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1. INTRODUCTION

We consider problems concerned with the feasibility of scheduling a set of periodic
tasks in a hard real-time environment. A real-time task system consists of a finite
number of tasks, each of which generates an infinite sequence of jobs. There is given
one or multiple processors, each of which can process only one job at the time. Now,
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each job must be executed by the system, possibly with preemptions and migrations,
so as to meet its deadline.

In a periodic task system T , a task i ∈ T is defined by a quadruple (ri, ci, di, pi), where
the offset (or starting time) ri specifies the time instant at which the first job of task i is
released, the execution time ci defines the processing requirement for each job of task i,
the relative deadline di represents the time interval between the release of a job and its
hard deadline, and the period pi specifies the temporal separation between the release
of two successive jobs of task i. Thus, the k-th job of task i is released at time ri+(k−1)pi
and has to receive ci time units of execution before time ri + (k − 1)pi + di.

In this article, we restrict our attention to constrained-deadline periodic task sys-
tems, in which the assumption is made that di ≤ pi, for all i ∈ T . We also assume
all input parameters to have integer value; rational values can also be accomodated,
by clearing denominators. Execution of a job can be stopped at any time and resumed
later on a different processor, without penalty.

A task system is said to be feasible if there exists a schedule in which each job com-
pletes its execution requirement before its deadline. The system is called A-schedulable
if algorithm A constructs a feasible schedule for the task system. The feasibility prob-
lem is concerned with deciding if a given task system is feasible.

A well-known necessary condition for the feasibility of a task system T on m pro-
cessors is that U(T ) :=

∑
i∈T ci/pi ≤ m. The quantity U(T ) is called the utilization

of the task system and ci/pi is called the utilization of task i. However, the condi-
tion U(T ) ≤ m is far from being sufficient for feasibility. In fact, the feasibility problem
for periodic task systems is coNP-hard [Leung and Merrill 1980; Baruah et al. 1990].

In the hope of overcoming hardness results, it is meaningful to relax the accu-
racy requirements of the feasibility problem slightly. For this reason, the concept of
approximate feasibility has been introduced [Chakraborty et al. 2002], which can be
interpreted as a form of resource augmentation [Kalyanasundaram and Pruhs 2000;
Phillips et al. 2002]. For a fixed speedup parameter σ ≥ 1, the problem of deciding σ-
approximate feasibility is as follows.

σ-APPROXIMATE FEASIBILITY

Input: a periodic task system T and a positive integer m.
Output: an answer YES or NO such that

— YES implies that T is feasible on m speed-σ processors, and
— NO implies that T is not feasible on m speed-1 processors.

We also consider the following natural optimization variant of the feasibility prob-
lem, in which we ask for a maximum weight subset of tasks that can be scheduled
feasibly.

MAXIMUM WEIGHT FEASIBLE SUBSYSTEM (MAXFS)
Input: a periodic task system T , a positive integer m, weights w : T → Q+.
Output: a subset of tasks S ⊆ T such that S is feasible on m speed-1 processors.
Objective: maximize

∑
i∈S wi.

Clearly, MAXFS is not easier than the feasibility problem from the point of view of
exact solutions. On the other hand, an approximate solution to the weight maximiza-
tion problem does not immediately yield a useful answer to the feasibility problem, so
MAXFS might be easier from the point of view of approximate solutions.

As in the case of the feasibility problem, we analyze MAXFS using resource aug-
mentation. An algorithm A is a σ-speed ρ-approximation algorithm for MAXFS if, on
any input, A returns a subset of tasks that is feasible on m speed-σ processors and has
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total weight at least 1/ρ times the weight of any subset of tasks that is feasible on m
speed-1 processors.

Previous work. For periodic task systems, most of the existing results on feasibil-
ity testing concern the uniprocessor case. In the uniprocessor setting, the well-known
Earliest Deadline First (EDF) algorithm, that schedules jobs in order of their abso-
lute deadline, is optimal in the sense that any feasible system is EDF-schedulable.
In spite of that, the feasibility problem is strongly coNP-hard: intuitively, the rea-
son is that the first missed deadline might occur after an exponential amount of time
[Leung and Merrill 1980; Baruah et al. 1990].

In the special case of uniprocessor scheduling with a constant number of distinct
task types, Baruah et al. [1990] show how to solve the feasibility problem in polyno-
mial time, by formulating it as an integer linear program of constant dimension.

Another interesting special case is that of synchronous task systems. In this case all
tasks start generating jobs simultaneously, that is, ri = 0 for all i ∈ T . In this setting,
Albers and Slomka [2004] provide a polynomial time (1+ǫ)-approximate feasibility test
on a single processor, for any ǫ > 0. A pseudopolynomial time feasibility test is possible
when U(T ) ≤ µ for some constant µ < 1 [Baruah et al. 1990]. The complexity of the
exact – that is, 1-approximate – feasibility problem for synchronous task systems has
been open for a long time [Baruah et al. 1990]. Independently of our work, Eisenbrand
and Rothvoss [2010] showed that this problem is weakly coNP-hard already in the
uniprocessor case.

In the multiprocessor case, the feasibility problem seems even harder. The best al-
gorithm known uses exponential time and space [Lawler and Martel 1981]. Phillips
et al. [2002] proved that EDF, when run on m processors of speed 2 − 1/m, can meet
all deadlines of a system that is feasible on m speed-1 processors; but, again, this
does not yield an efficient test for feasibility, or even approximate feasibility. However,
recently some approximate feasibility tests have been derived for sporadic task sys-
tems [Baruah and Baker 2008; Bonifaci et al. 2011]. Sporadic tasks are defined simi-
larly to periodic tasks, except that no offsets are given and the “period” defines the
minimum (as opposed to exact) temporal separation between the release of two succes-
sive jobs of one task. Consequently, a sporadic task system implicitly defines an infinite
set of job sequences, and the system is called feasible when all the job sequences com-
patible with its parameters are schedulable.

The weight maximization problem is a natural extension of the feasibility prob-
lem that is relevant in various applications, which is also reflected by the attention
that related scheduling problems received in the past, see for example Lawler [1990],
Bar-Noy et al. [2001], Gandhi et al. [2006], Kulik and Shachnai [2009] and references
therein. The crucial difference between previous considerations and our setting lies in
the periodicity of the tasks. We are not aware of any existing result on weight maxi-
mization for periodic task systems.

Our contribution. We show that σ-APPROXIMATE FEASIBILITY is coNP-hard for pe-
riodic task systems for any σ ≤ n1−ǫ, where n is the number of tasks and ǫ > 0,
even on a single processor. A similar argument also shows that σ-APPROXIMATE FEA-
SIBILITY is strongly coNP-hard for any constant σ. Assuming P 6=NP, this rules out
any polynomial or pseudopolynomial time algorithm for testing feasibility within a
constant speedup factor. Since augmenting the speed is equivalent to shrinking the
execution times, a consequence is that the feasibility problem remains coNP-hard
even for task systems with utilization bounded by an arbitrarily small constant.
This contrasts with previous positive approximability results for sporadic task sys-
tems [Albers and Slomka 2004; Baruah and Baker 2008; Bonifaci et al. 2011].

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 Vincenzo Bonifaci et al.

Table I. Results for σ-APPROXIMATE FEASIBILITY.

Single processor Multiple processors
σ Complexity σ Complexity

Arbitrary n1−ǫ coNP-complete ∗
systems 1 coNP-complete 1 PSPACE ∗

Synchronous 1 + ǫ P 2− 1/m+ ǫ P ∗
systems 1 coNP-complete 1 coNP-hard ∗

Constant no. 1 P 2− 1/m P ∗
of task types 1 pseudopoly ∗

Note: Results that are given in this article are marked with ∗. Here n is the number
of tasks, m is the number of processors, and ǫ is any positive real constant.

To solve the complexity status of σ-APPROXIMATE FEASIBILITY, we reduce from a
maximization variant of the number theoretic SIMULTANEOUS CONGRUENCES prob-
lem; see for example Leung and Whitehead [1982]. This problem is interesting by itself
and we are not aware of any hardness of approximation result for it. We prove that this
problem is NP-hard to approximate within a factor n1−ǫ, for any ǫ > 0, where n is the
number of congruences.

In the special case of synchronous systems we show that the feasibility problem
for multiple processors is coNP-hard. To this aim we first define and study LEAST

COMMON MULTIPLE PACKING, a number theoretic problem that given a set T of in-
tegers and two integers k and L requires to find a subset S ⊆ T of cardinality at
least k, such that the least common multiple of integers in S is no more than L;
we then give a reduction from LEAST COMMON MULTIPLE PACKING to the feasibil-
ity problem. Independently of our work, Eisenbrand and Rothvoss proved that even
the uniprocessor case of the feasibility problem is coNP-hard for synchronous systems
[Eisenbrand and Rothvoss 2010]. Thus, our result is narrower in scope than the one
in Eisenbrand and Rothvoss [2010], since it applies only to multiprocessor systems.
However, our proof of the result is completely different and we believe it might be of
independent interest.

We complement our negative results for arbitrary periodic tasks with the first con-
stant approximation algorithms for two restricted models. We provide a polynomial
time (2−1/m)-approximate test for multiprocessor task systems with a constant num-
ber of different task types. Similar to the uniprocessor test by Baruah et al. [1990],
we decide feasibility by solving integer linear programs (ILPs) of constant dimension;
in our case, however, solving a single ILP is not sufficient and we need to consider
a constant number of them. For synchronous multiprocessor task systems, we give
a (2 − 1/m+ ǫ)-approximate feasibility test that runs in time polynomial in the input
and 1/ǫ. To obtain this positive result, we introduce a refinement of a notion of total
workload per interval, which was introduced recently in the context of sporadic task
systems [Bonifaci et al. 2011].

We already mentioned that MAXFS is not easier than the problem of deciding
the feasibility of a task system. We show that MAXFS is NP-hard to approximate
within n1−ǫ, even in the case of a uniprocessor and of unit task weights. Moreover, we
show that MAXFS is NP-hard even in the strongly restricted setting of synchronous
arrivals with implicit deadlines, where di = pi for all tasks. On the positive side, we
give the first constant-speed, constant-approximation algorithm for synchronous task
systems: a (3 − 1/m)-speed ρm-approximate algorithm, where ρm = 3 + ǫ for m = 1
and ρm = 8 + ǫ for m > 1.

The results for the feasibility problem and the weight maximization problem are
summarized in Tables I and II, respectively.
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Table II. Results for MAXIMUM WEIGHT FEASIBLE SUBSYSTEM.

Single processor Multiple processors
σ ρ Complexity σ ρ Complexity

Arbitrary 1 n1−ǫ NP-hard ∗

systems n1−ǫ 1 coNP-hard ∗
Synchronous 2 3 + ǫ P ∗ 3− 1/m 8 + ǫ P ∗

systems 1 1 NP-hard ∗

Note: The notation is as in Table I, where in addition ρ is the approximation factor.

2. THE APPROXIMATE FEASIBILITY PROBLEM

2.1. Arbitrary periodic task systems

In this section we prove hardness of approximation for the feasibility problem for pe-
riodic task systems. In earlier complexity investigations showing that the problem
is coNP-hard, Leung and Merrill [Leung and Merrill 1980] reduce from the SIMUL-
TANEOUS CONGRUENCES problem. This problem is known to be NP-complete, even
in the strong sense [Leung and Whitehead 1982; Baruah et al. 1990]. We consider the
following natural maximization variant of the decision problem.

MAXIMUM SIMULTANEOUS CONGRUENCES (MAXSC)
Input: a1, . . . , an ∈ N, b1, . . . , bn ∈ N.
Output: S ⊆ {1, . . . , n} such that the set {t ∈ N : t ≡ ai (mod bi) for all i ∈ S} is

nonempty.
Objective: maximize |S|.

This problem can be seen as a Maximum Feasible Subsystem type of prob-
lem [Amaldi and Kann 1995], with univariate congruences in place of multivariate lin-
ear equalities. We show the following inapproximability result for MAXSC.

LEMMA 2.1. For any ǫ > 0, MAXSC is NP-hard to approximate within a factor n1−ǫ.

PROOF. The proof is via an approximation preserving reduction from MAX-
IMUM INDEPENDENT SET, which is known to be NP-hard to approximate
within n1−ǫ [Zuckerman 2007]. Consider a graph G(V,E) where V = {1, 2, . . . , n}. We
set ai = i for i ∈ V . Moreover, to every edge e ∈ E we associate a distinct prime num-
ber π(e) > n. We remark that this step can be implemented in polynomial time, since
for example it is known [Papadimitriou 1994] that there are at least n2 prime num-
bers in the range (n, 4n4), and we can find them by an exhaustive search. For every
node i ∈ V with the set of incident edges δ(i) we define bi :=

∏
e∈δ(i) π(e); see Figure 1.

Now if (i, j) /∈ E then gcd(bi, bj) = 1 and so ai ≡ aj (mod gcd(bi, bj)). If (i, j) ∈
E then gcd(bi, bj) = π((i, j)) > max(ai, aj) so that ai ≡/ aj (mod gcd(bi, bj)), simply
because ai 6= aj , and so the two congruences t ≡ ai (mod bi), t ≡ aj (mod bj) cannot
have simultaneous solution. Thus, by the Generalized Chinese Remainder Theorem,
see for example Bach and Shallit [1996], a set S of congruences is satisfiable if and
only if S is an independent set in G. The claim follows.

THEOREM 2.2. For any ǫ > 0 and 1 ≤ σ ≤ n1−ǫ, σ-APPROXIMATE FEASIBILITY is
coNP-hard, even in the single processor case.

PROOF. We show that a polynomial time algorithm for σ-APPROXIMATE FEASIBIL-
ITY could be used to distinguish between congruence systems that admit k simulta-
neously satisfiable congruences, and systems for which no set of k/σ simultaneously
satisfiable congruences exists, which is NP-hard by Lemma 2.1.

We associate a task to every congruence. For each 1 ≤ i ≤ n, we set ri = k · ai, ci = σ,
di = k, pi = k · bi. We also add an extra task with rn+1 = 0, cn+1 = 1, and dn+1 =
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a1 1 b1 5 · 13 = 65 t ≡ 1 (mod 65)
a2 2 b2 5 · 7 · 17 = 595 t ≡ 2 (mod 595)
a3 3 b3 7 · 11 = 77 t ≡ 3 (mod 77)
a4 4 b4 11 · 13 · 17 = 2431 t ≡ 4 (mod 2431)

(c)

Fig. 1. The reduction from MAX INDEPENDENT SET to MAX SIMULTANEOUS CONGRUENCES. (a) Original
graph; (b) prime numbers associated to the edges of the graph; (c) corresponding system of congruences.

0 k 2k 3k 4k 5k 6k 7k 8k

t ≡ 1 (mod 2) 7→ task 1

t ≡ 2 (mod 3) 7→ task 2

t ≡ 3 (mod 4) 7→ task 3

task 4

Fig. 2. The reduction from MAX SIMULTANEOUS CONGRUENCES to σ-APPROXIMATE FEASIBILITY.

pn+1 = k; see also Figure 2. Without loss of generality we assume that σ is an integer
(otherwise we round it up).

If k congruences are simultaneously satisfiable, then there is a time t when k jobs are
released simultaneously, meaning that during the interval [t, t+k] at least σ·k+1 > σ·k
units of work would have to be processed, and thus, the task system is infeasible for a
speed-σ machine. Hence, the algorithm must output NO.

On the other hand, if there is no set of k/σ simultaneously satisfiable congruences,
then in every interval [t, t+ k], the total work to be processed is an integer strictly less
than σ · (k/σ) + 1, meaning that it is at most k and so it can be processed by a unit
speed machine using, for example, EDF. Thus the algorithm must output YES.

We observe that the numbers encoded in the reductions above are in general expo-
nentially large; one could then wonder if allowing a pseudopolynomial running time
can improve the approximation ratio. This turns out not to be the case.

THEOREM 2.3. For any constant σ ≥ 1, σ-APPROXIMATE FEASIBILITY is strongly
coNP-hard, even in the single processor case.

PROOF. It will be enough to show that it is strongly NP-hard to approximate
MAXSC within a factor of σ; the result then follows by the same argument as in
Theorem 2.2. We use the same construction as in Lemma 2.1, except that we reduce
from instances of MAXIMUM INDEPENDENT SET in which the degree of the graph is
bounded by some constant ∆. It is known that there is some ǫ > 0 such that this
problem is NP-hard to approximate within ∆ǫ [Alon et al. 1995]. Pick the smallest ∆
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such that ∆ > σ1/ǫ. For any fixed σ, this yields a constant bound on the degree of the
graph and so the numerical values (the ai’s and bi’s) constructed in the reduction of
Lemma 2.1 are polynomially bounded in n. An approximation algorithm with a ratio
of σ for MAXSC would imply that MAXIMUM INDEPENDENT SET can be approximated
within a factor of ∆ǫ, which is strongly NP-hard.

For a single processor, the feasibility problem is always in coNP – the exis-
tence of short witnesses of infeasibility has been known since quite some time
[Baruah et al. 1990]. However, that is not known to hold for the multiprocessor case.
We conclude this section by observing that the multiprocessor case can at least be
solved in polynomial space. We need the following definition.

Definition 2.4. A schedule is called cyclic if the following holds for each processor
and each time t ≥ maxi ri: if the processor is idle at time t, then it is idle at time
t + lcm{p1, . . . , pn}, and if the processor is working on a job of task i at time t, then it
is working on another job of task i, released lcm{p1, . . . , pn} time units later, at time
t+ lcm{p1, . . . , pn}.

It is an old result that it suffices to consider cyclic schedules to determine feasibility.

PROPOSITION 2.5 ([LAWLER AND MARTEL 1981]). A periodic task system T is fea-
sible if and only if it admits a cyclic schedule.

THEOREM 2.6. The feasibility problem for periodic task systems is in PSPACE.

PROOF. It is enough to prove the existence of a nondeterministic polynomial space
algorithm for the feasibility problem, since nondeterminism can always be removed
at the cost of squaring the amount of space required [Savitch 1970]. By Proposition
2.5, it is enough to decide whether a cyclic schedule exists. We can take as a reference
the interval [tmin, tmax] = [maxi ri,maxi ri + lcm{p1, . . . , pn}]. Let ji be a generic job
from task i; denote its release date by r(ji) and its absolute deadline by d(ji). If ji is
such that r(ji) ∈ [tmin, tmax], but d(ji) > tmax, we “wrap” ji around – in other words
we make it available for processing in both the intervals [r(ji), tmax] and [tmin, d(ji) −
lcm{p1, . . . , pn}]. Otherwise its availability window is simply [r(ji), d(ji)]. Notice that all
these intervals have integral extreme points; thus, it suffices to restrict to schedules
that preempt and migrate only at integral time points (see Baruah et al. [1990] for a
proof of this fact).

In order to keep track of the jobs’ availability windows it is sufficient to keep one
“global clock” counter of polynomially many bits, since tmax is at most exponentially
large in the input size. Moreover, we keep one counter for each task i that counts how
much execution the currently active job from task i (if any) has already received; the
assumption that di ≤ ti implies that at most one job from each task can be pending at
any time. Another counter for each task is sufficient to track the processing of wrapped-
around jobs, since there is at most one such job for each task. The algorithm now
guesses, at each time step, the set of at most m jobs to be scheduled, and updates
the counters accordingly. If at any time some deadline is missed, we report a failure;
otherwise we report success after reaching time tmax. Some nondeterministic execution
of this algorithm succeeds if and only if the task system is feasible.

2.2. Task systems with a constant number of task types

We have seen that Theorem 2.2 excludes the existence of any constant-approximate
polynomial time algorithm for deciding the feasibility of an arbitrary periodic task
system. However, for the special case in which the system consists of a constant num-
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ci

t1 t2

ffd(jki ,∆)

r(jki ) d(jki )

Fig. 3. The forward forced demand of a job.

ber of different task types, we derive a polynomial time feasibility test that decides
either that EDF provides a feasible schedule on m processors of speed 2− 1/m, or that
the system is infeasible on m speed-1 processors. In this model, tasks belonging to the
same task type have identical parameters (offset, execution time, relative deadline and
period).

In the context of sporadic task systems, Bonifaci et al. [Bonifaci et al. 2011] intro-
duced a lower bound on the total processing requirement of a task system in an in-
terval, which they called forward forced demand (ffd). (In the following we use the
shorthand x+ := max{x, 0}).

Definition 2.7 (Forward forced demand). Consider a task system T where a
task i ∈ T consists of jobs jki , k = 1, 2, . . ., with corresponding release dates r(jki ) :=
ri+(k− 1)pi and deadlines d(jki ) := ri+(k− 1)pi+di. Given a time interval ∆ = [t1, t2],
we define

len(∆) := t2 − t1

ffdT (j
k
i ,∆) :=

{
(ci − (t1 − r(jki ))

+)+ if d(jki ) ∈ ∆,

0 otherwise;

ffdT (i,∆) :=
∑

k∈N

ffdT (j
k
i ,∆)

ffdT (∆) :=
∑

i∈T

ffdT (i,∆).

The definition is illustrated in Figure 3. Let ki be the number of jobs of task i that
are released strictly before t1 and due within the interval ∆, and let k′i be the number
of jobs of task i that are released and due in ∆. Then a straightforward calculation
gives

ffdT (∆) =
∑

i∈T

k′ici + (ci − (t1 − ri − (ki − 1)pi)
+)+. (1)

Since the forward forced demand is a lower bound on the amount of work that has
to be spent in a given time interval, the following necessary condition for feasibility
holds.

PROPOSITION 2.8. If a periodic task system T is feasible on m unit speed processors,
then ffdT (∆) ≤ m · len(∆) for any interval ∆.

The following result shows that a small forward forced demand is sufficient to ensure
the EDF-schedulability of a task system on multiple processors of an appropriate speed.
The claim was originally proved for sporadic task systems, but in fact it applies to
arbitrary collections of jobs, and thus also to periodic task systems.
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LEMMA 2.9 ([BONIFACI ET AL. 2011]). If a periodic task system T is not
EDF-schedulable on m speed-σ processors, then there is an interval ∆ such
that ffdT (∆)/len(∆) > m(σ − 1) + 1.

With these prerequisites we can state our result.

THEOREM 2.10. For periodic task systems with a constant number of task types
and m processors, there is a polynomial time algorithm solving σ-APPROXIMATE FEA-
SIBILITY, for any σ ≥ 2− 1/m.

PROOF. Let s denote the number of distinct types of tasks each defined by a quadru-
ple (ri, ci, di, pi), and let ni, for i = 1, . . . , s, denote the number of tasks of the i-th task
type. Furthermore, we use lcm{p1, . . . , ps} to denote the least common multiple of pe-
riods p1, . . . , ps. Assume there is an interval ∆ = [t1, t2] such that ffdT (∆) > m · len(∆).
Without loss of generality we can assume that ri ≤ t1 for each task i ∈ T ; if not, we
can increase both t1 and t2 by some multiple of lcm{p1, . . . , ps} and the forward forced
demand will not decrease.

We construct a system of linear and non-linear inequalities that characterizes such
an interval ∆. By Proposition 2.8, a feasible solution of this system implies that T is
infeasible.

ri + piki ≥ t1, i = 1, . . . , s (2)

ri + pi(ki − 1) < t1, i = 1, . . . , s (3)

ri + piki + pi(k
′
i − 1) + di ≤ t2, i = 1, . . . , s (4)

ri ≤ t1, i = 1, . . . , s (5)
s∑

i=1

nicik
′
i + ni(ci − (t1 − ri − pi(ki − 1))+)+ > m(t2 − t1) (6)

t1, t2, ki, k
′
i ∈ Z+.

The variables of this system of inequalities are t1, t2, and ki, k′i, for i = 1, . . . , s.
Here, ki is the number of jobs of a task of type i that are released strictly before t1
– this is ensured by (2) and (3). Variable k′i is the number of jobs of a task of type i
that are released and due within the interval [t1, t2], see (4). The left hand side of
inequality (6) expresses ffdT (∆) (compare with (1)), so (6) enforces that the workload
inequality in Proposition 2.8 is violated, that is, ffdT (∆) > m · len(∆).

All the inequalities are linear except the last one. The expression of ffdT (∆) on the
left hand side of inequality (6) contains the non-linear term gi := (ci − (t1 − ri − pi(ki −
1))+)+. Notice that by constraint (3) gi can take only one of two values for any i =
1, . . . , s:

gi =

{
ci − (t1 − ri − pi(ki − 1)) if ci − (t1 − ri − pi(ki − 1)) > 0 (6’)

0 if ci − (t1 − ri − pi(ki − 1)) ≤ 0 (6”).

The idea now is to guess, for each i, which of the two cases occurs. That is, we con-
sider 2s integer linear programs. Every such program consists of the constraints (2)–(6)
above, with inequality (6) simplified in the appropriate way, plus inequality (6’) or (6”)
for each i, depending on the guess for the corresponding gi term.

For any choice of gi, for i = 1, . . . , s, this yields a system of 5s+ 1 linear inequalities.
Since s is fixed, we obtain integer linear programs with a constant number of variables
and inequalities. Therefore, for each of these programs, we can verify in polynomial
time if there is an integral solution, using Lenstra’s algorithm [Lenstra 1983].

If any of these integer programs has a feasible solution, then we have found an over-
loaded interval ∆ which witnesses that the task system is infeasible by Proposition 2.8.
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Otherwise, such an interval cannot exist and thus Lemma 2.9 implies that EDF yields
a feasible schedule on m processors of speed 2− 1/m.

When m = 1 the above test is exact, since 2 − 1/m = 1. We do not know whether an
exact feasibility test with polynomial running time is possible when m > 1. However,
a simple pseudopolynomial time test does exist; in fact, it exists even with the weaker
assumption that the number of distinct periods is constant.

THEOREM 2.11. For periodic task systems with a constant number of distinct peri-
ods the feasibility problem can be solved in pseudopolynomial time.

PROOF. Let k denote the number of distinct periods, and let L denote the least com-
mon multiple of the periods. Notice that L ≤ (maxi pi)

k, which is pseudopolynomially
large for fixed k.

As in the proof of Theorem 2.6, it is enough to show that a cyclic schedule exists for
the interval [tmin, tmax], with tmin = maxi ri, tmax = maxi ri + L. To this end we can use
a standard construction [Horn 1974] in which we formulate the feasibility problem for
the finite set of jobs in [tmin, tmax] as a maximum flow problem on a bipartite network,
with one layer of nodes corresponding to time units (these nodes have a maximum
inflow of m) and another layer of nodes corresponding to jobs (with a maximum outflow
equal to the processing time), with a job connected to a time unit, via a unit capacity
arc, if the job is available for processing in that time unit. A cyclic schedule exists if
and only if a flow of value equal to the total processing requirement of the jobs exists
in this network, which can be tested in pseudopolynomial time.

2.3. Synchronous task systems

In the special case of synchronous task systems, where all tasks have equal starting
times, we show coNP-hardness and give a constant approximate feasibility test.

To derive hardness, we reduce from the following number theoretic problem. We
believe that this problem is of independent interest.

LEAST COMMON MULTIPLE PACKING

Input: a sequence q1, . . . , qm of positive integers and two positive integers k and L.
Question: is there S ⊆ {1, 2, . . . ,m} such that |S| > k and lcm{qi : i ∈ S} ≤ L?

THEOREM 2.12. LEAST COMMON MULTIPLE PACKING is NP-hard.

PROOF. A (k, n)-Mignotte sequence [Mignotte 1982] is a set of n pairwise coprime
integers π1 < π2 < . . . < πn such that the product of any k of them is larger than the
product of any k − 1 of them, that is Π1≤i≤kπi > Π1≤i≤k−1πn−i+1. Such a sequence can
be constructed in polynomial time by using the fact that for x being large enough each
interval [x, x+x3/5) contains a prime number [Heath-Brown 1988]. Starting from x0 =
n10, we construct a sequence of intervals [xi−1, xi), i = 1, . . . , n, with xi := n10 + 2in6 >

xi−1 + x
3/5
i−1, each of which is guaranteed to contain a prime number. Thus, the full

interval [n10, n10 + n8] contains n primes which can be found by exhaustive search.
They form a (k, n)-Mignotte sequence, since n10k > (n10 + n8)k−1 for n larger than
some constant.

We reduce from the decision version of MAXIMUM CLIQUE to LEAST COMMON MUL-
TIPLE PACKING. Given a graph G = ({1, 2, . . . , n}, E) and an integer s, we construct
an (s + 1, n)-Mignotte sequence π1 < . . . < πn and define m = |E| integers by set-
ting qe := πi · πj for each e = (i, j) ∈ E. We also set L := Π1≤i≤sπn−i+1 and k :=

(
s
2

)
− 1.

Now, if G has an s-clique, and S is the corresponding set of k + 1 edges, we
have lcm{qi : i ∈ S} ≤ Π1≤i≤sπn−i+1 = L, since S spans exactly s vertices. Conversely,
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0 1 2 3 4 5 6 7 8
t

f(t) 0 1 1 1 1 3 0 1

1 1 1 1 f1(t)

1 1 f2(t)

1 f3(t)

1 f4(t)

f(t)

q1 = 2 7→ task 1

q2 = 3 7→ task 2

q3 = 5 7→ task 3

q4 = 6 7→ task 4

Fig. 4. Construction used in the proof of Theorem 2.13.

if G has no s-clique, any set S of at least k + 1 edges must span at least s+ 1 vertices,
so that lcm{qi : i ∈ S} ≥ Π1≤i≤s+1πi > L.

We can now proceed to prove hardness of the feasibility problem for synchronous
systems.

THEOREM 2.13. The feasibility problem for synchronous task systems is coNP-hard.

PROOF. We reduce from the LEAST COMMON MULTIPLE PACKING problem.
Given q1, . . . , qm, k, L ∈ N we create a system of m + k tasks. For 1 ≤ i ≤ m, task i
has the following parameters: ri = 0, ci = qi − 1, di = qi − 1, pi = qi. Notice that each
job from any of these tasks must be started as soon as it is released in order to meet
its deadline. Thus, m processors are certainly necessary for feasibility. We will define
the remaining k tasks in such a way that it will be possible to fit them in the unused
time slots on the m processors if and only if there is no solution to the LEAST COMMON

MULTIPLE PACKING instance.
For any t ≥ 0 and 1 ≤ i ≤ m, let

fi(t) :=

{
1 if t ≡ −1 (mod qi)
0 otherwise.

That is, fi(t) = 1 if and only if task i does not have to be scheduled during inter-
val [t, t + 1]. Furthermore, let f(t) :=

∑
1≤i≤m fi(t); this is the total number of “free”

processor slots during [t, t + 1]; see Figure 4 for an illustration. We now define the
remaining k identical tasks by setting, for each j = m + 1, . . . ,m + k: rj = 0, cj =
(1/k) ·

∑
0≤t<L f(t), dj = L, pj = lcm{q1, . . . , qm}. We remark that all these parameters

can be computed in polynomial time, in particular cj = (1/k)
∑

1≤i≤m ⌊L/pi⌋.

For the analysis, consider the quantity F := max0≤t<L f(t). This is the maximum
number of slots that are simultaneously free at any time between 0 and L. Now, the
total amount of work needed for the additional k tasks is

∑
0≤t<L f(t). However, be-

cause there are only k additional tasks and we cannot process a task simultaneously
on more than one processor, the total useful time is in fact

∑
0≤t<Lmin(f(t), k). So it

will be possible to schedule all the tasks if and only if F ≤ k.
For a set S ⊆ {1, . . . ,m}, the minimum t for which fi(t) = 1 for all i ∈ S is easily seen

to be lcm{qi : i ∈ S} − 1. Thus, F ≤ k if and only if there is no set S such that |S| > k
and lcm{qi : i ∈ S}−1 < L, that is, if and only if the instance of LEAST COMMON MUL-
TIPLE PACKING has no solution. Thus, coNP-hardness follows from Lemma 2.12.

In the remainder of this section, we give an approximate feasibility test for syn-
chronous systems. To this aim, we introduce a strengthened formulation of the forward
forced demand (recall Definition 2.7). The definition of ffd for any interval [t1, t2] only
considers the demand of jobs which have their deadline in [t1, t2]. This may neglect

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 Vincenzo Bonifaci et al.

ci

t1 t2

fd(jki ,∆)

r(jki ) d(jki )
ci

t1 t2

fd(jki ,∆)

d(jki )r(jki )

Fig. 5. The forced demand of a job.

the demand of some job jki with deadline in (t2, t2 + ci) that might need to be partially
scheduled also within [t1, t2] to ensure feasibility. Motivated by this, we introduce a
refinement of the forward forced demand.

Definition 2.14 (Forced demand). Consider a set of tasks T where a task i ∈ T
consists of a finite or countable set of jobs jki , k = 1, 2, . . ., with corresponding release
dates r(jki ) := ri+(k−1)pi and deadlines d(jki ) := ri+(k−1)pi+di. Given an interval ∆ =
[t1, t2], we define

fdT (j
k
i ,∆) := (ci − (t1 − r(jki ))

+ − (d(jki )− t2)
+)+,

fdT (i,∆) :=
∑

k

fdT (j
k
i ,∆),

fdT (∆) :=
∑

i∈T

fdT (i,∆).

Again, by construction, the forced demand of an interval is a lower bound on the
total processing requirement of a feasible task system in that interval.

PROPOSITION 2.15. If a set of tasks T is feasible on m unit speed processors,
then fdT (∆) ≤ m · len(∆) for any interval ∆.

The following lemma shows that, in a synchronous system, fd(∆)/len(∆) is maxi-
mized when the interval ∆ starts at time 0; this is not necessarily the case for the ratio
ffd(∆)/len(∆).

LEMMA 2.16. For any synchronous task system T ,

max
∆

fdT (∆)

len(∆)
= max

t∈N

fdT ([0, t])

t
.

PROOF.
Let ∆ = [t1, t2] be such that fdT (∆)/len(∆) is maximized. We construct a new

periodic (not necessarily synchronous) task system T ′ which differs from T in the
start times and has no smaller forced demand: for each task i, choose a new release
time r′i ∈ [0, pi] such that a job of task i is released at t1. To see that the forced demand
does not decrease, we consider any task i and observe that the change in the fd value
when increasing start times is due to (i) the decreased contribution of the last job jℓi
released strictly before t2 and (ii) the increased contribution of the last job jki released
strictly before t1. No other job’s contribution is affected. Now, (i) the decrease in the
contribution of jℓi is bounded above by min{ r′i, ci }, and (ii) the increased contribution
of jki is at least min{ r′i, ci }. Thus, fdT ′(∆) ≥ fdT (∆).

For periodic task systems this implies that the expression fdT (∆)/len(∆) is maxi-
mized on any interval of length len(∆) if all tasks simultaneously release a job at the
beginning of the interval. By definition, in a synchronous system the interval [0, t2− t1]
has exactly this property. Thus, fdT ′(∆) = fdT ([0, t2− t1]), which implies the lemma.
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0
t

di − ci

di

pi + di − ci

ci

thr(i) = ⌈1/ǫ⌉pi + di − ci

⌈1/ǫ⌉ ci

(⌈1/ǫ⌉+ 1)ci

fdT (i, [0, t])

f̂dT (i, [0, t])

Fig. 6. The function fd(i, [0, t]) as a function of t (solid line) and its approximation f̂d(i, [0, t]) (dashed line)
used in the proof of Theorem 2.19.

LEMMA 2.17. If a synchronous task system T is not EDF-schedulable on m speed-σ
processors, then there is t ∈ N such that fdT ([0, t])/t > m(σ − 1) + 1.

PROOF. By Lemma 2.9, if T is not EDF-schedulable, there is an interval ∆ such that

m(σ − 1) + 1 < ffdT (∆)/len(∆).

But ffdT (∆)/len(∆) ≤ fdT (∆)/len(∆) ≤ maxt fdT ([0, t])/t by Lemma 2.16. The claim
follows.

Since by Lemma 2.16 we can focus on intervals of the form [0, t], we obtain a simpler
formula for the forced demand.

PROPOSITION 2.18. For any synchronous task system T and t ∈ N,

fdT ([0, t]) =
∑

i∈T

fdT (i, [0, t]),

fdT (i, [0, t]) = kici + (ci − (kipi + di − t)+)+ ,

where ki :=
⌊ t+ pi − di

pi

⌋
.

Figure 6 illustrates the function fdT (i, [0, t]).

THEOREM 2.19. Let ǫ > 0. For synchronous task systems there is an algorithm
solving σ-APPROXIMATE FEASIBILITY, for any σ ≥ 2− 1/m+ ǫ, with running time that
is polynomial in the input size and 1/ǫ.

PROOF. Our approach is to approximate the maximum load of any time interval,
that is, the quantity λ∗ := maxt fdT ([0, t])/t. To this end we can adopt the same tech-
nique as in Bonifaci et al. [2011], of which we give here a streamlined proof. For each
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task i, define

thr(i) := di − ci + ⌈1/ǫ⌉ · pi,

f̂dT (i, [0, t]) :=

{
fdT (i, [0, t]) if t ≤ thr(i),
ci
pi

(t− (di − ci)) if t > thr(i).

The definition is illustrated in Figure 6. Notice that f̂dT (i, [0, t]) ≤ fdT (i, [0, t]) ≤ (1 +

ǫ)f̂dT (i, [0, t]), since when t ≤ thr(i), f̂dT (i, [0, t]) = fdT (i, [0, t]), and when t > thr(i) we
have

fdT (i, [0, t])

f̂dT (i, [0, t])
≤

⌊
thr(i)+pi−di

pi

⌋
ci + ci

(ci/pi)(thr(i)− (di − ci))

=

⌊
⌈1/ǫ⌉pi+pi−ci

pi

⌋
ci + ci

⌈1/ǫ⌉ ci

=
⌈1/ǫ⌉+ 1

⌈1/ǫ⌉

≤ 1 + ǫ.

Summing across tasks we obtain

f̂dT ([0, t]) ≤ fdT ([0, t]) ≤ (1 + ǫ)f̂dT ([0, t]) for all t ∈ N. (7)

The main observation is that f̂dT ([0, t]) is a piecewise linear function with breakpoints
in the set

K =
⋃

i∈T

{t ≤ thr(i) : ∃k ∈ N : t = (k − 1) · pi + di − ci}

∪
⋃

i∈T

{t ≤ thr(i) : ∃k ∈ N : t = (k − 1) · pi + di}.

Consequently, the function f̂dT ([0, t])/t is piecewise monotone and achieves its maxi-
mum at a point in K. Since the cardinality of K is O(n/ǫ), the maximum can be found
efficiently. Let λ be its value, so that λ ≤ λ∗ ≤ (1 + ǫ)λ by (7). Now we compare λ
with m: if λ > m, there must be an interval ∆ such that fdT (∆) > m · len(∆), and by
Proposition 2.15 the task system cannot be feasible on m unit speed machines. If on
the other hand λ ≤ m, then for any t ∈ N,

fdT ([0, t])

t
≤ λ∗ ≤ (1 + ǫ)λ

≤ (1 + ǫ)m,

and by Lemma 2.17 (with σ = 2 − 1/m+ ǫ) the task system must be EDF-schedulable
on m speed-(2−1/m+ǫ)machines. The resulting algorithm is summarized as Algorithm
1.

The factor 2 − 1/m in the statement of Theorem 2.19 is tight when schedulabil-
ity is witnessed by EDF, since there exist feasible job sets that cannot be sched-
uled by EDF unless the speed is augmented by at least 2 − 1/m [Phillips et al. 2002].
Moreover, the ǫ error term cannot be removed when m = 1, unless P=NP, as that
would imply an exact polynomial-time feasibility test, while the problem is coNP-hard
[Eisenbrand and Rothvoss 2010].
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Algorithm 1 Approximate feasibility test for synchronous task systems

1: For each i ∈ T :

thr(i)← di − ci + ⌈1/ǫ⌉ · pi,

Ki ←{t ≤ thr(i) : ∃k ∈ N : t = (k − 1) · pi + di − ci}

∪ {t ≤ thr(i) : ∃k ∈ N : t = (k − 1) · pi + di}.

2: K ←
⋃

i∈T Ki.
3: λ← maxt∈K fdT ([0, t])/t.
4: If λ > m return “infeasible on m unit speed machines”.
5: If λ ≤ m return “EDF-schedulable on m speed (2− 1/m+ ǫ) machines”.

3. THE MAXIMUM WEIGHT FEASIBLE SUBSYSTEM PROBLEM

3.1. Hardness

THEOREM 3.1. For any ǫ > 0, MAXFS is NP-hard to approximate within a fac-
tor n1−ǫ, even in the single processor case with unit task weights.

PROOF. We give an approximation preserving reduction from MAXIMUM CLIQUE,
which is NP-hard to approximate within n1−ǫ, where n is the number of vertices in the
graph [Garey and Johnson 1979; Zuckerman 2007]. Using the same construction as in
Lemma 2.1, we obtain numbers ai, bi such that:

— if (i, j) ∈ E then ai ≡/ aj (mod gcd(bi, bj));
— if (i, j) /∈ E then ai ≡ aj (mod gcd(bi, bj)).

We associate a task to every node i. We set, for all 1 ≤ i ≤ n, ri = ai, ci = 1, di = 1, pi =
bi. Now any feasible subset of tasks must be a clique in the original graph, otherwise
there would be a time where at least two jobs are released simultaneously and thus
cannot be completed in time by a single unit-speed processor. Vice versa, any clique in
the original graph determines a subset of tasks that is feasible, because no two tasks
are ever released at the same time and all execution times are 1.

THEOREM 3.2. MAXFS is NP-hard even in the synchronous, single processor case
when di = pi for all tasks i ∈ T .

PROOF. We reduce from SUBSET SUM: given integers a1, . . . , an and a target in-
teger A, decide if there is a subset S ⊆ {1, . . . , n} such that

∑
i∈S ai = A. We

set ci = wi = ai, di = pi = A, ri = 0 for all i. In a periodic task system where di = pi
for all i, a subset S of tasks is feasible on one processor if and only if

∑
i∈S ci/pi ≤ 1,

that is,
∑

i∈S ai ≤ A [Liu and Layland 1973]. Now an optimal subset of tasks has total
weight A if and only if there is a subset S such that

∑
i∈S ai = A.

3.2. Approximation algorithm for synchronous systems

Theorem 3.1 motivates us to focus on synchronous systems, for which we give a (3 −
1/m)-speed ρm-approximate algorithm, where ρm = 3 + ǫ for m = 1 and ρm = 8 + ǫ
for m > 1. Our algorithm will build on approximation algorithms for the following
auxiliary problems.
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MAX-WEIGHT PREEMPTIVE REAL-TIME SCHEDULING (PRTS)
Input: a set of jobs J = {ji}i∈T , each with release date ri, execution time ci,

absolute deadline di, and weight wi, as well as a positive integer m.
Output: a schedule of J on m machines, with preemption and migration allowed.
Objective: maximize the total weight of on-time jobs (a job is on-time if it is completed

within the deadline).

BUDGETED MAX-WEIGHT PREEMPTIVE REAL-TIME SCHEDULING (BPRTS)
Input: same as in the PRTS problem, and in addition a cost bi for each job, and a

budget B.
Output: a feasible subset J ′ ⊆ J of jobs. A subset J ′ is feasible if all jobs in J ′ can

be scheduled on-time on the m machines and the total cost of all jobs in J ′

is at most B.
Objective: maximize the total weight of J ′.

LEMMA 3.3 ([PRUHS AND WOEGINGER 2007]). For m = 1, there is a (1 + ǫ)-
approximate algorithm for PRTS. For m > 1, there is a (6 + ǫ)-approximate algorithm
for PRTS.

PROOF. The first claim follows by a result of Pruhs and Woeginger [2007, Theo-
rem 4.4]: there exists a (1 + ǫ)-approximate algorithm for maximizing the weighted
number of on-time jobs in the scheduling problem 1|pmtn, rj|

∑
j wj(1 − Uj), which is

exactly PRTS when m = 1. The proof in Pruhs and Woeginger [2007] is in fact for the
minimization version 1|pmtn, rj|

∑
j wjUj , but the same argument applies to the maxi-

mization variant.
The second claim follows by the first, combined with a result by Kalyana-

sundaram and Pruhs [2001, Theorem 3.1]: if there is a ρ-approximate algo-
rithm for 1|pmtn, rj|

∑
j wj(1 − Uj), then there is a 6ρ-approximate algorithm

for P |pmtn, rj |
∑

j wj(1 − Uj).

LEMMA 3.4. There is a ρm-approximate algorithm for BPRTS, with ρm = 3 + ǫ
for m = 1, and ρm = 8 + ǫ for m > 1.

Lemma 3.4 follows directly from Lemma 3.3 and the following fact on subset selec-
tion problems, proved by Kulik and Shachnai [2009]. A subset selection problem is a
maximization problem in which any subset of a feasible solution is also feasible. Notice
that BPRTS is a subset selection problem, and PRTS is a relaxation of BPRTS without
the budget constraint.

LEMMA 3.5 ([KULIK AND SHACHNAI 2009]). Given a subset selection problem
with a linear budget constraint, if there is a ρ-approximate algorithm for the prob-
lem without the budget constraint, then for any ǫ > 0 there is a (ρ+ 2 + ǫ)-approximate
algorithm for the problem with the budget constraint.

Our algorithm for MAXFS is as follows.

Algorithm 2 Approximation algorithm for MAXFS

1: For each task i in task system T , let j1i be the first job generated by task i; it has
release date 0, deadline di, execution time ci, and weight wi, as defined in T . The
cost bi is defined as ci/pi. Let first(T ) = {j1i : i ∈ T }.

2: Apply the algorithm from Lemma 3.4 to the set first(T ), with budget B = m.
Let J ′ ⊆ first(T ) be the feasible set of jobs returned by the algorithm.

3: Let T ′ be the set of tasks corresponding to J ′, that is, T ′ = {i : j1i ∈ J ′}. Output T ′.
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We prove the performance bound of the above algorithm using the following two
lemmata. Let T ∗ be a subset of tasks that is optimal for MAXFS.

LEMMA 3.6. The set T ′ returned by Algorithm 2 has total weight at least 1/ρm times
that of T ∗.

PROOF. Let J∗ = {j1i : i ∈ T ∗}. Since T ∗ is feasible, jobs in J∗ can be completed
by some preemptive schedule on m processors and their total cost

∑
j1
i
∈J∗ ci/pi is at

most m, since no set of tasks with utilization larger than m can be feasible on m pro-
cessors. Hence, J∗ is a feasible set of jobs. Then, by Lemma 3.4, the set J∗ has total
weight at most ρm times that of J ′. Equivalently, T ′ has total weight at least 1/ρm
times that of T ∗.

Hence, if T ′ can be scheduled on m processors with speed (3 − 1/m), we have a (3 −
1/m)-speed ρm-approximate algorithm. To show this, we prove a more general lemma
as follows.

LEMMA 3.7. Let T be a set of tasks that satisfies the following two properties.

(1) The set of jobs first(T ) can be completed on-time by m speed-x processors.
(2) The total utilization of T , that is,

∑
i∈T ci/pi, is at most m · y.

Then T is EDF-schedulable on m speed-(x+ y + 1− 1/m) processors.

PROOF. We start by proving that for any t ∈ N,

fdT ([0, t]) ≤
∑

i∈T

ci
pi
· t+

∑

j∈first(T )

fdT (j, [0, t]). (8)

Inequality (8) can be proven by considering different tasks separately. If t < di, we
have

fdT (i, [0, t]) = (ci − (di − t))+ = fdT (j
1
i , [0, t]) ≤

ci
pi
· t+ fdT (j

1
i , [0, t]).

On the other hand, if t ≥ di,

fdT (i, [0, t]) ≤
ci
pi
· t+ ci =

ci
pi
· t+ fdT (j

1
i , [0, t]).

Inequality (8) follows by summing over tasks.
Property 1 of the hypothesis ensures that all jobs in first(T ) can be completed on-time

by m speed-x processors. Then, by Proposition 2.15, we obtain
∑

j∈first(T )

fdT (j, [0, t]) ≤ mxt.

Property 2 states that the total utilization of T is at most my, that is,
∑

i∈T (ci/pi)·t ≤
myt. Hence, using (8),

fdT ([0, t]) ≤
∑

i∈T

ci
pi
· t+

∑

j∈first(T )

fdT (j, [0, t])

≤ myt+mxt

≤ (m(σ − 1) + 1)t,

with σ = x + y + 1 − 1/m, and by Lemma 2.17 T is EDF-schedulable on m speed-σ
processors.

THEOREM 3.8. Algorithm 2 is (3− 1/m)-speed ρm-approximate for MAXFS for syn-
chronous task systems on m processors.
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PROOF. By Lemma 3.6, the total weight of T ′ is at least 1/ρm times that of T ∗.
Note that the corresponding set J ′ is feasible on m unit-speed processors and the total
utilization of T ′ is at most m because of the budget constraint. By Lemma 3.7, T ′ is
EDF-schedulable on m speed-(3− 1/m) processors and the theorem follows.

4. OPEN PROBLEMS

Several interesting open problems remain in the context of this article.

(1) Is there a pseudopolynomial time algorithm for the feasibility problem in syn-
chronous multiprocessor systems (or even synchronous uniprocessor systems)?

(2) Is there a polynomial time algorithm for the feasibility problem in arbitrary mul-
tiprocessor systems with a fixed number of task types?

(3) Is there a constant-speed, constant-approximation algorithm for MAXFS in arbi-
trary multiprocessor systems?

In a broader perspective, it would be interesting to determine other tractable special
cases of the feasibility problem.
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