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Abstract

We investigate the complexity of finding Nash equilibria in which the strategy of
each player is uniform on its support set. We show that, even for a restricted class
of win-lose bimatrix games, deciding the existence of such uniform equilibria is an
NP-complete problem. Our proof is graph-theoretical. Motivated by this result,
we also give NP-completeness results for the problems of finding regular induced
subgraphs of large size or regularity, which can be of independent interest.
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1 Introduction

The recent interaction between Game Theory and Theoretical Computer Sci-
ence has led to a deep study of the computational issues underlying basic
game theoretic notions. A prominent object of these studies is the hardness
of computing Nash equilibria in non-cooperative games [19]. Recent results
established evidence of hardness for this problem [6, 10]. Even in the two
player case, the best algorithm known has an exponential worst-case running
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time [22]. Furthermore, when one requires equilibria with simple additional
properties, the problem immediately becomes NP-hard [9, 12].

Motivated by these negative results, recent studies considered the problem
of computing other classes of equilibria, such as pure or correlated equilibria
[11, 20]. Here we consider uniform equilibria, that is, Nash equilibria in which
all the strategies played with nonzero probability are played with the same
probability. Uniform equilibria can be viewed as falling between pure and
mixed Nash equilibria; playing a uniform strategy is arguably the simplest
way of mixing pure strategies. Uniform strategies are also easier to implement
and thus may be seen as a model for bounded rationality [21].

Despite the apparent simplicity of uniform equilibria, we show that even for a
very constrained class of games, called imitation simple bimatrix games [8], the
associated existence problem is NP-complete. An imitation simple bimatrix
game is a two player game in which the payoffs of both players are in the set
{0, 1} and the payoff of the row player (the imitator) is 1 if and only if he makes
the same move as the opponent. We show that it is NP-complete to decide if a
given imitation simple bimatrix game has a uniform Nash equilibrium 2 . Our
proof is essentially graph-theoretical as it relies on a correspondence between
equilibrium strategies and some structures in the digraph implicit in the payoff
matrix of the column player.

Motivated by this correspondence, we also give NP-completeness results for
other natural problems concerning regular subgraphs. In particular, we prove
that it is NP-complete to decide if a graph has an induced regular subgraph
of size at least k, or if it has an induced regular subgraph of regularity at least
k, where k is given as input.

The rest of the paper is structured as follows. After discussing related work
in Section 1.1, we give the introductory definitions and notation in Section
2. Then, in Section 3, we explain how the game-theoretic hardness result fol-
lows from the graph-theoretic result, and we establish the hardness of finding
uniform equilibria. The other regular subgraph problems are considered in
Section 4.

2 In a preliminary version of this work we proved a hardness result for the problem
of finding a uniform equilibrium with support of size at most (or at least) k, where
k is given in the input [4]. This result is clearly implied by the result of the present
paper.
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1.1 Related work

As noted above, there has been a considerable amount of work on the com-
plexity of finding mixed Nash equilibria in normal-form games [8–10, 12, 13],
culminating in the result by Chen and Deng [6] that finding a mixed equilib-
rium in a two-player game is a problem complete for the class PPAD (defined
in Ref. [19]). Also, win-lose games have been shown to be as expressive as gen-
eral games when one considers mixed equilibria [1].

Pure equilibria in many kind of succinct games have also been studied recently
[11, 14]. On the other hand, we are not aware of previous work on uniform
equilibria. However, a related result by Lipton et al. [17] is that if we only
require an equilibrium that is best response within an accuracy ǫ, then a
subexponential algorithm is possible, and the strategies found are uniform on
a multiset of size logarithmic in the number of pure strategies. Our setting
differs in that we consider strategies uniform on a support set, as opposed to
a multiset, and we do not limit the size of the support.

Our work exploits a connection between uniform equilibria and certain graph
structures associated to win-lose games. Similar relations for other classes of
equilibria have appeared in other recent works [2, 7, 18].

Problems related to the existence of certain induced subgraphs have been
studied in several works, in particular by Lewis [16] and Yannakakis [23].
Notably, these works showed that so-called hereditary properties of graphs
give rise to NP-hard induced subgraph problems (a property is hereditary if
it holds for any induced subgraph of G whenever it holds for G). However, this
result does not apply to the problems we consider, since the property of being a
regular subgraph is not hereditary. More recently, the problem of finding large
induced subgraphs of fixed regularity has been studied by Cardoso et al. [5],
who established hardness of the problem, and by Gupta et al. [15], who gave
exact exponential-time algorithms that are faster than the naive enumerative
approach.

2 Definitions and notation

We consider simple bimatrix games in normal form. These are specified by two
(0, 1) payoff matrices A and B. The first (resp., second) player is called the
row (resp., column) player. It will be enough to consider n× n matrices. The
rows and columns of both matrices are indexed by the pure strategies of the
players. We denote the set of pure strategies of each player by [n] = {1, . . . , n}.
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A mixed strategy is a probability distribution over pure strategies, that is, a
vector x ∈ Rn such that

∑
i xi = 1 and for every i ∈ [n], xi ≥ 0. The support

supp(x) of a mixed strategy x is the set of pure strategies i such that xi > 0.
When the row player plays mixed strategy x and the column player plays
mixed strategy y, their expected payoffs will be, respectively, xtAy and xtBy.
A mixed strategy x is uniform if for every i ∈ supp(x), xi = 1/| supp(x)|.

A Nash equilibrium of the game (A, B) is a pair of mixed strategies (x, y) from
which neither player has an incentive to deviate: for all mixed strategies x and
y, xtAy ≥ xtAy and xtBy ≥ xtBy. A uniform equilibrium is a Nash equi-
librium in which both players play uniform strategies. A uniform equilibrium
strategy is a uniform strategy played in some uniform equilibrium.

We will consider only imitation simple bimatrix games. A bimatrix game is an
imitation game if the row player, called the imitator, has payoff 1 if he plays
the same pure strategy as the opponent, and 0 otherwise. Thus, in an imitation
simple bimatrix game matrix A is the identity matrix In. We will only consider
games (In, B) where the matrix B is zero along the main diagonal – otherwise
a pure equilibrium clearly exists.

We now describe our graph-theoretical notation. Given a digraph G = (V, E),
we will use G(S) to denote the subgraph induced by the nodes in the subset
S ⊆ V . When the digraph G is clear from the context, with slight abuse of
notation we will also use S to refer to the induced subgraph G(S). If v ∈ V ,
as a shorthand for S ∪{v} we will write S + v. We will use d−(v, S) to denote
the in-degree of v in G(S). In Section 4 we use a similar notation d(v, S) in
case of an undirected graph.

3 Games and graphs

3.1 Uniform equilibria and induced subgraphs

In this section we formulate our result on uniform equilibria and explain its
connection with regular subgraph problems.

Let uniform nash be the problem of deciding the existence of a uniform
Nash equilibrium in an explicitly given imitation simple bimatrix game. Our
main result is the following.

Theorem 1 uniform nash is NP-complete.

In order to prove Theorem 1, we define certain subgraph structures (Definition
2) and we show that they are tightly related to uniform Nash equilibria in the
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G S1 S2

Figure 1. Induced subgraph S1 is a DRIS in G, while S2 is not

game associated to a given graph (Lemma 5). We then show that finding such
structures in a given graph is an NP-complete problem (Lemma 8), from
which the NP-completeness of uniform nash will follow.

The graph-theoretic definition we will need in order to prove Theorem 1 is the
following.

Definition 2 Let G = (V, E) be a digraph. We call a set S ⊆ V a dominant-
regular induced subgraph (DRIS) of G if there is an integer r such that

(i) for all v ∈ S, d−(v, S) = r;
(ii) for all v ∈ V , d−(v, S + v) ≤ r.

Figure 1 shows a digraph G and two induced subgraphs, only one of which is
a DRIS in G.

Proposition 3 Given a digraph G = (V, E), S ⊆ V is a DRIS in G if and
only if S is a DRIS in G(T ) for all T such that S ⊆ T ⊆ V .

PROOF. Immediate from Definition 2.

2

Proposition 4 Given a DRIS S in a digraph G, if T ⊆ S and there is no
arc from S − T to T in G, then T is a DRIS in G.

PROOF. For all v ∈ T , d−(v, T ) = d−(v, S) by the assumption that no arc
can cross the cut (S−T, T ). Thus there is an r such that part (i) of Definition
2 holds. Part (ii) holds because T ⊆ S, thus d−(v, T + v) ≤ d−(v, S + v) ≤ r
for any node v.

2

Our proof of Theorem 1 is based on the following Lemma.
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Lemma 5 Let Γ = (In, M) be an imitation simple bimatrix game and let G be
the digraph whose adjacency matrix is M . Then Γ has a uniform equilibrium
if and only if G has a DRIS.

PROOF. Let S be a dominant-regularity induced subgraph with in-degree r.
Consider the unique uniform strategy x having support S (that is, xi = 1/|S|
if i ∈ S and xi = 0 otherwise). We show that (x, x) is a uniform equilibrium.
By definition of x, |S|xtM is a row vector whose i-th coordinate gives the in-
degree of node i in G(S). But then, by definition of a DRIS, xtM is maximal
on coordinates i ∈ S; thus, if the row player plays x, the column player has
no incentive to deviate from x. But if the second player plays x, the vector
of incentives for the first player is Inx = x and hence (x, x) is a uniform
equilibrium for Γ.

In the other direction, let (x, y) be a uniform equilibrium. We show that
supp(x) is a DRIS. Since the game is an imitation game, it can be easily
verified that the support of x has to be included in the support of y. Let
S = supp(x). Since the column player has no incentive to deviate, for ev-
ery l ∈ [n] and for every i ∈ supp(y), and in particular for every i ∈ S,
(xtM)i ≥ (xtM)l. Now |S|(xtM)i =

∑
j∈S Mji so we have

d−(i, S) =
∑

j∈S

Mji ≥
∑

j∈S

Mjl = d−(l, S + l)

for every i ∈ S and l ∈ N . Thus S is a dominant-regularity induced subgraph
in G.

2

Let dominant-regular induced subgraph be the problem of deciding
whether a given digraph admits a DRIS. Then Lemma 5 immediately implies
the following.

Corollary 6 There is a polynomial-time reduction from dominant-regular
induced subgraph to uniform nash.

Incidentally, we observe that the problem of deciding the existence of a uni-
form equilibrium has always a positive answer if we consider imitation simple
bimatrix games (In, M) with M symmetric: any maximal clique in the cor-
responding undirected graph is a DRIS and so it corresponds to a uniform
equilibrium by Lemma 5.
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Figure 2. The gadget used in Lemma 7

3.2 Hardness of finding dominant-regular subgraphs

In this section we conclude the proof of Theorem 1 by showing that dominant-
regular induced subgraph is NP-complete. The Theorem will then follow
by Corollary 6.

We start by observing that in a general digraph the existence of a DRIS is not
guaranteed.

Lemma 7 For every k > 0, there is a graph G = (V, E) with |V | = 4k that
has no DRIS and that contains an independent set of size k.

PROOF. G is constructed by starting from a cycle on k nodes and then
replacing the i-th node of the cycle with the 4-node gadget in Figure 3.2.
Figure 3.2 shows the resulting graph when k = 6.

Clearly the nodes ci form an independent set of size k. To show that no S ⊆ V
can be a DRIS in G, notice first that the only possible values r could take are
0, 1 and 2. We thus consider three cases.

Case r = 0. It is clearly impossible that S = V . But then there exists a
node v /∈ S with d−(v, S + v) > 0, contradiction.
Case r = 1. In this case it is easy to verify that S should include some
ci or c′i. Assume that ci ∈ S. Then c′i /∈ S, otherwise d−(a′

i, S + a′

i) > 1,
violating condition (ii) in Definition 2. So for ci to have in-degree 1 in S,
ai has to be in S. But then d−(c′i, S + c′i) > 1.
Case r = 2. Since d−(ai, V ) = 1, S does not include any ai. If S includes
any node a′

i, it should also include its two in-neighbors ci, c
′

i, and by the
same argument also ai, contradiction. Similarly we get a contradiction if
S contains any node ci or c′i.

2

Lemma 8 dominant-regular induced subgraph is NP-complete.

We prove the lemma by reduction from 3sat. We show that given any 3sat
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Figure 3. Example of a graph with no DRIS

instance, we can construct a digraph that has a DRIS if and only if the 3sat
instance is satisfiable.

Thus, consider a 3CNF formula f in which, wlog, no clause contains both
a variable and its negation. Let the sets of variables and clauses of f be
{x1, . . . , xn} and {c1, . . . , cm} respectively. There is one node in our digraph
G = (V, E) for each literal of f , and one node for each clause. G also contains
an additional node x0. We denote by X the set of nodes corresponding to
literals and to x0, and by C the set of nodes corresponding to clauses, so that
V = X ∪ C. Arcs are as follows:

• an arc from each literal node xi to each other node in X − {xi};
• an arc from x0 to each other node in X;
• an arc to each node Cj from all the nodes in X except the three correspond-

ing to the literals that form Cj .

Figure 4 shows the graph corresponding to a generic 3sat instance.

We begin by proving the following lemma.

Lemma 9 The graph G has the following properties:

(i) if f is satisfiable, then G has a DRIS S ⊆ X such that |S| = n + 1;
(ii) if S ⊆ X is a DRIS in G, then f is satisfiable.

PROOF.

(i) Consider a satisfying assignment for f . Let S the subset of X corresponding
to the literals having value true in this assignment, plus the node x0. Note
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Figure 4. The graph constructed in the proof of Lemma 8

that |S| = n + 1, since for each variable xi only one between xi and xi can
be true. Now S is a DRIS in G: d−(x, S + x) = n for each x ∈ X, and
d−(c, S + c) ≤ n for all c ∈ C because at least one of the literals appearing
in c is true.

(ii) Let S ⊆ X be a DRIS in G. S must contain x0, otherwise the second
condition in Definition 2 is violated. Thus d−(v, S) = d−(x0, S) for each
v ∈ S. It follows that for each i ∈ [n] at most one of the two nodes xi, xi

can be included in S: otherwise xi and x0 would have different in-degree in
S, violating the first condition in Definition 2. On the other hand, S must
contain at least one of xi, xi, otherwise

d−(xi, S + xi) = |S| > d−(x0, S).

So indeed |S| = n + 1 and the literals corresponding to S define a truth
assignment. This assignment satisfies f because for each clause c,

d−(c, S + c) ≤ d−(x0, S) = n,

thus there is a node x ∈ S such that (x, c) is not an arc of G, meaning that
c must contain at least one true literal.

2

Notice that Lemma 9 implies that dominant-regular induced subgraph
is NP-hard if we additionally require the DRIS to be contained in some spec-
ified subset X of the nodes. To relax this assumption, we enrich our graph G
constructed from f as follows: consider the graph G0 = (V0, E0) obtained by
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applying the construction in Lemma 7 with k = n. Let G′ be the union of G
and G0 (notice that G and G0 share the nodes c1, . . . , cm).

Lemma 10 The graph G′ has the following properties:

(i) if f is satisfiable, then G′ has a DRIS;
(ii) if G′ has a DRIS, then f is satisfiable.

PROOF. Part (i) can be proved exactly as Lemma 9(i). To prove (ii), first
notice that G′(V ) = G and G′(V0) = G0, as in G′ there is no arc of the form
(ci, cj).

Now let S be a DRIS in G′. Then S * V0, otherwise S would also be a DRIS in
G0, contradicting Lemma 7. Thus S ∩ X is nonempty. Since by construction
G′ contains no arc from V ∪ V0 − X to X, and in particular no arc from
S − (S ∩X) to S ∩X, by Proposition 4 S ∩X is also a DRIS in G′. Then, by
Proposition 3, S ∩ X is a DRIS in G′(V ) = G. We can conclude by Lemma
9(ii) that f is satisfiable.

2

Lemma 8 now immediately follows from Lemma 10 and the NP-hardness of
3sat.

4 Hardness of other regular subgraph problems

In this section we give NP-completeness results for other natural variations
of the problem of finding regular induced subgraphs. In particular, we show
that both of the following problems are NP-complete.

maximum regular induced subgraph (max-ris)
Instance: a graph G(V, E) and an integer k.
Question: is there a set S ⊆ V such that G(S) is regular and |S| ≥ k?

maximum-regularity induced subgraph (max-rris)
Instance: a graph G(V, E) and an integer k.
Question: is there a set S ⊆ V such that G(S) is r-regular, for some r ≥ k?

Theorem 11 max-ris is NP-complete.
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Figure 5. The graph constructed in the proof of Theorem 11

PROOF. Consider a generic instance of 3sat consisting of a formula f with
m clauses over n variables; we assume, wlog, that m = 2q for some integer
q > 1: note that it is always possible to build such a formula f ′, satisfiable if
and only if f is, by adding at most m copies of a clause of f . We create the
corresponding instance of max-ris as follows (see Figure 5):

• for each clause ci we add three nodes, denoted by ci,1, ci,2 and ci,3, one for
each literal in ci; we denote by L the set of all these nodes;

• for each clause ci we also add three auxiliary nodes, denoted by ci,0, c′i,0 and
c′i,1;

• for 1 ≤ i ≤ m we connect
- ci,0 with ci,1, ci,2 and ci,3;
- c′i,1 with ci,1, ci,2 and ci,3;
- c′i,0 with ci,0 and c′i,1;
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• we add two binary trees T1 and T2, where |T1| = |T2| = 2m − 1. Note that
both T1 and T2 have m leaves; for 1 ≤ i ≤ m we connect the i-th leaf of T1

with ci,0, ci,1, ci,2 and ci,3; the i-th leaf of T2 is connected with c′i,0 and c′i,1;
finally we connect together the two roots;

• for 1 ≤ i, i′ ≤ m and 1 ≤ t, t′ ≤ 3 we connect ci,t with ci′,t′ if and only if
they correspond to opposed literals;

• we set k := 8m − 2.

Note that in the graph defined above, the following nodes have degree 3: all
the internal nodes in T1, all the nodes in T2 and the nodes c′i,0. We denote by
Q the set of all the other nodes, i.e. the nodes x such that d(x, V ) 6= 3.

We first show that if f is satisfiable the instance of max-ris has a solution.
Given a truth assignment function that satisfies f , pick, for each clause ci,
exactly one true literal ci,t. Let S include all the nodes in V −L together with
the m nodes, in L, corresponding to the literals selected in this way. Then
|S| = 8m− 2 = k, and since the truth assignment satisfies f there can’t be an
edge between any two nodes in S ∩ L. Therefore for all v ∈ S we have that
d(v, S) = 3, i.e. G(S) is regular.

Now assume that max-ris has a solution S, where G(S) is r-regular and
|S| ≥ 8m − 2. We show that this implies that f is satisfiable by proving the
following points:

(1) r ≥ 3;
(2) S * Q;
(3) S determines a truth assignment that satisfies f .

(1) Assume by contradiction that r ≤ 2; note that at most three nodes between
ci,0, ci,1, ci,2, ci,3 and the i-th leaf of T1 belong to S. Furthermore, not all the
internal nodes of T1 and the nodes of T2 (remember that the size of both T1

and T2 is 2m−1) can be included in S because there will be at least two nodes
(the roots) with degree 3. It follows that |S| < 3m + (3m− 2) + 2m = 8m− 2
(here 2m is the total number of nodes c′i,0 and c′i,1).

(2) If S = Q, for every 1 ≤ i ≤ m, d(ci,0, S) = 4 and d(c′i,1, S) = 3, it follows
that G(S) is not regular. If S ⊂ Q then |S| < 6m ≤ 8m − 2.

(3) From the previous point |S − Q| > 0, so there must be x ∈ S such that
d(x, V ) = 3. Using (1), all the nodes connected to x must belong to S, and,
in particular, at least one node either in T1 or in T2; due to the recursive
structure of the trees all the nodes of T1 and T2 must belong to S. Consider
now the leaves of T2: their degree must be 3, and this implies that c′i,0 ∈ S
and c′i,1 ∈ S for all 1 ≤ i ≤ m; similarly, ci,0 ∈ S for all 1 ≤ i ≤ m. Hence, of
each triple ci,1, ci,2 and ci,3, exactly one node must be in S so that, for any i
and any leaf v of T1, d(v, S) = 3.
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We denote by LS the set of nodes in L that belong to S, i.e. LS = S ∩L. Note
that (i) |LS| = m, and there is exactly one node in LS for each clause, and
(ii) there can’t be an edge between two nodes in LS, otherwise their degree
would be greater than 3. Therefore from LS we can derive a truth assignment
by setting true the literals of f corresponding to nodes in LS. The truth
assignment is valid because of (ii), while f is satisfied because of (i).

2

Theorem 12 max-rris is NP-complete.

PROOF. We transform 3sat to max-rris. The instance of 3sat is a formula
f with m clauses and n variables and, without loss of generality, we assume
that m ≥ 2 and that there is no clause c that includes two opposite literals.
Note that for each formula f there is a formula f ′, with m′ = 3(m−1) clauses
and n′ = n+1 variables, such that f ′ is satisfiable if and only if f is satisfiable:
we build f ′ by adding 2m − 3 identical clauses that include only one literal,
corresponding to a new variable, repeated three times. We now transform the
generic instance of f ′ into an instance of max-rris in the following way (see
Figure 6):

• for each clause ci we add
· three nodes ci,1, ci,2 and ci,3; they represent the literals of the clause, and

we refer to all of them, for 1 ≤ i ≤ m′, as the set L;
· three nodes ai, bi and ci; let A, B e C denotes, respectively, the set of all

the nodes ai, bi and ci for 1 ≤ i ≤ m′;
· the following sets of nodes: Ai,1, Ai,2, Ai,3, Bi; each of these sets has

cardinality equal to m′;
• we add two root nodes, denoted by r1 and r2;
• we connect each node in a set Ai,1, Ai,2, Ai,3, Bi with all the nodes in the

same set, i.e. all these sets are cliques of size m′;
• we connect
· each node ai with all the nodes in Ai,1 ∪ Ai,2 ∪ Ai,3;
· each node bi with all the nodes in Bi;
· each node ci with all the nodes in Bi;
· each node ci,1 with all the nodes in Ai,1;
· each node ci,2 with all the nodes in Ai,2;
· each node ci,3 with all the nodes in Ai,3;

• we connect each node ci with the corresponding nodes ci,1, ci,2 and ci,3;
• we connect r1 with each node ai and the node r2 with each node bi;
• we connect r1 to r2;
• we connect each occurrence of a literal ci,j with all occurrences ci′,j′ that

represent the opposite literal;
• finally, we let k := m′ + 1.
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Figure 6. The graph constructed in the proof of Theorem 12

We now show that if f ′ is satisfiable then there is a solution S to the corre-
sponding instance of max-rris. Consider a truth assignment satisfying f ′. We
build S in the following way: for each clause we arbitrarily pick one node ci,t

that corresponds to a true literal, and we also include in S the corresponding
set Ai,t. Additionally, we include for 1 ≤ i′ ≤ m′ all nodes ai′ , bi′ , ci′, all the
sets Bi′ and the two roots r1 and r2. It is easy to verify that such a set S in-
duces a (m′ +1)-regular graph on G (since the nodes ci,t are chosen according
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to a truth assignment, no pair of nodes in S ∩ L is connected by an edge).

Now assume that S ⊆ V is a solution of max-rris, i.e. it is a set inducing
an r-regular subgraph with r ≥ m′ + 1. To show that this implies that f ′ is
satisfiable we prove the following points:

(1) S * L;
(2) for each set X ∈ {Ai,1, Ai,2, Ai,3, Bi}, if S ∩ X 6= ∅, then X ⊂ S;
(3) if ci ∈ S then Bi ⊂ S;
(4) if S ∩ Ai,t 6= ∅ then ai ∈ S;
(5) if ai ∈ S ∩ A then there is exactly one t ∈ {1, 2, 3} such that Ai,t ⊂ S;
(6) S ∩ L determines a truth assignment that satisfies f ′.

(1) Each node ci,t is connected to at most 3(m−1) nodes in L, where 3(m−1) <
3m − 2 = m′ + 1: we built f ′ from f , and only the nodes that correspond to
the literals in f (3m literals) can be connected together. If we consider only
nodes in L it is not possible to reach the minimum degree k = m′ + 1.

(2) Note that X is a clique of size m′, and every node in X is connected to
only two nodes not in X. Therefore, if a node x belongs to S ∩ X, to reach
the minimum degree m′ + 1 all the nodes connected to it must belong to S,
so that X ⊂ S.

(3) If ci ∈ S, since m′ + 1 > 3 there is β ∈ S ∩ Bi, so by (2) Bi ⊂ S.

(4) Let α ∈ S ∩ Ai,t. Since d(α, V ) = m′ + 1, to achieve degree m′ + 1 all the
neighbors of α must be in S, and in particular ai ∈ S.

(5) Consider a node ai ∈ S ∩ A; since m′ + 1 > 1 there must be a node
α ∈ S ∩ Ai,t. From (2) it follows that Ai,t ⊂ S. If there were also a node
α′ ∈ S ∩ Ai,t′ , with t′ 6= t, then we would similarly have Ai,t′ ⊂ S. But then
the degree of ai in S would be d(ai, S) ≥ 2m′ > m′ + 1 = d(α, S) and so the
induced subgraph would not be regular; this implies the uniqueness of Ai,t.

(6) From (1) we know that S − L 6= ∅. By (2–5) and the fact that d(r1, V ) =
d(r2, V ) = d(bi, V ) = m′ + 1, one can deduce that for each triple ci,1, ci,2,
ci,3, there is only one t such that ci,t ∈ S. Moreover this implies Ai,t ⊂ S and
ci ∈ S, so that G(S) must be m′ + 1 regular and ci,t is only connected to ci

and the set Ai,t. This means that in S∩L there cannot be two adjacent nodes,
i.e. among the literals in S ∩ L there is no pair of opposite literals. Therefore
it is possible to assign the value true to all the literals whose corresponding
nodes are in S∩L; this gives a truth assignment which satisfies f ′ and, hence,
also satisfies f .
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