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40.1 Introduction

The most general version of the Prize-Collecting Traveling Salesman Problem (PCTSP) was first introduced
by Balas [1]. In this problem, a salesman has to collect a certain amount of prizes (the quota) by visiting
cities. A known prize can be collected in every city. Furthermore, by not visiting a city, the salesman incurs
a pecuniary penalty. The goal is to minimize the total travel distance plus the total penalty, while starting
from a given city and collecting the quota.

The problem generalizes both the Quota TSP, which is obtained when all the penalties are set to zero,
and the Penalty TSP (PTSP) (sometimes unfortunately also called PCTSP), in which there is no required
quota, only penalties. A special case of the Quota TSP is the k-TSP, in which all prizes are unitary (k is
the quota). The k-TSP is strongly tied to the problem of finding a tree of minimum cost spanning any
k vertices in a graph, called the k-Minimum Spanning Tree (k-MST) problem.

The k-MST and the k-TSP are NP-hard. They have been the subject of several studies for good approx-
imation algorithms [2–6]. A 2-approximation scheme for both the k-MST and the k-TSP given by Garg
[6] is the best known approximation ratio. Interestingly enough, all these algorithms use the primal-dual
algorithm of Goemans and Williamson [7] for the Prize-Collecting Steiner Tree as a subroutine.

The Quota TSP was also considered by some researchers. It was considered by Awerbuch et al. [8], who
gave an O(log2(min(Q, n))) approximation algorithm for instances with n cities and quota Q. Ausiello
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et al. [9] give an algorithm with an approximation ratio of 5 for what could be called the Quota MST, by
extending some of the ideas of Ref. [5].

The PTSP has apparently a better approximation ratio. Goemans and Williamson [7], as an application
of their primal-dual technique, give an approximation algorithm with a ratio of 2 for the PTSP. Their
algorithm uses a reduction to the Prize-Collecting Steiner Tree Problem. The running time of the algorithm
was reduced from O(n2 log n) to O(n2) by Gabow and Pettie [10].

We finally remark that both the MST and the TSP also admit a budget version; in these cases a budget B
is specified in the input and the objective is to find the largest k-MST, respectively the k-TSP, whose cost
is no more than the given budget.

Awerbuch et al. [8] in the aforementioned work, were the first to give an approximation algorithm for
the general PCTSP. Their approximation ratio is again O(log2(min(Q, n))). They achieve this ratio by
concatenating the tour found by the Quota TSP algorithm to a tour found by the Goemans–Williamson
algorithm. As an application of the 5-approximate algorithm for the Quota MST [9] it follows that the
approximation ratio of the PCTSP is constant.

In what follows, we introduce formal details and we provide a review of the main results in the area. In
Section 40.2, we present the algorithm by Goemans and Williamson for the Prize-Collecting Steiner Tree,
which is a basic building block for all the other algorithms in this chapter and has also an application to
the PTSP. In Section 40.3, we analyze Garg’s technique showing a 5-approximation for both the k-MST
and k-TSP and show how to extend it to the Quota TSP. In Section 40.4, we describe an algorithm for the
general PCTSP that builds over the algorithms for Quota TSP and PTSP. In Section 40.5, we show some
applications of these algorithms to the minimum latency problem and graph searching.

40.2 The Prize-Collecting Steiner Tree Problem and Penalty
Traveling Salesman Problem

40.2.1 Definitions

Prize-Collecting Steiner Tree. Given an undirected graph G = (V, E ) with vertex penalties π : V → Q+,
edge costs c : E → Q+ and a root node r , the Prize-Collecting Steiner Tree problem asks to find a tree
T = (VT , E T ) including r that minimizes

c(T) =
∑

e∈E T

ce +
∑

v∈V\VT

πv

Penalty Traveling Salesman Problem. Given an undirected graph G = (V, E ) with vertex penalties π :
V → Q+, edge costs c : E → Q+ satisfying the triangle inequality and a root node r , the PTSP asks to
find a tour T = (VT , E T ) including r that minimizes

c(T) =
∑

e∈E T

ce +
∑

v∈V\VT

πv

40.2.2 History of the Results

The first approximation algorithms for the Prize-Collecting Steiner Tree and PTSP were developed by
Bienstock et al. [11]. They gave LP-based algorithms achieving a 3-approximation for the PCST and a 5/2-
approximation for the PTSP with triangle inequality. Both bounds were later improved to 2 by Goemans
and Williamson [7] with a combinatorial algorithm. The NP-hardness (more precisely, APX-hardness) of
the problems follows from that of the Steiner Tree problem [12] and the TSP [13], respectively.

40.2.3 The Primal-Dual Algorithm of Goemans and Williamson

We review the algorithm of Goemans and Williamson [7] for the Prize-Collecting Steiner Tree and PTSP. We
are given an undirected graph G = (V, E ), nonnegative edge costs ce , and nonnegative vertex penalties
πi . The goal in the Prize-Collecting Steiner Tree problem is to minimize the total cost of a Steiner tree and
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the penalties of the vertices that are not spanned by the Steiner tree. In the PTSP, we aim to minimize the
cost of a tour and of the penalties of the vertices that are not included in the tour. In this section we revise
the primal-dual algorithm of Ref. [7] that provides a 2-approximation for both problems. We first show a
2-approximation for the Steiner tree version and then show how to obtain a 2-approximation for the TSP
version. Subsequently, we use GW (Goemans-Williamson) to refer to this algorithm.

GW is a primal-dual algorithm, that is, the algorithm constructs both a feasible and integral primal and
a feasible dual solution for a linear programming formulation of the problem and its dual, respectively.
We will consider the version of the problem in which a root vertex r is given and the Steiner tree or the
traveling salesman tour will contain r . This is without loss of generality if we can run the algorithm for all
possible choices of r .

An integer programming formulation for the Steiner tree problem has a binary variable xe for all edges
e ∈ E : xe has value 1 if edge e is part of the resulting forest and 0 otherwise. Let us denote by S all subsets
of V/{r }. The integer programming formulation has a binary variable xU for each set U ∈ S . The cost
of set U is

∑
v∈U πv . For a subset U ∈ S we define δ(U ) to be the set of all edges that have exactly one

endpoint in U . Let T be the set of edges with xe = 1 and let A be the union of sets U for which xU = 1.
For any U ∈ S , any feasible solution must cross U at least once, that is, |δ(U ) ∩ T | ≥ 1, or U must be
included in the set of vertices that are not spanned, that is, U ⊂ A.

This gives rise to the following integer programming formulation for the Prize-Collecting Steiner Tree
problem:

optIP = min
∑
e∈E

ce · xe +
∑

U∈S

xU ·
∑
i∈U

πi (IP)

s.t.
∑

e∈δ(U )

xe +
∑

U ′:U⊆U ′
xU ′ ≥ 1 ∀U ∈ S (40.1)

xe , xU ∈ {0, 1} ∀e ∈ E , ∀U ∈ S

It is easy to observe that any solution to the Prize-Collecting Steiner Tree problem is an integral solution
of this integer linear program: We set xe = 1 for all edges of the Steiner tree T that connects the spanned
vertices to the root r . We set xU = 1 for the set U of vertices not spanned by the tree. In the linear
programming relaxation of IP we drop the integrality constraints on variables xe and xU .

The dual (D) of the linear programming relaxation (LP) of (IP) has a variable yU for all sets U ∈ S .
There is a constraint for each edge e ∈ E that limits the total dual assigned to sets U ∈ S that contain
exactly one endpoint of e to be at most the cost ce of the edge. There is a constraint for every U ∈ S that
limits the total dual from subsets of U by at most the total penalty from vertices in U .

optD = max
∑

U∈S

yU (D)

s.t.
∑

U∈S : e∈δ(U )

yU ≤ ce ∀e ∈ E (40.2)

∑
U ′⊆U

yU ′ ≤
∑
i∈U

πi ∀U ∈ S (40.3)

yU ≥ 0 ∀U ∈ S

Algorithm GW constructs a primal solution for (IP) and a dual solution for D. The algorithm starts with
an infeasible primal solution and reduces the degree of infeasibility as it progresses. At the same time, it
creates a dual feasible packing of sets of largest possible total value. The algorithm raises dual variables of
certain subsets of vertices. The final dual solution is maximal in the sense that no single set can be raised
without violating a constraint of type (40.2) or (40.3).

We can think of an execution of GW as a process over time. Let xτ and yτ , respectively, be the primal
incidence vector and feasible dual solution at time τ . Initially, x0

e = 0 for all e ∈ E , x0
U = 0 for all U ∈ S ,

and y0
U = 0 for all U ∈ S . In the following we say that an edge e ∈ E is tight if the corresponding

constraint (40.2) holds with equality, and that a set U is tight if the corresponding constraint (40.3) holds
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with equality. We use F τ to denote the forest formed by the collection of tight edges corresponding to xτ ,
and and S τ to denote the collection of tight sets corresponding to xτ . Assume that the solution xτ at time
τ is infeasible. A set U ∈ S is active at time τ if it is spanned by a connected component in forest F τ , there
is no tight edge e ∈ δ(U ), and the corresponding constraint (40.3) is not tight. Let A τ be the collection
of sets that are active at time τ . GW raises the dual variables for all sets in A τ uniformly at all times τ ≥ 0.

Two kind of events are possible. (i) An edge e ∈ δ(U ) becomes tight for a set U ∈ A τ . We set xe = 1
and update A τ . (Observe that if the tight edge connects U to a component containing r , the newly
formed connected component of F τ is part of A τ . If the tight edge connects set U to a component of F τ

that does not contain the root (either active or inactive), the newly formed component is part of A τ .)
(ii) Constraint (40.3) becomes tight for a set U ∈ A τ . We set xU = 1. GW ends with a reverse pruning
phase applied to all sets U ∈ S with xU = 1. They are analyzed in order of decreasing time at which the
corresponding constraint (40.3) became tight. If the vertices of U are actually connected to the root via
tight edges in the current solution, we set xU = 0. The algorithm ends with a tree T connecting a set of
vertices to the root r and a set A of vertices for which the penalties are paid. Denote by c(T, A) the total
cost of the solution, that is, c(T, A) = ∑

e∈T ce + ∑
i∈A πi .

Theorem 40.1 (Goemans and Williamson [7])

Suppose that algorithm GW outputs a tree T, a set of vertices A and a feasible dual solution {yU }U∈S . Then

c(T, A) ≤ 2 ·
∑

U∈S

yU ≤ 2 · opt

where opt is the minimum-cost solution for the Prize-Collecting Steiner Tree problem.

The proof of the above theorem [7] is along the following lines. The total dual of subsets of U ∈ S

with xU = 1 will pay for the penalties of vertices in A, that is,
∑

U :xU=1

∑
U ′⊆U yU ′ ≤ ∑

i∈A πi , since
constraints (40.3) are tight for these sets. Due to the reverse pruning phase, subsets of U ∈ S with xU = 1
do not contribute to make tight any edge in T . The cost of T is then paid by twice the total dual of sets
U ∈ S loading edges of T , that is, those that contribute to making the corresponding constraints (40.2)
tight.

GW also provides a 2-approximation for the PTSP when edge costs obey the triangle inequality. First, we
run the PCST algorithm with halved penalties. Then, the resulting tree is converted to a tour by doubling
every edge and shortcutting the resulting Eulerian tour. For the proof of 2-approximation, we observe that
the following integer linear program is a formulation for the problem.

optIP = min
∑
e∈E

ce · xe +
∑

U∈S

xU

∑
i∈U

πi

2
(IP)

s.t.
∑

e∈δ(U )

xe +
∑

U ′:U⊆U ′
xU ′ ≥ 2, ∀U ∈ S (40.4)

xe ∈ {0, 1}, ∀e ∈ E

xU ∈ {0, 2}, ∀U ∈ S

Constraints (40.4) impose that each subset must me crossed at least twice unless we pay the penalties
for all the vertices of the subset. The dual of the corresponding relaxation is

optD = max 2 ·
∑

U∈S

yU (D)

s.t.
∑

U∈S : e∈δ(U )

yU ≤ ce ∀e ∈ E (40.5)

∑
U ′⊆U

yU ′ ≤
∑
i∈U

πi

2
∀U ∈ S (40.6)

yU ≥ 0 ∀U ∈ S
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The cost of the solution provided by GW is given by at most twice the cost of tree T and the total penalty
of vertices in A. Since twice the total dual collected by the algorithm is a lower bound to the optimal
solution, we conclude from the following theorem.

Theorem 40.2 (Goemans and Williamson [7])

Suppose that algorithm GW outputs a cycle C , a set of vertices A and a feasible dual solution {yU }U∈S . Then

c(C , A) ≤ 2 ·
(

2 ·
∑

U∈S

yU

)
≤ 2 · opt

where opt is the minimum-cost solution for the PTSP.

40.3 The k-Minimum Spanning Tree, k-TSP and Quota
Traveling Salesman Problem

40.3.1 Definitions

k-Minimum Spanning Tree Problem. Given an undirected graph G = (V, E ), a tree on G spanning exactly
k nodes is called a k-tree. Given such a graph with edge costs c : E → Q+ and a positive integer k,
the (unrooted) k-MST problem asks to find a k-tree of minimum total cost. In the rooted version of the
problem, the k-tree has to include a given root node r .

k-Traveling Salesman Problem. Given an undirected graph G = (V, E ), a cycle of G spanning exactly k
nodes is called a k-tour. Given such a graph with edge costs c : E → Q+ satisfying the triangle inequality,
a positive integer k and a root node r , the k-TSP asks to find a k-tour including r of minimum total cost.

Quota Traveling Salesman Problem. Given an undirected graph G = (V, E ) with vertex weights w : V →
Z+ and a nonnegative integer Q, a cycle C of G such that

∑
v∈C w(v) ≥ Q is called a quota Q-tour. Given

such a graph with edge costs c : E → Q+ satisfying the triangle inequality and a root node r , the Quota
TSP asks to find a quota Q-tour including r of minimum total cost.

40.3.2 History of the Results

The k-MST problem is known to be an NP-hard problem [14]. Heuristics were given by Cheung and
Kumar [15], who studied the problem in the context of communication networks. The first approximation
algorithms were considered by Ravi et al. [16], who gave an algorithm achieving an approximation ratio
of O(

√
k). Later, this ratio was improved to O(log2 k) by Awerbuch et al. [8]. The first constant-ratio

algorithm was given by Blum et al. [17]. Subsequently, Garg [5] gave a simple 5-approximation algorithm
and a more complicated 3-approximation algorithm, while a 2.5-approximation algorithm for the unrooted
case was found by Arya and Ramesh [3]. Arora and Karakostas gave a (2 + ε)-approximation scheme for
the rooted version. A 2-approximation by Garg [6] is the current best bound.

We observe that the rooted and the unrooted versions of the k-MST are equivalent with respect to the
approximation ratio. In fact, given a c-approximation algorithm for the rooted case it is sufficient to run
n times the k-MST algorithm with all possible choices for the root node r , and return the cheapest k-tree
found to obtain a c-approximation algorithm for the rooted case . Garg [6] observed that a c-approximation
algorithm for the unrooted case gives a c-approximation algorithm for the rooted case.

Some of these works also addressed the k-TSP and Quota TSP. The algorithms for the k-MST by Garg, as
well as the scheme by Arora and Karakostas, extend to the k-TSP, thus giving a 2-approximation algorithm
for this problem as the current best bound. Finally, as an application of their O(log2 k)-approximation
algorithm for k-MST, Awerbuch et al. give a O(log2(min(Q, n)))-approximation algorithm for the Quota
TSP, where n is the number of nodes of the graph.

Finally, we remark that a dual version of the TSP is known as the orienteering problem [18]. In this
problem we are given an edge-weighted graph and a budget and the goal consists in visiting as many
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vertices of the graph as possible and return to the origin without incurring in a cost greater than the al-
lowed budget. In Ref. [19] a 4-approximation algorithm that makes use of min-cost path algorithms
of Ref. [20] is presented for the orienteering problem. In Ref. [21] an improved algorithm leading
to a 3-approximation bound for the problem is shown in the context of a more general approach to
constrained vehicle routing problem. Other budget versions have been defined also for MST and for
TSP [6,19,22].

40.3.3 A 5-Approximation Algorithm for k-Minimum Spanning Tree and
k-Traveling Salesman Problem

In this section, we present and discuss the algorithm by Garg achieving a 5-approximation for the rooted
k-MST and its modification yielding the same approximation for the k-TSP. Our analysis follows Chudak
et al. [23].

Several assumptions can be made with no loss of generality. First, we can suppose that the edge costs
satisfy the triangle inequality, by using well-known techniques [16]. Also, we will assume that the distance
from the root to the farthest vertex is a lower bound on the optimum value. It turns out that this is easy
to ensure: We can run the algorithm n − 1 times with all possible choices of a “farthest” vertex, every time
disregarding nodes farther than the chosen one, and return the best solution found. The last assumption
is that opt ≥ c0, where c0 is the smallest nonzero edge cost. This is not the case only if opt = 0, meaning
that the optimal solution is a connected component containing r of size k in the graph of zero-cost edges,
and the existence of such a component can be easily checked in a preprocessing phase.

A possible formulation of the rooted k-MST as an integer linear problem is the following:

opt = min
∑
e∈E

ce xe (IP)

subject to:
∑

e∈δ(S)

xe +
∑

T :T⊇S

zT ≥ 1 ∀S ⊆ V \ {r } (1)

∑
S:S⊆V\{r }

|S|zS ≤ n − k (2)

xe ∈ {0, 1} ∀e ∈ E

zS ∈ {0, 1} ∀S ⊆ V \ {r }
In the above formulation, r is the root node and δ(S) the set of edges with exactly one endpoint in S. The
variables xe indicate whether the edge e is included in the tree; the variables zS indicate whether the set of
vertices S is not spanned by the tree. The set of constraints (1) enforces, for each S ⊆ V \ {r }, either some
edge of δ(S) is in the tree or all the vertices in S are not spanned by the tree. Thus, every vertex not in any S
such that zS = 1 will be connected to the root r . Constraint (2) enforces at least k vertices to be spanned.
Finally, the LP relaxation of this integer program is obtained by replacing the integrality constraints with
nonnegativity constraints (in an optimal solution, xe ≤ 1 and zS ≤ 1 for all e and S).

All the proposed constant approximation algorithms for the k-MST problem use as a subroutine the
primal-dual 2-approximation algorithm for the Prize-Collecting Steiner Tree of Goemans and Williamson
[7]. This is not by chance, because this problem is essentially the Lagrangean relaxation of the k-MST.
Indeed, if we apply Lagrangean relaxation to constraint (2) of the LP relaxation of the k-MST program,
we obtain the following:

min
∑
e∈E

ce xe + λ

(∑
S⊆V\{r } |S|zS − (n − k)

)
(LR)

subject to:
∑

e∈δ(S)

xe +
∑

T :T⊇S

zT ≥ 1 ∀S ⊆ V \ {r }

xe ≥ 0 ∀e ∈ E

zS ≥ 0 ∀S ⊆ V \ {r }
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where λ ≥ 0 is the Lagrangean variable. Apart from the constant term −λ(n −k) in the objective function,
this is the same as the LP relaxation of the Prize-Collecting Steiner Tree problem with πv = λ for all v.
Moreover, any solution feasible for the LP relaxation of k-MST is also feasible for (LR), so the value of this
program is a lower bound on the cost of an optimal k-MST.

Before discussing Garg’s algorithm, we recall that the primal-dual approximation algorithm for the
Prize-Collecting Steiner Tree returns a solution (F , A), where F is a tree including the root r , and A is the
set of vertices not spanned by F . The algorithm also constructs a feasible solution y for the dual of the LP
relaxation of PCST.

Theorem 40.3 (Goemans and Williamson [7])

The primal solution (F , A) and the dual solution y produced by the prize-collecting algorithm satisfy

∑
e∈F

ce +
(

2 − 1

n − 1

)
π(A) ≤

(
2 − 1

n − 1

) ∑
S⊆V\{r }

yS

where π(A) = ∑
v∈A πv .

A corollary of Theorem 40.3 is that the prize-collecting algorithm has an approximation ratio of 2, by
weak duality and the feasibility of y.

We would like to use the prize-collecting algorithm to solve the k-MST problem. Thus suppose that we
run the algorithm with πv = λ for all v ∈ V , for some value λ ≥ 0. Then by Theorem 40.3, we obtain
(F , A) and y such that ∑

e∈F

ce + 2|A|λ ≤ 2
∑

S⊆V\{r }
yS (40.7)

Consider the dual of the Lagrangean relaxation of the k-MST LP:

max
∑

S⊆V\{r }
yS − (n − k)λ (LR-D)

subject to:
∑

S:e∈δ(S)

yS ≤ ce ∀e ∈ E

∑
T :T⊆S

yT ≤ |S|λ ∀S ⊆ V \ {r }

yS ≥ 0 ∀S ⊆ V \ {r }
Since this dual is, apart from the objective function, the same as the dual of the LP relaxation of the PCST

instance, the solution y is feasible for this dual, and the value of the objective function is a lower bound
on the cost of an optimal k-MST, by weak duality. Subtracting 2(n − k)λ from both sides of Eq. (40.7)

∑
e∈F

ce + 2λ
(|A| − (n − k)

) ≤ 2

( ∑
S⊆V\{r }

yS − (n − k)λ

)
≤ 2 opt

where opt is the cost of an optimal solution to the k-MST instance.
Now if the term |A| − (n − k) is zero, we can conclude that the tree F is a k-tree and has cost no more

than twice optimal. Unfortunately, if |A| − (n − k) is positive then the tree F is not feasible, while if it
is negative we cannot conclude anything about the approximation ratio. However, it turns out that it is
possible to find values of λ such that even if these cases occur, they can be taken care of, although at the
cost of resulting in an approximation ratio higher than two.

What Garg’s algorithm does is indeed a binary search for these critical values of λ, through a sequence
of calls to the prize-collecting algorithm. Notice that if the prize-collecting algorithm is called with λ = 0,
it will return the empty tree spanning only r as a solution, while for λ = ∑

e∈E ce it will return a tree
spanning all vertices. Thus the initial interval of the binary search will be [0,

∑
e∈E ce ], and at every

iteration, if the current interval is [λ1, λ2], the prize-collecting algorithm is run with λ = 1
2 (λ1 + λ2). If

the returned tree has less than k vertices, we update λ1 to λ; if it has more than k vertices, we update λ2 to
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λ. Notice that in the lucky event that, at any point, a tree with exactly k vertices is returned, we can stop,
since by the above discussion that must be within a factor 2 of optimal. So assume that this event does not
happen. We will stop when we have found two values λ1, λ2 such that:

(1) λ2 − λ1 ≤ c0
2n(n+1) (recall that c0 is the smallest nonzero edge cost);

(2) for i = 1, 2, the prize-collecting algorithm run with λ set to λi returns a primal solution (Fi , Ai )
spanning ki vertices and a dual solution y(i), with k1 < k < k2.

Note that these two values will be found at most after O(log
n2

∑
e

ce

c0
) calls to the prize-collecting algorithm.

The final step of the algorithm is combining the two solutions (F1, A1) and (F2, A2) into a single k-tree.
Solution (F1, A1) is within a factor of 2 of optimal, but infeasible, while solution (F2, A2) can be easily
made feasible but not within a factor of 2 of optimal. More precisely, as a consequence of Theorem 40.3,

∑
e∈F1

ce ≤
(

2 − 1

n

)( ∑
S⊆V\{r }

y(1)
S − |A1|λ1

)

∑
e∈F2

ce ≤
(

2 − 1

n

)( ∑
S⊆V\{r }

y(2)
S − |A2|λ2

)

To get a bound on the cost of F1 and F2 in terms of opt, let

α1 = n − k − |A2|
|A1| − |A2| and α2 = |A1| − (n − k)

|A1| − |A2| .

Then α1|A1| + α2|A2| = n − k and α1 + α2 = 1, and after defining, for all S ⊆ V \ {r }, yS =
α1 y(1)

S + α2 y(2)
S , it is possible to prove the following lemma.

Lemma 40.1 (Chudak et al. [23])

α1

∑
e∈F1

ce + α2

∑
e∈F2

ce < 2opt

Proof
We omit the proof for brevity; the reader can find it in the overview by Chudak et al. [23].

We now show how to obtain a 5-approximation algorithm by choosing one of two solutions. First, if
α2 ≥ 1

2 , the tree F2, besides spanning more than k vertices, satisfies∑
e∈F2

ce ≤ 2α2

∑
e∈F2

ce ≤ 4opt

by Lemma 40.1. If instead α2 < 1
2 , the solution is constructed by extending F1 with nodes from F2. Let

� ≥ k2 − k1 be the number of nodes spanned by F2 but not by F1. Then we can obtain a path on k − k1

vertices by doubling the tree F2, shortcutting the corresponding Eulerian tour to a simple tour of the �

nodes spanned only by F2, and choosing the cheapest path of k − k1 vertices from this tour. The resulting
path has cost at most

2
k − k1

k2 − k1

∑
e∈F2

ce

Notice that this path is disconnected from F1. However, we can connect it by adding an edge from the root
to any node of the set, costing at most opt by one of the assumptions at the beginning of the section. Since

k − k1

k2 − k1
= n − k1 − (n − k)

n − k1 − (n − k2)
= |A1| − (n − k)

|A1| − |A2| = α2
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the total cost of the produced solution is bounded by

∑
e∈F1

ce + 2α2

∑
e∈F2

ce + opt ≤ 2

(
α1

∑
e∈F1

ce + α2

∑
e∈F2

ce

)
+ opt ≤ 4opt + opt

using Lemma 40.1 and the fact that α2 < 1
2 implies α1 > 1

2 .
As for the k-TSP, it suffices to run the Prize-Collecting subroutine with halved penalties and then

shortcut the Eulerian walk obtained after doubling the k-tree found, in the same way as we went from the
Prize-Collecting Steiner Tree to the PTSP.

40.3.4 From the k-MST to the Quota Traveling Salesman Problem

In this section we will describe a 5-approximation algorithm for the Quota TSP. However, the discussion
will be easier if we consider the following problem first.

Quota Minimum Spanning Tree Problem
Given an undirected graph G = (V, E ) with vertex weights w : V → Z+ and a positive integer Q, a tree F
of G such that

∑
v∈F w(v) ≥ Q is called a quota Q-tree. Given such a graph with edge costs c : E → Q+

and a root node r , the Quota MST Problem asks to find a quota Q-tree including r of minimum total cost.

Theorem 40.4 (Ausiello et al. [9])

There is a 5-approximation algorithm for the Quota MST Problem.

The idea behind the theorem is that we can run the 5-approximation algorithm for the k-MST by Garg,
but instead of setting uniformly the penalties to λ, we set πv = λ · wv when calling the Prize-Collecting
Steiner Tree subroutine. The two solutions obtained at the end of the binary search phase can then be
patched essentially as before.

Now, we can obtain an algorithm for the Quota TSP in the same way as we went from the Prize-Collecting
Steiner Tree to the PTSP in Section 40.2. That is, it is sufficient to run the Prize-Collecting subroutine with
πv = 1

2λwv . The analysis remains the same.

40.4 The Prize-Collecting Traveling Salesman Problem

40.4.1 Definitions

Prize-Collecting Traveling Salesman Problem
Given an undirected graph G = (V, E) with vertex weights w : V → Z+, vertex penalties π : V → Q+,
and a nonnegative integer Q, a cycle C of G such that

∑
v∈C w(v) ≥ Q is called a quota Q-tour. Given

such a graph with edge costs c : E → Q+ satisfying the triangle inequality and a root node r , the PCTSP
asks to find a quota Q-tour T = (VT , E T ) including r that minimizes

c(T) =
∑

e∈E T

ce +
∑

v∈V\VT

πv

40.4.2 History of the Results

In the general form given here, the PCTSP was first formulated by Balas [1,24], who gave structural
properties of the PCTS polytope as well as heuristics. The problem arose during the task of developing
daily schedules for a steel rolling mill.

The only results on guaranteed heuristics for the PCTSP are due to Awerbuch et al. [8]. They give
polynomial-time algorithm with an approximation ratio of O(log2(min(Q, n))), where n is the number
of vertices of the graph and Q is the required vertex weight to be visited. However, the PCTSP contains as
special cases both the PTSP and the k-TSP, which received more attention in the literature (for the history
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of results on these problems, the reader can refer to the previous sections). From some recent results on
these problems, we derive a constant-approximation algorithm for the general PCTSP in the following
section.

40.4.3 A Constant-Factor Approximation Algorithm for PCTSP

A simple idea exploited by the algorithm of Awerbuch et al. [8] is that, for a given instance I of the PCTSP,
the following quantities constitute lower bounds on the cost opt of an optimal solution:

(1) the cost optp of an optimal solution to a PTSP instance I p defined on the same graph and having
the same penalties as in the PCTSP instance (since a feasible solution to I is also feasible for I p and
has the same cost);

(2) the cost optq of an optimal solution to a Quota TSP instance Iq defined on the same graph and
having the same weights and quota as in I (since every feasible solution to I can be turned into a
feasible solution for Iq of at most the same cost).

Thus, to approximate an optimal solution to the PCTSP instance I we can:

(1) run an α-approximation algorithm for PTSP on Ip to obtain a tour Tp such that c(Tp) ≤ α · optp;
(2) run aβ-approximation algorithm for Quota TSP on Iq to obtain a tour Tq such that c(Tq ) ≤ β·optq;
(3) concatenate Tp and Tq to obtain a tour T feasible for the PCTSP instance I of cost

c(T) ≤ c(Tp) + c(Tq ) ≤ α · optp + β · optq ≤ (α + β)opt

This means that, by using the best algorithms currently known for PTSP and Quota TSP, we can obtain a
constant-factor approximation to the PCTSP.

40.5 The Minimum Latency Problem and Graph Searching

Suppose that a plumber receives calls from various customers and decides to organize a tour of the
customers for the subsequent day; for sake of simplicity let us also assume that, at each visit, the time the
plumber needs to fix the customer’s problem is constant. A selfish plumber would decide to schedule his
tour in such way as to minimize the overall time he takes to serve all customers and come back home;
such approach would require the solution of an instance of TSP. Alternatively, a nonselfish plumber would
decide to schedule his tour in such a way to minimize the average time customers have to wait for his visit
the day after. In this case he will have to solve an instance of the so-called traveling repairman problem
(TRP).

The TRP problem is more frequently known in the literature as Minimum Latency Problem (MLP) [25],
but it is also known as school-bus driver problem [26] and the delivery man problem [27,28]. Strictly related
to MLP is the so-called graph searching problem (GSP) [29]. In such problem we assume that a single prize
is hidden in a vertex of an edge-weighted graph and the vertices are labeled with the probability that the
prize is stored in the vertex. The goal is to minimize the expected cost to find the prize by exploring all
vertices of the graph. The relationship between MLP and GSP is discussed in Ref. [9].

40.5.1 Definitions

Minimum Latency Problem
Given an undirected graph G = (V, E ), with edge costs c : E → Q+ satisfying the triangle inequality,
let T be a tour that visits the vertices in some order. The latency lvi ,T of a vertex vi ∈ T is the cost of the
prefix of T ending in vi . The MLP asks to find a tour T such that the sum of the latencies of all vertices
along T is minimum.
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40.5.2 History of the Results

The problem has been shown to be NP-hard by Sahni and Gonzalez [30]. In Ref. [31] Afrati et al. showed
that the problem can be solved in polynomial time on trees with bounded number of leaves. Recently,
Sitters [32] has shown that the problem is NP-hard also in the case of general weighted trees.

From the approximability point of view, the MLP is, clearly, as the TSP, hard to approximate for any
given constant ratio on general graphs [30] (i.e., when the triangle inequality does not hold), while in the
case of metric spaces it can be shown to be APX-complete, that is, it allows approximation algorithms but
does not allow approximation schemes.

The first constant-factor approximation algorithm for the MLP on general metric spaces has been
presented by Blum et al. [25] who show that given a c-approximate algorithm for the k-MST then there
exists a 8c-approximation ratio for the MLP. Subsequently, Goemans and Kleinberg [33] showed that the
constant 8 above can be lowered to 3.59, thus implying a 7.18-approximation algorithm for MLP. The best
current bound is 3.59 is given by Chaudhuri et al. in Ref. [20].

Arora and Karakostas [34] showed the existence of a quasi-polynomial-time approximation algorithm
when the input graph is a tree; to compute a (1+ε)-approximation the algorithm requires time nO(log n/ε)

time.
We finally remark that the problem has also been extended to the case of k repairmen. Namely,

Fakcharoenphol et al. [35] showed the first constant approximation algorithm for the problem. This
result has been improved to 8.49-approximation by Chaudhuri et al. in Ref. [20].

40.5.3 A 3.59-Approximation Algorithm for the Minimum Latency Problem

We first present the algorithm proposed by Goemans and Kleinberg in Ref. [33] that gives a 7.18-
approximation algorithm. The procedure proposed by the authors computes, for every j = 1, 2, . . . , n
the tour Tj of minimum length that visits j vertices. Then we have to concatenate a subsequence of the
tours to form the desired tour. Clearly, the goal is to select those values j1, . . . , jm such that the latency of
the final tour obtained by stitching together tours Tj1 . . . Tjm is minimized.

Let d ji and pi be the length of tour Tji and the number of new vertices visited during the same tour,
respectively. It is simple to show that the following claim holds:

m∑
i=1

pi d ji ≤
m∑

i=1

(ji − ji−1)d ji

Note that if, for every i , the tours Tji and Tji−1 were nested, the above inequality would be trivially
satisfied, but a careful analysis of the contributions involved on the right and the left-hand sides of the
inequality may convince the reader that such inequality is also true when the tours are not nested. It follows
that for a number of vertices equal to

∑i
k=1 pk − ji we sum a contribution at most d jk on the left-hand

side of the equation while a contribution larger than d jk on the right-hand side of the equation. Moreover,
each tour Tji is traversed in the direction that minimizes the total latency of the vertices discovered
during tour Tji . This allows to rewrite the total latency of the tour obtained by concatenating Tj1 , . . . ,
Tjm as

∑
i

(
n −

i∑
k=1

pk

)
d ji + 1

2

∑
i

pi d ji

≤
∑

i

(n − ji )d ji + 1

2

∑
i

( ji − ji−1)d ji

=
∑

i

(
n − ji−1 + ji

2

)
d ji
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The formula above allows to rewrite the total latency of the algorithm only in terms of the indices ji
and of the length d ji , independently from the number of new vertices discovered during each tour. A
complete digraph of n + 1 vertices is then constructed in the following way. Arc (i, j ) goes from min(i, j )
to max(i, j ) and has length (n − i+ j

2 )d ji . The algorithm computes a shortest path from node 0 to node
n. Assume that the path goes through nodes 0 = j0 < j1 < · · · < jm = n. The tour is then obtained by
concatenating tours Tj1 , . . . , Tjm .

The obtained solution is compared against the following lower bound OPT ≥ ∑n
k=1

dk
2 . This lower

bound follows from the observation that the kth vertex cannot be visited before dk/2 in any optimum
tour. The approximation ratio of the algorithm is determined by bounding the maximum over all the
possible set of distances d1, . . . , dn of the ratio between the shortest path in G n and the lower bound on
the optimum solution. This value results to be smaller than 3.59.

Theorem 40.5 (Goemans and Kleinberg [33])

Given a c-approximation algorithm for the problem of finding an a tour of minimum length spanning at least
k vertices on a specific metric space, then there exists a 3.59c-approximation algorithm for the MLP on the
same metric space.

Again by making use of the 2-approximation algorithm of [6] for k-MST and k-TSP we may achieve a
ratio 7.18 for MLP.

With respect to the results we have seen so far, a remarkable step forward has been achieved by Chaudhuri
et al. in Ref. [20]. Using techniques from Garg [5], Arora and Karakostas [2], and Archer et al. [36], the
authors are able to find a k-MST whose cost is no more than (1 + ε) the cost of the minimum path visiting
k vertices. Since such a cost is a lower bound on the latency of a k tour the result implies the following
theorem.

Theorem 40.6 (Chaudhuri et al. [20])

There exists a 3.59-approximation algorithm for the MLP on general metric spaces.

By the arguments provided in Ref. [9] the same approximation bound also holds for GSP.
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