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The concept of pagerank was first started as a way for determining
the ranking of Web pages by Web search engines. Based on
relations in interconnected networks, pagerank has become a
major tool for addressing fundamental problems arising in general
graphs, especially for large information networks with hundreds of
thousands of nodes. A notable notion of pagerank, introduced by
Brin and Page and denoted by PageRank, is based on random walks
as a geometric sum. In this paper, we consider a notion of pagerank
that is based on the (discrete) heat kernel and can be expressed as
an exponential sum of random walks. The heat kernel satisfies the
heat equation and can be used to analyze many useful properties
of random walks in a graph. A local Cheeger inequality is estab-
lished, which implies that, by focusing on cuts determined by linear
orderings of vertices using the heat kernel pageranks, the resulting
partition is within a quadratic factor of the optimum. This is true,
even if we restrict the volume of the small part separated by the
cut to be close to some specified target value. This leads to a graph
partitioning algorithm for which the running time is proportional
to the size of the targeted volume (instead of the size of the whole
graph).

In the development of quantitative ranking for Web pages,
many mathematical methods have come into play. The Hub-

and-Authority algorithm by Kleinberg (1) uses eigenvectors. The
PageRank introduced by Brin and Page (2) basically uses random
walks. These pagerank algorithms mainly rely on the network
structure of the Web. The viewpoint is to regard the Web as a
graph, with vertices to be Web pages and edges as links between
pairs of Web pages. Various notions of pagerank are computed
using the Webgraph, which are then used for numerous appli-
cations, such as identifying communities or finding hot spots in
various information networks. Another example is to use Pag-
eRank to derive a local graph partitioning algorithm (3), which
can be computed very efficiently in the sense that the cost of
computing is proportional to the size of the small part of the
partition, in contrast with the generic partitioning algorithm
having cost depending on the size of the whole graph.

In this paper, we introduce a notion of pagerank by using the
heat kernel of a graph. Similar to PageRank, the heat kernel
pagerank is based on random walks but having the extra benefit
of satisfying the heat equation. Originally rooted in spectral
geometry (4), the heat equation for graphs involves a parameter
t, the heat, which allows additional control of the rate of diffusion
(see detailed definitions later). Using the heat equation, the heat
kernel pagerank is amenable to various mathematical analyses of
the graph. A key isoperimetric invariant of a graph is the Cheeger
constant which provides an evaluation of how good a cut can be
found. The classical Cheeger inequality concerns the relation-
ship between the Cheeger constant and eigenvalues of the
(normalized) Laplacian of a graph. (A graph can be viewed as
a discrete version of a manifold where the original Cheeger
inequality applies, ref. 5.) Here we will prove several variations
of the Cheeger inequality, establishing relationships between the
Cheeger constant and the heat kernel pagerank. One of the
consequences of the local Cheeger inequality is that, for a given
value s, the minimum Cheeger ratio of subsets of volume at most
s can be approximated up to a quadratic factor by focusing on
subsets obtained by using heat kernel pageranks.

A byproduct of the classical Cheeger inequality is a fast
partition algorithm using eigenvectors. Here, we will show that
the heat kernel pagerank leads to efficient local partitioning
algorithms with several advantages over previous algorithms.
Instead of partitioning graphs into almost equal parts for divide-
and-conquer approaches, in a large graph, a local partition
algorithm seeks a set with volume bounded by some target size
near some specified seed. Recently, there has been progress on
developing local partitioning algorithms. Spielman and Teng (6)
gave a local partitioning algorithm based on a result of Lovász
and Simonovits on rapidly mixing random walks (7, 8). By using
PageRank, an improved local partitioning algorithm was given in
refs. 3 and 9. All of these partitioning algorithms are so-called
‘‘one-sweep’’ algorithms that focus on the subsets consisting of
the highest j vertices, for some j, according to some linear
ordering. In this paper, we will give a local partitioning algo-
rithm, which, for a given target size s, is a one-sweep algorithm
using a truncated version of heat kernel pagerank with support
at most s, and thus further improves previous work. The algo-
rithm is based on a local version of the Cheeger inequality.

Preliminaries
The starting point of the heat kernel pagerank is a typical
random walk. In a graph G, the transition probability matrix W
of a typical random walk on a graph G � (V,E) is a matrix with
columns and rows indexed by V and is defined by

W�u, v� � � 1
du

if �u , v� � E ,

0 otherwise.

Before we proceed to define heat kernel pagerank, we will first
describe PageRank, as defined by Brin and Page (2). The
PageRank involves a preference vector f [which can be viewed as
the probabilistic distribution of the seed(s)] and a jumping
constant �. For example, if we have one starting seed denoted by
vertex u, then f can be written as the (0, 1)-indicator function �u

of u. Another example is to take f to be the constant function
with value 1/n at every vertex as in the original definition in Brin
and Page (2). The version of PageRank we discuss here is often
called the personalized PageRank. Throughout this paper, a
real-valued function f : V3 � is taken to be a row vector so that
W can act on f from the right by matrix multiplication. The
PageRank pr(�,f ), with the scale paramenter � and the prefer-
ence vector f, is defined by

pr�, f � ��
k�0

�

�1 � ��kfWk. [1]
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The heat kernel pagerank also has two parameters: t, a non-
negative value (the temperature), and f (a preference vector),
defined as follows:

�t, f � e�t �
k�0

� tk

k!
fWk. [2]

If we compare Eq. 1 with Eq. 2, we can see that �(�) is just an
exponential sum instead of pr(�), which is a geometrical sum. It
is often the case (e.g., in dealing with generating functions) that
the exponential sum converges more rapidly.

We note that an equivalent definition of the PageRank is given
by the following recurrence:

pr�, f � �f � �1 � ��pr�, fW . [3]

Instead, the heat kernel pagerank as defined in Eq. 2 satisfies the
following heat equation:

�

�t
�t, f � � �t, f �I � W�. [4]

Let us define L � I � W. Then the definition of the heat kernel
pagerank in Eq. 2 can be rewritten as

�t, f � e�t �
k�0

� tk

k!
fWk

� fe�t�I�W�

� fe�tL

� �
k�0

�
� � t�k

k!
fLk.

For a vertex v in G, the degree of v, denoted by dv, is the number
of vertices to which v is adjacent. Let A denote the adjacency
matrix of G and let D represent the diagonal degree matrix. We
can write W � D�1 A and Ht � e�t(I�W). The discrete heat kernel
first introduced in ref. 10 is a symmetric version of Ht.

It is known that a random walk has a stationary distribution
if it is irreducible and nonperiodic. In graph-theoretical terms, a
random walk on a graph G has a stationary distribution � if G
is connected and nonbipartite with � satisfying �(u) � du/�v dv.

From the above definition, we have the following immediate
facts for �t, f. Namely, �0, f � f, �t,� � �, and �t, f1* � f1* � 1 if
f satisfies �v f (v) � 1. Here, 1 denotes the all 1’s function and
x* denotes the transpose of x. Also, we have DHt � H*t D and Ht �
Ht/2Ht/2 � Ht/2D �1H*t/2D.

To approximate the heat kernel pagerank, one might choose
an additive approximation by taking a finite sum (cf. Eq. 2). If
one prefers a multiplicative approximation, there is a formula,
given by Euler (11), as a sum of two infinite products:

�t, f �
e�tf

2 ��
k�0

� �I �
4t2W2

�2k � 1�2�2� � tW �
k�1

� �I �
t2W2

k2�2��.

Isoperimetric Properties of the Heat Kernel
For a subset S of vertices in G, the volume of S, denoted by vol(S),
is �u�Sdu. Also the volume of a graph G, denoted by vol (G) is
vol (G) � �u du. The edge boundary of S, denoted by �S is defined
by

�S � ��u, v� � E: u � S and v�S� .

Let S� � V 	S denote the complement of S. Clearly, �S � �S� . The
Cheeger ratio of S, denoted by hS, is defined by

hS �
��S�

min�vol�S� , vol�S� ��

and the Cheeger constant of a graph G is hG � minS�V hS.
For a given set S, we consider the distribution fS with fS(u) �

du/vol(S) if u � S, and 0 otherwise. Note that fS can be written
as 1/vol(S) �SD where �S is the indicator function for S. For any
function g : V 3 �, we define g(S) � �v�S g(v).

We will use the heat equation to derive the following isope-
rimetric inequality for the heat kernel pagerank:

Lemma 1. For a subset S with vol(S) 
 vol(G)/2, we have

�

�t
�t, fs

�S� � � vol�S� �
u	v

� � t/2, fs
�u�

du
�

� t/2, fs
�v�

dv
� 2


 0,

where the sum is over all unordered pairs of vertices {u, v} in E and

��

�
�t, fs

�S�� 
 hS.

To prove this, we see that

�

�t
�t, fs

�S� � fs

�

�t
Ht�*S

� � fs�I � W�Ht�*S

� � fsHt/2�I � W�D�1H*t/2D�*S

� � fsHt/2D�1�D � A�D�1H*t/2f*svol�S�

� � vol�S��
u	v

� � t/2, fs
�u�

du
�

� t/2, fs
�v�

dv
� 2


 0.

Here, we use the fact (see ref. 12) that, for any f, g : V3 �, we
have

f�D � A�g* � �
u	v

� f�u� � f�v���g�u� � g�v��.

In a similar way, it can be easily checked that �2/�t2 �t, fs
(S) � 0.

Therefore,

�

�t
�t, fs

�S� �
�

�t
�t, fs

�S��t�0 � �
��S�

vol�S�
� � hS

as desired.

A Mixing Inequality for the Heat Kernel Pagerank
For a function f : V 3 �, we order the vertices of G so that

f�v1�

dv1
�

f�v2�

dv2
� . . . �

f�vn�

dvn

. [5]

Let Si denote the set consisting of v1, . . . , vi. Let hf denote the
least Cheeger ratio hSi

over all Si. We say that hf is the Cheeger
ratio determined by a sweep of f. Our goal is to establish a rapid
mixing estimate for the heat kernel page rank in terms of the
associated Cheeger ratios. For a vertex u, we consider �t�u, which
will also be written as �t, u.

Theorem 1. In a graph G, for t � 0, the heat kernel pagerank satisfies
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��t,u�v� � ��v�� 
 e�t�t
2/2	dv

du

where �t is the minimum Cheeger ratio of all Cheeger ratios
obtained by sweeps of �t,w over all vertices w in G.

The theorem follows from the following, slightly stronger,
statement:

Theorem 2.

��t,u�v� � ��v�� 
 e�t��t ,u
2 
�t ,v

2 �/4 	dv

du
,

where �t,u is the minimum Cheeger ratio determined by a sweep of �t,u.

Proof: We note that

du

dv
��t,u�v� � ��v��2 � ��uD1/2�Ht � 1*��D�1/2�*v�2

� ��uD1/2�Ht/2 � 1*��D�1�H*t/2

� �*1�D1/2�v�2

� ��
w

��uD1/2�Ht/2 � 1*��D�1/2�w�

� ��v D1/2�Ht/2 � 1*��D�1/2�w��2


 �
w

��uD1/2�Ht/2 � 1*��D�1/2�w�2

�
w

��v D1/2�Ht/2 � 1*��D�1/2�w�2

by Cauchy–Schwarz

� �� t,u�u� � ��u� � �� t,v�v� � ��v� �

because �t,u (u) � �(u) � du�w(�t/2,u(w) � �(w))2dw
�1.

It is enough to show that

�t,u�u� � ��u� 
 e�t�t ,u
2 /2. [6]

We use Lemma 1 and consider the following:

�

�t
�t,u�u�

�t,u�u� � ��u�
� �

du �x	y ��t/2,u�x�/dx � �t/2,u� y�/dy�
2

�t,u�u� � ��u�

� �
�x	y ��t/2,u�x�/dx � �t/2,u� y�/dy�

2

�w ��t/2,u�w�/dw �
1

vol�G�
� 2

dw

. [7]

Now we relabel all the vertices so that �t/2,u(v1)/dv1 � �t/2,u(v2)/dv2
� . . . � �t/2,u(vn)/dvn. Let 
 be the largest integer such that
vol(Sr)
vol(G)/2. We note that

�
w

��t/2,u�w�

dw
�

1
vol�G�

� 2

dw � min
c

�
w

� � t/2,u�w�

dw
� c� 2

dw


 �
w

� � t/2,u�w�

dw
�

� t/2,u�r�

dr
� 2

dw.

Therefore, we have

�

�

�t
�t,u�u�

�t,u�u� � ��u�
�

�x	y ��t/2, u�x�/dx � �t/2, u�y�/dy�
2

�w ��t/2,u�w�/dw � �t/2,u�r�/dr�
2dw

� X.

We consider two functions, f
 and f�, defined by

f
�v� � ��t/2,u�v�

dv
�

�t/2,u�r�
dr

if
� t/2,u�v�

dv
�

� t/2,u�r�

dr
� 0,

0 otherwise.

We also define

f��v� � ��t/2,u�v�

dv
�

�t/2,u�r�
dr

if
� t/2,u�v�

dv
�

� t/2,u�r�

dr

 0,

0 otherwise.

Then we have

X �
�x	y ��f
�x� � f
�y��2 � �f��x� � f��y��2�

�w �f
�w�2 � f��w�2�dw

� min� � x	y�f
�x� � f
�y��2

�w f
�w�2dw
,
� x	y�f��x� � f��y��2

�w f��w�2dw

 .

Note that each of the above two sums, involving f
 and f�,
respectively, are nontrivial. Without loss of generality, we may
assume that the minimum is achieved by the sum involving f
.
Therefore, we have

X �
�x	y �f
�x� � f
�y��2

�w f
�w�2dw

�

��x	y �f
�x� � f
�y��2���x	y �f
�x� � f
�y��2�
�w f
�w�2dw��x	y �f
�x� � f
�y��2�

�

��x	y�f
�x�2 � f
�y�2��2

2��w f
�w�2dw�2 .

Let vol̃(Si) denote the minimum of vol(Si) and vol(S� i). Then we have

X �

��i�1
n�1 �f
�xi�

2 � f
�xi
1�
2����Si���2

2��w f
�w�2dw�2

�

��i�1
n�1 �f
�xi�

2 � f
�xi
1�
2�hf vol̃�Si�� 2

2� �w f
�w�2dw� 2

�

hf
2� � i�1

n f
�xi�
2� vol̃�Si� � vol̃�Si�1�� � 2

2� �w f
�w�2dw� 2

�

hf
2� � i�1

n f
�xi�
2dxi� 2

2� �w f
�w�2dw� 2 �
hf

2

2
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by using the convention that S0 � A. This implies that

�
�

�t
log�� t,u�u� � ��u�� �

hf
2

2
.

By solving the above equation, we have

�t,u�u� � ��u� 
 c1 � c2e�thf
2/2.

Because �(t, u)(u) 
 1 and limt3� �(t, u)(u) � �(u) � 0, we can
choose c1 � 0 and c2 � 1. We have completed the proof for
Theorems 1 and 2.

A Cheeger Inequality Using Heat Kernel Pagerank
The classical Cheeger inequality states that

2hG � �1 �
�G

2

2
�

hG
2

2
,

where �G denotes the minimum Cheeger ratios using a sweep
over an eigenvector associated with the spectral gap �1 of the
(normalized) Laplacian (12). Here we will give a local versions
of the Cheeger inequality, which relates the Cheeger ratio of a
subset to the heat kernel pagerank with seeds as the vertices in
the subset.

Theorem 3. In a graph G, for a subset S of vertices in G with vol(S) 

vol(G)/2 and a real value t � 0, the Cheeger ratio of S satisfies the
following:

hS

1 � ��S�
�

�t,S
2

2
�

1 � log�S �
t

,

where �t,S denotes the minimum Cheeger ratio over all sweeps of
�t/2,u for all u � S and log is the natural logarithm.

Proof: From Theorem 2, we have

�t, fS
� ��S� �

1
vol�S�

�SD�Ht � 1*���S

� �
u,v�S

	dudv

vol�S�
�uD1/2�Ht � 1*��D�1/2�u




� � u 	du� 2

vol�S�
e�t�t ,S

2 /2 
 e�t�t ,S
2 /2�S � . [8]

Next, we wish to establish a lower bound for �t,fS
(S) � � (S). We

want to show that

�2

�t2 ��log�� t, fS
�S� � ��S��� 
 0. [9]

This implies that the first derivative of �log(�t, fS
(S) � �(S)) is

decreasing. If this is true, we can use Lemma 1 to get

F�t, S� �
�

�t
��log�� t, fS

�S� � ��S���

�
� x	y �� t/2, fS

�x� /dx � � t/2, fS
�y� /dy�

2

�w � � t/2, fS
�w� /dw �

1
vol�G�

� 2

dw


 F�0, S� �
hS

1 � ��S�
.

This implies

�t, fS
�S� � ��S� � �1 � ��S��e�hSt/�1���S��. [10]

Combining this with the lower bound in Eq. 8, we have

2hS �
hS

1 � ��S�
�

kt,S
2

2
�

log�S �
t

�
1
t

as claimed.
It remains to prove Eq. 9. We consider

�
�2

�t2 ��log�� t,fS
�S� � ��S���

�
� t,fS

�I � W�2�S��� t,fS
�S� � ��S�� � �� t,fS

�I � W��S��2

�� t,fS
�S� � ��S��2 .

It suffices to show that

�t,fS
�I � W�2�S���t,fS

�S� � ��S�� � ��t,fS
�I � W��S��2 � 0.

This can be proved by using the Cauchy–Schwarz inequality as
follows:

�vol�S��2�� t,fS
�I � W�2�S��� t,fS

�S� � ��S��

� �� t,fS
�I � W��S��2�) � �� t/2,fS

�I � W�D�1/2�2 �

�� t/2,fS
� ��D�1/2�2 � �� t/2,fS

�I � W�D�1 �*t/2,f S
�2 � 0.

The proof is complete.

A Local Cheeger Inequality
In a large graph, given a seed and a target volume s of a set, the
goal is to find a good cut separating a subset of volume at most
s near the seed. It is desirable to have a local algorithm which has
a running time proportional to the target size s instead of
generically in terms of the total number of vertices in the graph.
In order to do so, we can not afford to consider the minimum
Cheeger ratio of a full sweep of a function defined on all vertices
of C. Instead, we define an s-local Cheeger ratio of a sweep f,
denoted by hf,s to be the minimum Cheeger ratio of the segment
Si with 0 
 vol(Si) 
 2s. If no such segment exists, then we set
hf,s to be 0. We note that in order to compute the local s-Cheeger
ratio, we can ignore most of the entries of f except for those with
largest values of f(u)/du with total volume not exceeding 2s. We
will prove the following local Cheeger inequality, which is
weaker than the previous Cheeger inequality by a small constant
factor.

Theorem 4. In a graph G with a subset S with volume s, with s 

vol(G)/4, for any vertex u in G, we have

�t,u�S� � ��S� 
 	 s
du

e�t�t ,u,s
2 /4,

where �t,u,s denote the minimum s-local Cheeger ratio of cuts over
a sweep of �t,u that separate sets of volume between 0 and 2s.
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Proof: For a function f: V 3 �, we define f (u, v) � f (u)/dv if u
is adjacent to v and 0 otherwise. For an integer x, 0 
 x 

vol(G)/2, we define

f�x� � max
TCV�V

�T��x

�
�u,v��T

f�u , v� .

We can extend f to all real x � k 
 r, with 0 
 r � 1, k � �


by defining f (x) � (1 � r)f (k) 
 rf (k 
 1). If x � vol(Si), where
Si consists of vertices with the i highest values of f (u)/du, then it
follows from the definition that f (x) � �u�S�i f (u). Also, f (x) is
concave in x

We consider the lazy walk W � (I 
 W)/2. Then

f W�S� �
1
2 � f�S� � �

u	v�S

f�u , v��
�

1
2 � �

u or v�S

f�u , v� � �
u and v�S

f�u , v��



1
2 � f�vol�S� � ��S �� � f�vol�S� � ��S ���

�
1
2 � f�vol�S��1 � hS�� � f�vol�S��1 � hS��� .

This can be straightforwardly extended to real x with 0 
 x 

vol(G)/2. In particular, we focus on x satisfying 0 
 x 
 2s 

vol(G)/2 and we choose ft � �t,u � �. Then

ftW�x� 

1
2

�f t�x�1 � � t,u,s�� � f t�x�1 � � t,u,s��� .

We now consider for x � �0, 2s�,

�

�t
ft�x� � � �t,u�I � W��x�

� � 2�t,u�I � W��x� � � 2f t�x� � 2f tW�x�


 � 2f t�x� � f t�x�1 � � t,u,s�� � f t�x�1 � � t,u,s�� 
 0

[11]

by the concavity of ft. Suppose gt(x) is a solution of the equation
in Eq. 11 satisfying f0(x) 
 g0(x), ft(0) � gt(0), and �/�t ft(x)�t�0 

�/�t gt(x)�t�0. Then, we have ft(x) � gt(x). It is easy to check that
gt(x) 
 e�t�t ,u,s

2 /4 
x/du using �2 
 
1 
 x 
 
1 � x 
 �x2/4.
Thus,

�t,u�S� � ��S� 
 �t,u�s� � ��s� 
 	 s
du

e�t�t ,u,s
2 /4,

as desired.
Let hs denote the minimum Cheeger ratio hs with 0 
 vol(S) 


2s. Also let �t,2s denotes the minimum of �t, u,2s over all u.
Combining Theorem 4 and Eq. 10, we have

1
2

e�2t hs 
 �t, fs
�s� � ��s� 
 	se�t�t , u,2s

2 /2.

As an immediate consequence, we have

Theorem 5. For s 
 vol(G)/4, we have

hs �
�t,2s

2

4
�

log s � 1
2 t

.

A Local Partition Algorithm
The Cheeger inequalities are closely associated with graph
partition algorithms which have applications in a wide range of
areas, in particular for the divide-and-conquer approaches (ref.
13, see also ref. 14). The spectral partition algorithm using
eigenvectors has a long history and is widely used. However it has
several disadvantages. For example, the spectral partition algo-
rithm exercises no control over the size of the small part of the
partition (although it can be used recursively to achieve a
partition of a desired proportion). In a large graph with hundreds
of thousand of nodes, it is prohibitively costly to compute
eigenvectors. For very large graphs, it is imperative to develop
local partition algorithms that can reduce the cost to be pro-
portional to the volume of the smaller separated part of the cut.

A local partition algorithm has inputs including a vertex as the
seed, the volume s of the target set, and a target value � for the
Cheeger ratio of the target set. The local Cheeger inequality in
Theorem 4 suggests the following local partition algorithm. To
find the set achieving the minimum s-local Cheeger ratio, one
can simply consider a sweep of heat kernel pageranks with
further restrictions to the cuts with smaller parts of volume
between 0 and 2s.

How fast is the above local partition algorithm? The running
time is basically dominated by the running time of computing the
heat kernel pagerank with a seed. Indeed, it is enough to find an
approximation of the pagerank with a finite support (no more
than 2s).

How good is the above local partition algorithm? The follow-
ing theorem shows that there are many seeds (with total volume
at least half of S) so that the heat kernel pagerank with such a
seed will find a partition with Cheeger ratio at most of order

hS log s. We omit the proof here.

Theorem 6. In a graph G, for a set S with volume s 
 vol(G)/4, and
Cheeger ratio hS 
 �2, there is a subset S� � S with vol(S�) �
vol(S)/2 such that for any u � S�, the sweep by using the heat kernel
pagerank �t,u, with t � [��2/4], will find a set T with s-local Cheeger
ratio at most �
log s.

We remark that another version of a local algorithm involves
restriction to a specified subset and its boundary, which is usually
called Dirichlet boundary problem. A variation of a local Chee-
ger inequality involving Dirichlet eigenvalues is examined in ref.
15. In this paper, we considered heat kernel pagerank without
any specified boundary condition.

Summary
We introduced the heat kernel pagerank for a graph and
established a local Cheeger inequality. This local Cheeger
inequality establishes the relations between the Cheeger ratio of
a set and the local Cheeger ratios over the sweeps of heat kernel
pageranks. Consequently, it leads to a local partition algorithm
using heat kernel pagerank with cost proportional to the volume
of the smaller separated part. If there is a subset of vertices with
volume s and having Cheeger ratio hS, our algorithm using heat
kernel pagerank generates a set with volume between 0 and 2s
and having Cheeger ratio at most 
hS log s. This local partition
algorithm can also be used as a subroutine for declustering
algorithms or for finding balanced partitions.
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