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1 Introduction

The study of large-scale characteristics of graphs that arise in natural language
processing is an essential step in finding structural regularities. Structure dis-
covery processes have to be designed with an awareness of these properties.
Examining and contrasting the effects of processes that generate graph struc-
tures similar to those observed in language data sheds light on the structure
of language and its evolution.

In this chapter, we examine power-law distributions and small world
graphs (SWGs) originating from natural language data. There are several
reasons for the special interest in these structures.

1. Power laws appear in many rank-frequency statistics. Furthermore, we can
construct graphs with words as nodes and use various rules to introduce
edges between words. In many cases, this results in SWGs, which again
often have a power-law distribution for their node degrees.

2. SWGs appear in many other real world data, like social networks of many
kinds, in the link structure of the World Wide Web or in traffic networks.
It is interesting to analyze all these networks in more detail to identify
similarities and differences.

3. From an application-driven view, SWGs allow effective clustering strate-
gies in nearly linear time. Because these clusters are often related to the
growth process of the underlying graph, they are often meaningful. In
the case of natural language these clusters usually reflect semantic and/or
syntactic structures.

After discussing several data sources that exhibit power-law distributions
with respect to rank frequency in Section 2, graphs with small world properties
in language data are discussed in Section 3. We shall see that these characteris-
tics are omnipresent in language data, and we should be aware of them when
designing structure discovery processes. For example, the knowledge that a
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few hundred words make the bulk of words in a text allows one to use only
these words as contextual features with only a minor loss in text coverage.
Knowing that word co-occurrence networks possess the scale-free small world
property has implications for clustering these networks.

An interesting aspect is whether these characteristics are only inherent to
real natural language data or whether they can be produced with generators
of linear sequences in a much simpler way than our intuition about language
complexity would suggest. In other words, we shall see how distinctive these
characteristics are with respect to tests deciding whether a given sequence is
natural language or not.

2 Power Laws in Rank-Frequency Distribution

G. K. Zipf [31, 32] described the following phenomenon: if all words in a corpus
of natural language are arranged in decreasing order of frequency, then the
relation between a word’s frequency and its rank in the list follows a power
law. Since then, a significant amount of research has been devoted to the
question of how this property emerges and what kinds of processes generate
such Zipfian distributions. Hence, some datasets related to language will be
presented that exhibit a power law on their rank-frequency distribution. For
this discussion, basic units of language will be examined.

2.1 Word Frequency

The relation between the frequency of a word at rank r and its rank is given
by f(r) ∼ r−z, where z is the exponent of the power law that corresponds
to the slope of the curve in a log-log plot. The exponent z was assumed to
be exactly 1 by Zipf. In natural language data, slightly differing exponents
in the range of about 0.7 to 1.2 are also observed [30]. B. Mandelbrot [21]
provided a formula that more closely approximates the frequency distributions
in language data after noticing that Zipf’s law holds only for the medium range
of ranks, whereas the curve is flatter for very frequent words and steeper for
high ranks. Figure 1 displays the word rank-frequency distributions of corpora
of different languages taken from the Leipzig Corpora Collection.1

There exist several exhaustive collections of research capitalising Zipf’s
law and related distributions2 ranging over a wide area of datasets; here, only
findings related to natural language will be reported. A related distribution
is the lexical spectrum [16], which gives the probability of choosing a word
from the vocabulary with a given frequency. For natural language, the lexical
spectrum follows a power law with slope γ = 1

z + 1, where z is the exponent

1LCC, see http://www.corpora.uni-leipzig.de [July 7th, 2007].
2e.g. http://www.nslij-genetics.org/wli/zipf/index.html [April 1, 2007].
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Fig. 1. Zipf’s law for various corpora. The numbers next to the language give the
corpus size in sentences. Enlarging the corpus does not affect the slope of the curve,
but merely moves it upwards in the plot. Most lines are almost parallel to the ideal
power-law curve with z = 1. Finnish exhibits a lower slope of γ ≈ 0.8, akin to higher
morphological productivity.

of the Zipfian rank-frequency distribution. For the relation between lexical
spectrum, Zipf’s law and Pareto’s law, see [1].

But Zipf’s law in its original form is just the tip of the iceberg of power-law
distributions in a quantitative description of language. While a Zipfian distri-
bution for word frequencies can be obtained by a simple model of generating
letter sequences with space characters as word boundaries [21, 22], these mod-
els based on “intermittent silence” can neither reproduce the distributions on
sentence length [26] nor explain the relations of words in sequence. Next, more
power-law distributions in natural language are discussed and exemplified.

2.2 Letter N-Grams

To continue with a counter example, letter frequencies do not obey a power
law in the rank-frequency distribution. This also holds for letter N -grams
(including the space character), yet for higher N , the rank-frequency plots
show a large power-law regime with exponential tails for high ranks. Figure 2
shows the rank-frequency plots for letter N -grams up to N = 6 for the first
10,000 sentences of the British National Corpus (BNC,3 [10]).

Still, letter frequency distributions can be used to show that letters are
not forming letter bigrams from the single letters independently, but there
are restrictions on their combination. While this intuitively seems obvious for

3http://www.natcorp.ox.ac.uk/ [April 1, 2007]
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Fig. 2. Rank-frequency distributions for letter N -grams for the first 10,000 sentences
in the BNC. Letter N -gram rank-frequency distributions do not exhibit power laws on
the full scale, but increasing N results in a larger power-law regime for low ranks.

letter combination, the following test is proposed for quantitatively examin-
ing the effects of these restrictions: from letter unigram probabilities, a text is
generated that follows the letter unigram distribution by randomly and inde-
pendently drawing letters according to their distribution and concatenating
them. The letter bigram frequency distribution of this generated text can be
compared to the letter bigram frequency distribution of the real text from
where the unigram distribution was measured. Figure 3 shows the generated
plot and the real rank-frequency plot, again from the small BNC sample.

The two curves clearly differ. The generated bigrams without restrictions
predict a higher number of different bigrams and lower frequencies for bigrams
of high ranks as compared to the real text bigram statistics. This shows that
letter combination restrictions do exist, as not all bigrams predicted by the
generation process were observed, resulting in higher counts for valid bigrams
in the sample.

2.3 Word N-Grams

For word N -grams, the relation between rank and frequency follows a power
law, just as in the case for words (unigrams). Figure 4 (left) shows the rank-
frequency plots up to N = 4, based on the first 1 million sentences of the
BNC. As more different word combinations are possible with increasing N ,



Networks Generated from Natural Language Text 171

1

10

100

1000

10000

1 10 100 1000 10000

fr
eq

ue
nc

y

rank

letter bigram: generated and real

letter 2-grams generated by letter-1-gram distribution
letter 2-gram real
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Fig. 4. Left: Rank-frequency distributions for word N -grams for the first one million
sentences in the BNC. Word N -gram rank-frequency distributions exhibit power laws.
Right: Rank-frequency plots for word bigrams, for a text generated from letter unigram
probabilities and for the BNC sample.

the curves become flatter as the same total frequency is shared amongst more
units, as previously observed (e.g. [27, 18]). Testing concatenation restrictions
quantitatively as above for letters, it might at first seem surprising that the
curve for a text generated with word unigram frequencies differs only very
little from the word bigram curve, as Fig. 4 (right) shows. Small differences
are only observable for low ranks: more top-rank generated bigrams reflect
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that words are usually not repeated in the text. More low-ranked and less
high-ranked real bigrams indicate that word concatenation takes place not
entirely without restrictions, yet is subject to much more variety than letter
concatenation. This coincides with the intuition that it is, for a given word
pair, almost always possible to form a correct English sentence in which these
words are neighbours. Regarding quantitative (as opposed to syntactic or
semantic) aspects, the frequency distribution of word bigrams can be produced
by a generation process based on word unigram probabilities.

2.4 Sentence Frequency

Larger corpora that are compiled from a variety of sources contain a con-
siderable amount of duplicate sentences. In the full BNC, which serves as
the data basis in this case, 7.3% of the sentences occur two or more times.
The most frequent sentences are “Yeah.”, “Mm.”, “Yes.” and “No.”, which
are mostly found in the section of spoken language. But also longer expres-
sions like “Our next bulletin is at 10.30 p.m.” have a count of over 250. The
sentence frequencies also follow a power law with an exponent close to 1 (see
Fig. 5), indicating that Zipf’s law also holds for sentence frequencies.

2.5 Other Power Laws in Language Data

The preceding results strongly suggest that when counting document frequen-
cies in large collections such as the World Wide Web, another power-law
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Fig. 5. Rank-frequency plot for sentence frequencies in the full BNC, following a
power law with γ ≈ 0.9, but with a high fraction of sentences occurring only once.
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Fig. 6. Rank-frequency plot for AltaVista search queries, following a power law with
γ ≈ 0.75.

distribution would be found, but such an analysis has not been carried out
and would require access to the index of a web search engine. Further, there are
more power laws in language-related areas, some are mentioned here briefly
to illustrate their omnipresence.

• Web page requests follow a power law, which was employed for a caching
mechanism in [17].

• Related to this, frequencies of web search queries during a fixed time span
also follow a power law, as exemplified in Fig. 6 for a 7-million queries log
of AltaVista4 as used by Lempel [19].

• The number of authors of Wikipedia5 articles was found to follow a power
law with γ ≈ 2.7 for a large regime in [29]. The same paper further dis-
cusses various other power-law relationships.

3 Scale-Free Small Worlds in Language Data

The previous section discussed the shape of rank-frequency distributions for
natural language units. Now the properties of graphs with units represented
as vertices and relations between them as edges will be the focus of interest.
Internal as well as contextual features can be employed for computing similar-
ities between language units that are represented as (possibly weighted) edges

4http://www.altavista.com
5http://www.wikipedia.org
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in the graph. Some of the graphs discussed here can be classified as scale-free
SWGs; others have different characteristics and represent other, but related,
graph classes.

3.1 Word Co-Occurrence Graph

The notion of word co-occurrence is used to model dependencies between
words. If two words X and Y occur together in some contextual unit of
information (as neighbours, in a word window of 5, in a clause, in a sen-
tence, in a paragraph), they are said to co-occur. When regarding words as
vertices and edge weights as the number of times two words co-occur, the
word co-occurrence graph of a corpus is given by the entirety of all word co-
occurrences. In the following, two specific types of co-occurrence graphs are
considered: the graph as induced by neighbouring words, henceforth called
the neighbour-based graph, and the graph as induced by sentence-based co-
occurrence, henceforth called the sentence-based graph. The neighbour-based
graph can be undirected or directed with edges going from the left to the right
words as found in the corpus, the sentence-based graph is undirected.

To find out whether the co-occurrence of two specific words A and B is
merely due to chance or exhibits a statistical dependency, measures are used
that compute, to what extent the co-occurrence of A and B is statistically
significant. Many significance measures can be found in the literature; for ex-
tensive overviews consult e.g. [9] or [14]. In general, the measures compare the
probability for A and B to co-occur under the assumption of their statistical
independence with the actual probability of their joint co-occurrence in the
corpus. In this work, the log likelihood ratio [13] is used to sort the wheat
from the chaff. It is given in expanded form in [9]:

−2 log λ = 2

⎡
⎢⎢⎣

n log n − nA log nA − nB log nB + nAB log nAB

+ (n − nA − nB + nAB) log (n − nA − nB + nAB)
+ (nA − nAB) log (nA − nAB) + (nB − nAB) log (nB − nAB)
− (n − nA) log (n − nA) − (n − nB) log (n − nB)

⎤
⎥⎥⎦ ,

where n is the total number of contexts, nA the frequency of A, nB the fre-
quency of B and nAB the number of co-occurrences of A and B. As pointed out
by Moore [23], this formula overestimates the co-occurrence significance for
small nAB . For this reason, often a frequency threshold t on nAB (e.g. a min-
imum of nAB = 2) is applied. Further, a significance threshold s regulates the
density of the graph; for the log likelihood ratio, the significance values corre-
spond to the χ2 tail probabilities [23], which makes it possible to translate the
significance value into an error rate for rejecting the independence assump-
tion.6 The operation of applying a significance test results in pruning edges

6For example, a log likelihood ratio of 3.84 corresponds to a 5% error in stating
that two words do not occur by chance, a significance of 6.63 corresponds to a 1%
error.
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that exist due to random noise and keeping almost exclusively those edges that
reflect a true association between their endpoints. Graphs that contain all sig-
nificant co-occurrences of a corpus, with edge weights set to the significance
value between their endpoints, are called significant co-occurrence graphs in
the remainder. For convenience, no singletons in the graph are allowed, i.e. if a
vertex is not contained in any edge because none of the co-occurrences for the
corresponding word is significant, then the vertex is excluded from the graph.

As observed previously [15, 24], word co-occurrence graphs exhibit the
scale-free small world property. This is in line with co-occurrence graphs
reflecting human associations [25] and human associations in turn forming
SWGs [28]. The claim is confirmed here on an exemplary basis with the
graph for Leipziy Corpora Collection’s (LCC’s) 1 million sentence corpus for
German. Figure 7 gives the degree distributions and graph characteristics for
various co-occurrence graphs.

The shape of the distribution is dependent on the language, as Fig. 8 shows.
Some languages—here English and Italian—have a hump-shaped distribution
in the log-log plot where the first regime follows a power law with a lower expo-
nent than the second regime, as observed in [15]. For the Finnish and German
corpora examined here, this effect could not be found in the data. This prop-
erty of two power-law regimes in the degree distribution of word co-occurrence
graphs motivated the Dorogovtsev-Mendes (DM)-model, see [12]. There, the
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Fig. 9. Degree distributions in word co-occurrence graphs for window size 2. Left: The
distribution for German and Icelandic is approximated by a power law with γ = 2.
Right: For English (BNC) and Italian, the distribution is approximated by two power-
law regimes.

crossover point of the two power-law regimes is motivated by a kernel lexicon
of about 5000 words that can be combined with all words of a language.

The original experiments of [15] operated on a word co-occurrence graph
with window size 2: an edge is drawn between words if they appear together at
least once in a distance of one or two words in the corpus. Reproducing their
experiment with the first 70 million words of the BNC and corpora of German,
Icelandic and Italian of similar size reveals that the degree distribution of
the English and the Italian graph is in fact approximated by two power-law
regimes. In contrast to this, German and Icelandic show a single power-law
distribution, just as in the experiments above; see Fig. 9. These results suggest
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Fig. 10. Degree distributions in word co-occurrence graphs for distance 1 and dis-
tance 2 for English (BNC) and Italian. The hump-shaped distribution is much more
distinctive for distance 2.

that two power-law regimes in word co-occurrence graphs with window size 2
are not a language universal, but only hold for some languages.

To examine the hump-shaped distributions further, Fig. 10 displays the
degree distribution for the neighbour-based word co-occurrence graphs and
the word co-occurrence graphs for connecting only words that appear in a
distance of 2. As it becomes clear from the plots, the hump-shaped distribution
is mainly caused by words co-occurring in distance 2, whereas the neighbour-
based graph shows only a slight deviation from a single power law. Together
with the observations from sentence-based co-occurrence graphs of different
languages in Figure 8, it becomes clear that a hump-shaped distribution with
two power-law regimes is caused by long-distance relationships between words,
if present at all.

3.1.1 Applications of Word Co-Occurrences

Word co-occurrence statistics are an established standard and have been used
in many language processing systems. The authors have used co-occurrences
in practical applications like bilingual dictionary acquisition [4, 11], semantic
lexicon extension [8] and visualisation of concept trails [7]. The aim of this
chapter is to underpin their applications with a theoretical foundation.

3.2 Co-Occurrence Graphs of Higher Order

The significant word co-occurrence graph of a corpus represents words that
are likely to appear near to each other. When one is interested in words
co-occurring with similar other words, it is possible to transform the above-
defined (first-order) co-occurrence graph into a second-order co-occurrence
graph by drawing an edge between two words A and B if they share a common
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Fig. 11. Neighbourhoods of jazz and rock in the significant sentence-based word co-
occurrence graph as displayed on LCC’s English corpus website. Both neighbourhoods
contain album, music, singer and band, which leads to an edge weight of 4 in the
second-order graph.

neighbour in the first-order graph. Whereas the first-order word co-occurrence
graph represents the global context per word, the corresponding second-order
graph contains relations between words which have similar global contexts.
The edge can be weighted according to the number of common neighbours,
e.g. by weight = |neigh(A) ∩ neigh(B)|. Figure 11 shows neighbourhoods
of the significant sentence-based first-order word co-occurrence graph from
LCC’s English web corpus7 for the words jazz and rock. Taking into account
only the data depicted, jazz and rock are connected with an edge of weight 4
in the second-order graph, corresponding to their common neighbours album,
music, singer and band. The fact that they share an edge in the first-order
graph is ignored.

In general, a graph of order N +1 can be obtained from the graph of order
N , using the same transformation. The higher-order transformation without
thresholding is equivalent to a multiplication of the unweighted adjacency
matrix A with itself, then a zeroing of the main diagonal by subtracting the
degree matrix of A. Since the average path length of scale-free SWGs is short
and local clustering is high, this operation leads to an almost fully connected
graph in the limit, which does not allow one to draw conclusions about the
initial structure. Thus, the graph is pruned in every iteration N in the fol-
lowing way. For each vertex, only the maxN outgoing edges with the highest
weights are taken into account. Notice that this vertex degree threshold maxN

does not limit the maximum degree, as thresholding is asymmetric. This op-
eration is equivalent to only keeping the maxN largest entries per row in
the adjacency matrix A = (aij), then At = (sign(aij + aji)), resulting in an
undirected graph. To examine quantitative effects of the higher-order trans-
formation, the sentence-based word co-occurrence graph of LCC’s 1-million
German sentence corpus (s = 6.63, t = 2) underwent this operation. Figure 12
depicts the degree distributions for N = 2 and N = 3 for different maxN .

7http://corpora.informatik.uni-leipzig.de/?dict=en [April 1, 2007]
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Fig. 12. Degree distributions of word-co-occurrence graphs of higher order. The first-
order graph is the sentence-based word co-occurrence graph of LCC’s 1-million German
sentence corpus (s = 6.63, t = 2). Left: N = 2 for max2 = 3, max2 = 10 and
max2 = ∞. Right: N = 3 for t2 = 3, t3 = ∞, using the second-order graph with
max2 = 3.

Applying the maxN threshold causes the degree distribution to change,
especially for high degrees. In the third-order graph, two power-law regimes
are observable.

Studying the degree distribution of higher-order word co-occurrence graphs
revealed that the characteristic of being governed by power laws is invariant
to the higher-order transformation, yet the power-law exponent changes. This
indicates that the power-law characteristic is inherent at many levels in natu-
ral language data. To examine what this transformation yields on the graphs
generated by other random graph models, Figure 13 shows the degree distribu-
tion of second-order and third-order graphs as generated by the graph gener-
ation models of [3] (Barabási-Albert (BA)-model), [28] (Steyvers-Tenenbaum
(ST)-model) and [12] (DM-model). The underlying first-order graphs are the
undirected graphs of order 10,000 and size 50,000 (〈k〉=10) from these three
models.

While the thorough interpretation of second-order graphs of random
graphs might be subject to further studies, the following should be noted:
the higher-order transformation reduces the power-law exponent of the BA-
model graph from γ = 3 to γ = 2 in the second order and to γ ≈ 0.7 in the
third order. For the ST-model, the degree distribution of the full second-order
graph shows a maximum around 2M , then decays with a power law with ex-
ponent γ ≈ 2.7. In the third-order ST-graph, the maximum moves to around
4M 2 for sufficient max2. The DM-model second-order graph shows, like the
first-order DM-model graph, two power-law regimes in the full version, and
a power-law with γ ≈ 2 for the pruned versions. The third-order degree dis-
tribution exhibits many more vertices with high degrees than predicted by a
power law.
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Fig. 13. Second- and third-order graph degree distributions for BA-model, ST-model
and DM-model graphs.
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In summary, all random graph models exhibit clear differences for word
co-occurrence networks with respect to the higher-order transformation. The
ST-model shows maxima depending on the average degree of the first-order
graph. The BA-model’s power law is decreased with higher orders, but is
able to explain a degree distribution with power-law exponent 2. The full
DM model exhibits the same two power-law regimes in the second order as
observed for German sentence-based word co-occurrences in the third order.

3.2.1 Applications of Co-Occurrence Graphs of Higher Orders

In [6] and [20], the utility of word co-occurrence graphs of higher orders are
examined for lexical semantic acquisition. The highest potential for extracting
paradigmatic semantic relations can be attributed to second- and third-order
word co-occurrences. In [9] second-order graphs are evaluated against lexical
semantic resources.

3.3 Sentence Similarity

Using words as internal features, the similarity of two sentences can be mea-
sured by the number of common words they share. Since the few top frequency
words are contained in most sentences as a consequence of Zipf’s law, their
influence should be downweighted or they should be excluded to arrive at
a useful measure for sentence similarity. Here, the sentence similarity graph
of sentences sharing at least two common words is examined, with the max-
imum frequency of these words bounded by 100. This maximum frequency
threshold was arbitrarily chosen and could be replaced by a weighting scheme
that attributes more weight to less frequent words. However, a hard thresh-
old reduces the computational cost significantly. The corpus of examination
is here LCC’s 3-million sentences of German. Figure 14 shows the component
size distribution for this sentence similarity graph, Figure 15 shows the degree
distributions for the entire graph and for its largest component.

The degree distribution of the entire graph follows a power law with γ close
to 1 for low degrees and decays faster for high degrees; the largest component’s
degree distribution plot is flatter for low degrees. This can be attributed to
limited sentence length: as sentences are not arbitrarily long, they cannot
be similar to an arbitrary high number of other sentences with respect to
the measure discussed here, as the number of sentences per feature word is
bounded by the word frequency limit. However, the extremely high values
for transitivity and clustering coefficient and the low γ values for the degree
distribution for low degree vertices and comparably long average shortest path
lengths indicate that the sentence similarity graph belongs to a different graph
class than all other graphs discussed above.
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Fig. 14. Component size distribution for the sentence similarity graph of LCC’s
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3.3.1 Applications of the Sentence Similarity Graph

A similar measure is used in [5] for document similarity and obtains well-
correlated results when evaluated against a given document classification.
A precision-recall tradeoff arises when lowering the frequency threshold for
feature words or increasing the minimum number of common feature words
two documents must have in order to be connected in the graph: both improve
precision but result in many singleton vertices, which lowers the total number
of documents that are considered.

3.4 Summary of Scale-Free Small Worlds in Language Data

The preceding examples confirm the claim that graphs built on various aspects
of natural language data often exhibit the scale-free small world property or
similar characteristics. Experiments with generated text corpora suggest that
this is mainly due to the power-law frequency distribution of language units.
The slopes of the power law approximating the degree distributions can often
not be produced using the random graph generation models. Specifically, all
previously discussed generation models fail to explain the properties of word
co-occurrence graphs, where γ ≈ 2 was observed as the power-law exponent
of the degree distribution. Of the generation models inspired by language
data, the ST-model exhibits γ = 3, whereas the universality of the DM-
model to capture word co-occurrence graph characteristics can be doubted
after examining data from different languages.
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