆ there are active requests that cannot be served by A as
soon as they are released.

Let us construct the set G. Without loss of generality we assume that Ω ⊆ R
2.

The points in G will be the elements of a k×k square grid (where k2 = 2N , and

k is an even number) with side of length a, contained inside a ball BO

(√
2

2
a
)

⊆
Ω with diameter

√
2a ≤ ∆ (see Fig. 3). The minimum distance between any

two points of G is thus d = a/k. In order to have ∆ ≤ d · N = (a/k)(k2/2) =

ak/2, it suffices to take k ≥
⌈

2∆
a

⌉

.

We can assume the coordinates of O being (0, 0). In order to refer to the

16

Ball

P1, k

2

P− k

2
,1 P−1,1 P1,1 P2,1

P k

2
,1

P− k

2
,−1 O

a′

Figure 3. The grid G.

points of G, for each i ∈ {−k/2, . . . , −2,−1, +1, . . . , +k/2} we denote by
Pij the point of coordinates (f(i), f(j)) (see Fig. 3), where

f(i) =











ia
k
− a

2k
, 1 ≤ i ≤ k

2
;

ia
k

+ a
2k

, −k
2
≤ i ≤ −1.

We partition G into two subsets of cardinality N each: the set G+ = {Pij ∈
G|j > 0} containing the points of G located “above” the origin, and the set
G− = G − G+ containing points located “below” the origin.

The Starting requests are the first requests released by B. The sequence σ(0) of
the starting requests has the following properties: (i) each request (t, x) ∈ σ(0)

has a release time t ∈ [∆, 2∆), and (ii) for every point Pij ∈ G there exists a
request (t, x) ∈ σ(0) such that x = Pij.

Let L(t) = {(tk, xk) ∈ σ | tk − ∆ ≤ t < τk} be the set of requests which
either have been released but not yet served by A at time t, or that will be
released before time t+∆. L(t) contains all unserved requests whose existence
is known by A at time t, according to its lookahead. Moreover, if S ⊆ σ, let
GS = {Pij ∈ G | ∃(tk, xk) ∈ S s.t. xk = Pij} be the set of points where at least
one request of S is located. Note that |GL(∆)| = 2N , since at time t = ∆ in
each point of G there is at least one (unserved) request that will be released
not later than time 2∆.

In addition to the requests of σ(0), B releases exactly one new request at each
time t ≤ tstop when A serves some requests located in Pij ∈ G. The new
request is (t + ∆, Pij). tstop is a time that will be determined later. It is clear
that |GL(t)| = 2N ∀t ∈ [∆, tstop]. In fact, every time a request is served in
Pij, A becomes aware of a new request in the same point Pij : this implies that
GL(t) = G ∀t ∈ [∆, tstop].

17

The release times of starting requests are chosen in such a way that A may
serve before time 2∆ all the starting requests that are located in G−; further-
more, the very first requests served by A may be those located in P− k

2
,−1. We

will refer to this behavior as A’s expected behavior. It is easy to show that B

can choose σ(0) such that, if A does not have the expected behavior, then A

is not competitive; this claim will be proved later. Hence we suppose that A

exhibits the expected behavior.

We shall give a lower bound on the cost incurred by A. We divide the “in-
teresting portion” of the time axis into m time intervals I2, I4, . . . , I2m of
width 2∆ each: for every i, we let Ii = [Ti, Ti+2), where Ti = i · ∆; the last
interval ends at time T2m+2 = tstop. Now, consider the interval Ih. At time
Th, at the beginning of Ih, GL(Th) = G. In the first half of Ih, in ∆ time
units, not more than N of the 2N points of G can be visited by A: so, at
time Th+1 the remaining points (at least N points) contain a request that (i)
has already been released, since it was in L(Th), and (ii) has not been served
by A yet. Among these points, the i-th point visited by A cannot be reached
earlier than time Th+1 +(i−1)d; A pays at least (i−1)d for the corresponding
request(s). Notice that this cost is totally paid inside interval Ih; if a request
σj ∈ L(Th) is still active at the beginning of the following interval Ih+2, then
σj will also contribute to the cost paid by A for the requests in L(Th+2). Thus,

in Ih, A pays at least
∑N

i=1(i − 1)d = N(N−1)
2

∆
N

= (N−1)∆
2

and, since there are
m intervals:

A(σ) ≥ m
(N − 1)∆

2
.

We now describe the behavior of B (see Fig. 4), under the assumption that A

has the expected behavior.

(1) During the interval [0, ∆), B moves its server to the first request to serve.
(2) During the interval [∆, 2∆), B serves all requests located in G+, scan-

ning horizontally the grid row by row; B terminates these visits in point
P− k

2
,1, and afterwards moves its server to the immediately underlying

point P− k

2
,−1. B is able to reach P− k

2
,−1 at time 2∆.

(3) Recall that the first requests served by A, say at time tstart > ∆, are
located in P− k

2
,−1. From time tstart + ∆ on, B follows A with a delay of

∆, that is: pB(t) = pA(t − ∆) ∀t ≥ tstart + ∆. B serves all the active
requests it encounters.

At time 2∆ all the starting requests in G+ have been served by B, and at time
3∆ the starting requests in G− have been served too (because A serves the
starting requests in G− before time 2∆). Thus, at time 3∆, B has served all
the starting requests, paying some cost B0 for them.

Any other request σj = (tj, xj) ∈ σ − σ(0) is served by B at no cost, because

18

P− k

2
,−1

B follows A after ∆

O

Figure 4. B’s server path.

P− k

2
,−1

O

Figure 5. Av’s path.

xj = pA(tj − ∆) = pB(tj). We have that

B(σ) = B0,

and B0 does not depend on tstop. For any ρ ∈ R
+, we can enforce A(σ)/B(σ) >

ρ by taking a large enough value for m.

It remains to be shown that, if A does not have the expected behavior, then
A is not competitive. In this situation, B selects tstop = 2∆; notice this does
not influence A’s behavior before time 2∆. Let Av be an imaginary server
which exhibits the expected behavior. In particular, at time ∆, Av is in P− k

2
,−1;

between ∆ and 2∆−d, Av serves all the initial requests located in G−, scanning
the grid horizontally one row after the other (see Fig. 5).

Now we shall give the complete definition of σ(0). In each point of G+ exactly
one request is released at time ∆; in each point Pij ∈ G− exactly M requests
are released at the first time t ≥ ∆ when pAv

(t) = Pij. Since A does not have
the expected behavior, there exists at least one point Pij ∈ G− where A serves
M starting requests with a minimum delay of d. This means that

A(σ) ≥ Md = M
∆

N
.

On the other hand, B behaves in a completely different manner than before:
during time interval [0, 2∆], B follows Av, serving all the requests in G− as
soon as they are presented, at no cost; during the interval (2∆, 3∆) it is idle;
during the interval [3∆, 5∆] it scans the whole grid once again, serving all the
yet unserved requests (which are at most 2N). Thus

B(σ) ≤ 2N · 4∆,

and, for any ρ ∈ R
+, the ratio A(σ)/B(σ) > ρ can be made arbitrarily large

by taking a large enough value for M .

19

2

4.2 The Line Segment

The technique we used to prove the last theorem is based on the bi-dimensional
density of R

2, which makes it possible to force the on-line algorithm to take
an arbitrarily long tour in order to serve all the requests, independently from
the diameter of the metric space. In other kinds of metric spaces, such as
uni-dimensional or discrete spaces (the bounded real line is one notable ex-
ample), the same technique cannot be used. Anyway, we now show that no
algorithm can be competitive in any metric space, even with time lookahead,
if its lookahead is less than two times the diameter of the metric space. This
is still quite a large amount of lookahead for many real world applications.

Theorem 10 Let M = (X, dist) be any metric space with diameter D, and A

any algorithm for the NL-Ol-Trp on M with time lookahead ∆. If ∆ < 2D,
then A is not competitive.

PROOF. We denote by pY (t) the position of the server moved by algorithm
Y at time t. In this proof we assume, without loss of generality, that ∆ > D.

Consider two points P, Q ∈ X such that d := dist(P, Q) > ∆/2. Notice that
d ≤ D < ∆ < 2d. The off-line adversary, B, releases all the requests in points
P and Q. At time ∆ it releases two requests: σ1 = (∆, P) and σ2 = (∆, Q).
We refer to these requests as the starting requests.

Let tstop > ∆ be a time that will be determined later. Up to time tstop, if
at time t ≤ tstop the on-line algorithm A serves a request in P (or Q), then
the adversary releases a new request in P (resp. Q) at time t + ∆. No other
requests are released.

It is clear that, for every time t ≤ tstop, there are exactly two requests that
either have been already released but not yet served by A, or that will be
released not later than time t + ∆. One request is located in P , and the other
one in Q. In other words, according to its lookahead of ∆, A can see two
unserved requests, one in P and the other one in Q. In fact, this is true for
time 0, when A can see the starting requests; and every time A serves a request,
a new request appears with a time distance of ∆.

Consider the requests in the order they are served by A, and let τi be the time
when A serves the i-th such request. We divide the “interesting portion” of the
time axis into intervals I2, I4, . . . , I2m, where Ii = [τi, τi+2], and we select
tstop = τ2m+2 (so that I2m ends at time tstop). We shall give a lower bound on

20

the cost incurred by A during the generic interval Ii; in other words, we want
to calculate how much time the active requests have to wait inside Ii.

At the beginning of Ii, at time τi, A is aware of two requests, say σh and
σk. Without loss of generality, suppose that A is located in P (where it has
just served a request): then, one new request will be released in P at time
τi + ∆. Now, A must select the next request it is going to serve. If A decides
to serve the request in P , it has to wait up to time τi + ∆ at least. If A

decides to serve the request in Q, it has to travel to point Q, thus the request
will be served not earlier than time τi + d. This implies that, in any cases,
τi+1 − τi ≥ min{∆, d} = d. Likewise, τi+2 − τi+1 ≥ d.

We have just showed that ‖Ii‖ ≥ 2d. Since 2d > ∆, at least one request
among σh and σk is served with a minimum delay of 2d − ∆. Notice that
not necessarily both the requests are served inside Ii; but the cost 2d − ∆ is
incurred by A totally inside Ii. If one request among σh, σk is still active at
the beginning of Ii+2, then it will also contribute to the cost incurred by A

during interval Ii+2.

Since there are m time intervals, we have that:

A(σ) ≥ m(2d − ∆).

The off-line adversary B has the following behavior. Without loss of generality,
suppose that A serves σ1 before σ2.

(1) At time ∆, B serves σ2 in Q, at no cost.
(2) At time ∆ + d < 2∆, B serves σ1 in P , paying d. All starting requests

have been served.
(3) Recall that A serves its first request in P , at time τ1 ≥ ∆. B waits in P

until time τ1 + ∆ (≥ 2∆); then B begins to follow A with a delay of ∆,
i.e. pB(t) = pA(t−∆), for all t ≥ τ1 +∆. While traveling, B serves all the
requests it encounters. Notice that these requests are served at no cost,
since they are released in a point (P or Q) with a delay of ∆ with respect
to the time when A was in the same point.

Hence we have that B(σ) = d, and the competitive ratio A(σ)/B(σ) can be
made arbitrarily large with a suitable choice of m.

2

The above negative results for the net latency force us to switch back again
to the easier objective function of latency. For the interval metric space, we
show that algorithm OptimizeEarlierRequestsOnly, defined in Section 3.2, has
a competitive ratio which tends to 1 as ∆ increases.

21

Theorem 11 If f is the latency, OptimizeEarlierRequestsOnlyf with time
lookahead ∆ = δD is a (1 + 2/δ)-competitive algorithm for L-Ol-Trp on
an interval of length D.

PROOF. Let σ = σ1 . . . σn be the input instance, with σi = (xi, ti); let τi and
τ ∗
i denote the time when request σi is served by OERO and OPT respectively.

We partition the set of input requests into three subsets, and denote by A1,
A2 and A3 their indices:

• A1 is the set of indices of the requests released before time ∆, and served
when OERO is in the initial mode;

• A2 is the set of indices of the requests released before time ∆, and served
when OERO is in the sweeping mode; we denote with τ ∗∗

i the time when
these requests would have be served if OERO remained in the initial mode;

• A3 is the set of indices of the requests released after time ∆.

We have that OERO(σ) =
∑

i∈A1
τi +

∑

i∈A2
τi +

∑

i∈A3
τi; and OPT(σ) =

∑

i∈A1
τ ∗
i +

∑

i∈A2
τ ∗
i +

∑

i∈A3
τ ∗
i . We first note that

∑

i∈A1

τi +
∑

i∈A2

τ ∗∗
i ≤

∑

i∈A1

τ ∗
i +

∑

i∈A2

τ ∗
i ,

since the first term is the optimal cost of the solution which serves only the
requests released before time ∆.

Consider now any request σi with i ∈ A2. Since the server switched to the
sweeping mode, σi was not served before time ∆: thus τ ∗∗

i ≥ ∆ = δD. But we
have that τi ≤ τ ∗∗

i + 2D ≤ (1 + 2/δ)τ ∗∗
i , since (i) the server switched to the

sweeping mode before time τ ∗∗
i and (ii) after switching, the server served all

the requests in A2 within the first complete sweep of the segment. Thus

∑

i∈A1

τi +
∑

i∈A2

τi ≤
∑

i∈A1

τi +
∑

i∈A2

((

1 +
2

δ

)

τ ∗∗
i

)

≤
(

1 +
2

δ

)





∑

i∈A1

τ ∗
i +

∑

i∈A2

τ ∗
i



 .

For the requests in A3, we have that τ ∗
i ≥ ti ≥ ∆ = δD, and τi ≤ ti + 2D:

hence τi ≤ (1 + 2/δ)τ ∗
i . We conclude that

OERO(σ) =
∑

i∈A1

τi +
∑

i∈A2

τi +
∑

i∈A3

τi

≤
(

1 +
2

δ

)





∑

i∈A1

τ ∗
i +

∑

i∈A2

τ ∗
i



+
∑

i∈A3

((

1 +
2

δ

)

τ ∗
i

)

=
(

1 +
2

δ

)

OPT(σ).

22

2

5 Concluding remarks: lookahead and the virtues of laziness

In the earlier sections we presented several on-line vehicle routing problems
and we studied the impact that lookahead can have on their competitive ratio.
This impact varies considerably across problems and metric spaces. As we have
seen in Section 3, in general metric spaces lookahead does not provide any
extra power to on-line algorithms for the H-Ol-Tsp, but it helps algorithms
for the N-Ol-Tsp, allowing us to improve the upper bound from 1 +

√
2 to 2

(when a sufficient amount of lookahead is given). If the metric space is the line
segment, lookahead becomes much more useful, as it allows the competitive
ratio to tend to 1 as the amount of lookahead increases. This holds for the
homing and the nomadic Ol-Tsp, as well as for the Ol-Trp. If we consider
the net latency as the objective function we immediately run into negative
results: there is no on-line competitive algorithm in any space containing a
bidimensional ball, and even in a unidimensional space there is no hope of
obtaining a competitive on-line algorithm if the amount of lookahead is not
large enough.

Another direction that has been explored in other works [6, 10, 17, 26, 30],
and that we overviewed in Section 2, is whether and when it is advantageous
for an algorithm to wait idle even when there are outstanding requests. Even
though it may sound unusual that an algorithm should decide to wait instead
of serving pending requests, as discussed in Section 2 moving the server too
early could damage the quality of the overall service. In particular, we can
observe from Tables 1 and 2 that for the same problems where lookahead
proves useful (i.e. for the N-Ol-Tsp in general metric spaces, for the H-Ol-

Tsp, the N-Ol-Tsp and the L-Ol-Trp on the line), non-zealous algorithms
behave better than the best zealous algorithms known. Conversely, for the H-

Ol-Tsp, where lookahead is useless, the optimal algorithm is a zealous one.
In this concluding section we would like to make some more precise remarks
on the relationship between lookahead and the non-zealousness (or laziness)
of algorithms.

To this end, consider any real-time problem with the following property: if
we take a solution to an instance and delay it by ∆ units of time, then the
cost of the new solution on the same instance increases by at most ∆. For
example, the nomadic and the homing Ol-Tsp have this property. For such
“makespan-type” problems there is an intuitive connection between lookahead
and waiting because an algorithm A could always wait up to time ∆, simulate
an algorithm B with lookahead ∆ on the same instance and apply B’s solution
with delay ∆. In particular, if the competitive ratio of B with lookahead δ·OPT

23

is ρ(δ), and A was somehow able to take ∆ = δ ·OPT, then A would be δ+ρ(δ)
competitive. Thus, the effectiveness of lookahead implies the effectiveness of
waiting. In our framework this connection is not formal, of course, because it
is not clear how A can guess the right ∆ (which is instance-dependent). But in
retrospect, an important component of many real-time algorithms is precisely
the on-line estimation of the optimal cost. Furthermore, we remark that, while
we decided to relate time lookahead with the diameter of the metric space,
an alternative way to give a meaning to lookahead is to compare it with the
optimal cost of the input instance.

This is, essentially, the approach adopted by Jaillet and Wagner [23]: they
compare time lookahead ∆ with the length of the optimal tour LTSP . For the
H-Ol-Tsp they prove that, if ∆ = αLTSP , then there exists a

(

2 − α
1+α

)

-
competitive algorithm for general metric spaces, thus improving on the 2-
competitive result of [6]. Notice that, as a consequence of Theorem 4, this
result crucially depends on the fact that lookahead is not fixed a priori, but
is a function of the input instance. For the latency objective function, Jaillet
and Wagner compare ∆ with both LTSP and tn, where tn is the time when the
last request is released: they extend the best known algorithm of [27], using
lookahead to improve its competitive ratio. The idea of comparing ∆ with
characteristic quantities of the instance, such as its optimal cost, makes it
possible to usefully apply lookahead in any metric space, and has a theoretical
interest because, by regulating lookahead parameters, one can vary the amount
of “on-lineness” of the model. On the other hand, it is hardly a practical
approach, as it requires input instances to conform to some rules (for example,
to disclose requests with a lookahead that is proportional to the length of
the optimal tour) which do not seem to be easily justifiable in a real-world
application.

We finally remark that, while theoretically the influence of lookahead varies
significantly among problems and metric spaces – and in several cases looka-
head proves scarcely useful or completely useless – practically algorithms can
make a good use of the information provided by lookahead. In [4] we present
preliminary experimental results, where we show that, in every problem and
metric space we considered, even small amounts of lookahead considerably
improve the average competitive ratios of the simple algorithms analyzed.

References

[1] F. Afrati, S. Cosmadakis, C. H. Papadimitriou, G. Papageorgiou, and
N. Papakostantinou. The complexity of the travelling repairman problem.
Theoretical Informatics and Applications, 20(1):79–87, 1986.

[2] S. Albers. On the influence of lookahead in competitive paging algorithms.
Algorithmica, 18(3):283–305, 1997.

24

[3] S. Albers. A competitive analysis of the list update problem with looka-
head. Theoretical Computer Science, 197(1–2):95–109, 1998.

[4] L. Allulli, G. Ausiello, and L. Laura. On the power of lookahead in on-line
vehicle routing problems. Technical Report TR-02-05, Dipartimento di
Informatica e Sistemistica, Università di Roma “La Sapienza”, 2005.

[5] N. Ascheuer, S. O. Krumke, and J. Rambau. Online dial-a-ride problems:
Minimizing the completion time. In H. Reichel and S. Tison, editors, Proc.
17th Symp. on Theoretical Aspects of Computer Science, volume 1770 of
Lecture Notes in Computer Science, pages 639–650. Springer, 2000.

[6] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo. Algo-
rithms for the on-line travelling salesman. Algorithmica, 29(4):560–581,
2001.

[7] G. Ausiello, M. Demange, L. Laura, and V. Paschos. Algorithms for
the on-line quota traveling salesman problem. Information Processing
Letters, 92(2):89–94, 2004.

[8] G. Ausiello, L. Allulli, V. Bonifaci, and L. Laura. On-line algorithms,
real time, the virtue of laziness, and the power of clairvoyance. In J. Cai,
S. B. Cooper, and A. Li, editors, Proc. 3rd Int. Conf. on Theory and
Applications of Models of Computation, volume 3959 of Lecture Notes in
Computer Science, pages 1–20. Springer, 2006.

[9] G. Ausiello, V. Bonifaci, and L. Laura. The on-line asymmetric trav-
eling salesman problem. Journal of Discrete Algorithms, to appear.
doi:10.1016/j.jda.2007.03.002.

[10] M. Blom, S. O. Krumke, W. E. de Paepe, and L. Stougie. The online-TSP
against fair adversaries. INFORMS Journal on Computing, 13:138–148,
2001.

[11] V. Bonifaci. Models and Algorithms for Online Server Routing.
PhD thesis, Technical University Eindhoven, The Netherlands, 2007.
Available online at http://www.dis.uniroma1.it/~bonifaci/papers/
phdthesis-tue.pdf.

[12] V. Bonifaci. An adversarial queueing model for online server routing.
Theoretical Computer Science, 381(1–3):280–287, 2007.

[13] V. Bonifaci and L. Stougie. Online k-server routing problems. Theory of
Computing Systems, to appear. doi:10.1007/s00224-008-9103-4.

[14] A. Borodin and R. El-Yaniv. Online Computation and Competitive Anal-
ysis. Cambridge University Press, 1998.

[15] A. Borodin, J. M. Kleinberg, P. Raghavan, M. Sudan, and D. P.
Williamson. Adversarial queuing theory. Journal of the ACM, 48(1):
13–38, 2001.

[16] W. de Paepe. Complexity Results and Competitive Analysis for Vehicle
Routing Problems. PhD thesis, Technical University of Eindhoven, 2002.

[17] E. Feuerstein and L. Stougie. On-line single-server dial-a-ride problems.
Theoretical Computer Science, 268:91–105, 2001.

[18] A. Fiat and G. J. Woeginger, editors. Online Algorithms: The State of
the Art. Springer, 1998.

25

http://www.dis.uniroma1.it/~bonifaci/papers/phdthesis-tue.pdf
http://www.dis.uniroma1.it/~bonifaci/papers/phdthesis-tue.pdf

[19] N. Garg. A 3-approximation for the minimum tree spanning k vertices.
In Proc. 37th Symp. Foundations of Computer Science, pages 302–309,
1996.

[20] M. Goemans and J. Kleinberg. An improved approximation ratio for the
minimum latency problem. Mathematical Programming, 82(1):111–124,
1998.

[21] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System
Technical Journal, 45:1563–1581, 1966.

[22] D. Hauptmeier, S. O. Krumke, and J. Rambau. The online dial-a-ride
problem under reasonable load. In Proc. 4th Italian Conference on Algo-
rithms and Complexity, Lecture Notes in Computer Science, pages 125–
136. Springer, 2000.

[23] P. Jaillet and M. R. Wagner. Online routing problems: Value of advanced
information as improved competitive ratios. Transportation Science, 40
(2):200–210, 2006.

[24] M. Jünger, G. Reinelt, and G. Rinaldi. The traveling salesman problem.
In M. O. Ball, T. Magnanti, C. L. Monma, and G. Nemhauser, editors,
Network Models, Handbook on Operations Research and Management Sci-
ence, volume 7, pages 225–230. Elsevier, North Holland, 1995.

[25] E. Koutsoupias and C. H. Papadimitriou. Beyond competitive analysis.
SIAM Journal on Computing, 30(1):300–317, 2000.

[26] S. O. Krumke. Online optimization: Competitive analysis and beyond.
Habilitation Thesis, Technical University of Berlin, 2001.

[27] S. O. Krumke, W. E. de Paepe, D. Poensgen, and L. Stougie. News from
the online traveling repairman. In Proc. 28th International Colloquium
on Automata, Languages, and Programming, pages 487–499, 2001.

[28] S. O. Krumke, L. Laura, M. Lipmann, A. Marchetti-Spaccamela, W. E.
de Paepe, D. Poensgen, and L. Stougie. Non-abusiveness helps: an o(1)-
competitive algorithm for minimizing the maximum flow time in the on-
line traveling salesman problem. In Proc. 5th Int. Workshop on Approxi-
mation Algorithms for Combinatorial Optimization, pages 200–214, 2002.

[29] L. Laura. Risoluzione on-line di problemi dial-a-ride. Master’s thesis,
University of Rome “La Sapienza”, 1999.

[30] M. Lipmann. On-Line Routing. PhD thesis, Technical University of
Eindhoven, 2003.

[31] R. Sitters. The minimum latency problem is NP-hard for weighted trees.
In Proc. 9th Integer Programming and Combinatorial Optimization Con-
ference, pages 230–239, 2002.

[32] D. Sleator and R. E. Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM, 28(2):202–208, 1985.

26

	Introduction
	On-line server routing problems
	The on-line TSP with lookahead
	General Metric Spaces
	The Line Segment

	The on-line TRP with lookahead
	General Metric Spaces
	The Line Segment

	Concluding remarks: lookahead and the virtues of laziness

