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The discovery and analysis of community structure in networks is a topic of considerable recent interest
within the physics community, but most methods proposed so far are unsuitable for very large networks
because of their computational cost. Here we present a hierarchical agglomeration algorithm for detecting
community structure which is faster than many competing algorithms: its running time on a network withn
vertices andm edges isOsmd log nd where d is the depth of the dendrogram describing the community
structure. Many real-world networks are sparse and hierarchical, withm,n andd, log n, in which case our
algorithm runs in essentially linear time,Osn log2 nd. As an example of the application of this algorithm we use
it to analyze a network of items for sale on the web site of a large on-line retailer, items in the network being
linked if they are frequently purchased by the same buyer. The network has more than 400 000 vertices and
23106 edges. We show that our algorithm can extract meaningful communities from this network, revealing
large-scale patterns present in the purchasing habits of customers.
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I. INTRODUCTION

Many systems of current interest to the scientific commu-
nity can usefully be represented as networks[1–4]. Ex-
amples include the internet[5] and the World Wide Web
[6,7], social networks[8], citation networks[9,10], food
webs[11], and biochemical networks[12,13]. Each of these
networks consists of a set of nodes orverticesrepresenting,
for instance, computers or routers on the internet or people in
a social network, connected together by links oredges, rep-
resenting data connections between computers, friendships
between people, and so forth.

One network feature that has been emphasized in recent
work is community structure, the gathering of vertices into
groups such that there is a higher density of edges within
groups than between them[14]. The problem of detecting
such communities within networks has been well studied.
Early approaches such as the Kernighan-Lin algorithm[15],
spectral partitioning[16,17], or hierarchical clustering[18]
work well for specific types of problems(particularly graph
bisection or problems with well defined vertex similarity
measures), but perform poorly in more general cases[19].

To combat this problem a number of new algorithms have
been proposed in recent years. Girvan and Newman[20,21]
proposed a divisive algorithm that uses edge betweenness as
a metric to identify the boundaries of communities. This al-
gorithm has been applied successfully to a variety of net-
works, including networks of email messages, human and
animal social networks, networks of collaborations between
scientists and musicians, metabolic networks, and gene net-
works [20,22–30]. However, as noted in[21], the algorithm
makes heavy demands on computational resources, running
in Osm2nd time on an arbitrary network withm edges andn
vertices, orOsn3d time on a sparse graph(one in whichm
,n, which covers most real-world networks of interest).
This restricts the algorithm’s use to networks of at most a

few thousand vertices with current hardware.
More recently a number of faster algorithms have been

proposed[31–33]. In [32], one of us proposed an algorithm
based on the greedy optimization of the quantity known as
modularity [21]. This method appears to work well both in
contrived test cases and in real-world situations, and is sub-
stantially faster than the algorithm of Girvan and Newman. A
naive implementation runs in timeO(sm+ndn), or Osn2d on a
sparse graph.

Here we propose a different algorithm that performs the
same greedy optimization as the algorithm of[32] and there-
fore gives identical results for the communities found. How-
ever, by exploiting some shortcuts in the optimization prob-
lem and using more sophisticated data structures, it runs far
more quickly, in timeOsmd log nd whered is the depth of
the “dendrogram” describing the network’s community
structure. Many real-world networks are sparse, so thatm
,n; and moreover, for networks that have a hierarchical
structure with communities at many scales,d, log n. For
such networks our algorithm has essentially linear running
time, Osn log2 nd.

This is not merely a technical advance but has substantial
practical implications, bringing within reach the analysis of
extremely large networks. Networks of 107 vertices or more
should be possible in reasonable run times. As an example,
we give results from the application of the algorithm to a
recommender network of books from the on-line bookseller
Amazon.com, which has more than 400 000 vertices and
23106 edges.

II. THE ALGORITHM

Modularity [21] is a property of a network and a specific
proposed division of that network into communities. It mea-
sures when the division is a good one, in the sense that there
are many edges within communities and only a few between
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them. LetAvw be an element of the adjacency matrix of the
network; thus

Avw = H1 if verticesv andw are connected,

0 otherwise,
J s1d

and suppose the vertices are divided into communities such
that vertexv belongs to communitycv. Then the fraction of
edges that fall within communities, i.e., that connect vertices
that both lie in the same community, is

ovw
Avwdscv,cwd

ovw
Avw

=
1

2m
o
vw

Avwdscv,cwd, s2d

where thed function dsi , jd is 1 if i = j and 0 otherwise, and
m= 1

2ovwAvw is the number of edges in the graph. This quan-
tity will be large for good divisions of the network, in the
sense of having many within-community edges, but it is not,
on its own, a good measure of community structure since it
takes its largest value of 1 in the trivial case where all verti-
ces belong to a single community. However, if we subtract
from it the expected value of the same quantity in the case of
a randomized network, we do get a useful measure.

Thedegree kv of a vertexv is defined to be the number of
edges incident upon it:

kv = o
w

Avw. s3d

The probability of an edge existing between verticesv andw
if connections are made at random but respecting vertex de-
grees iskvkw/2m. We define the modularityQ to be

Q =
1

2m
o
vw
FAvw −

kvkw

2m
Gdscv,cwd. s4d

If the fraction of within-community edges is no different
from what we would expect for the randomized network,
then this quantity will be zero. Nonzero values represent de-
viations from randomness, and in practice it is found that a
value above about 0.3 is a good indicator of significant com-
munity structure in a network.

If high values of the modularity correspond to good divi-
sions of a network into communities, then one should be able
to find such good divisions by searching through the possible
candidates for ones with high modularity. While finding the
global maximum modularity over all possible divisions
seems hard in general, reasonably good solutions can be
found with approximate optimization techniques. The algo-
rithm proposed in[32] uses a greedy optimization in which,
starting with each vertex being the sole member of a com-
munity of one, we repeatedly join together the two commu-
nities whose amalgamation produces the largest increase in
Q. For a network ofn vertices, aftern−1 such joins we are
left with a single community and the algorithm stops. The
entire process can be represented as a tree whose leaves are
the vertices of the original network and whose internal nodes
correspond to the joins. Thisdendrogramrepresents a hier-
archical decomposition of the network into communities at
all levels.

The most straightforward implementation of this idea
(and the only one considered in[32]) involves storing the
adjacency matrix of the graph as an array of integers and
repeatedly merging pairs of rows and columns as the corre-
sponding communities are merged. For the case of the sparse
graphs that are of primary interest in the field, however, this
approach wastes a good deal of time and memory space on
the storage and merging of matrix elements with value 0,
which is the vast majority of the adjacency matrix. The al-
gorithm proposed in this paper achieves speed(and memory
efficiency) by eliminating these needless operations.

To simplify the description of our algorithm let us define
the following two quantities:

eij =
1

2m
o
vw

Avwdscv,iddscw, jd, s5d

which is the fraction of edges that join vertices in community
i to vertices in communityj , and

ai =
1

2m
o
v

kvdscv,id, s6d

which is the fraction of ends of edges that are attached to
vertices in community i. Then, writing dscv ,cwd
=oidscv , iddscw, id, we have, from Eq.(4),

Q =
1

2m
o
vw
FAvw −

kvkw

2m
Go

i

dscv,iddscw,id

= o
i
F 1

2m
o
vw

Avwdscv,iddscw,id

−
1

2m
o
v

kvdscv,id
1

2m
o
w

kwdscw,idG
= o

i

seii − ai
2d. s7d

The operation of the algorithm involves finding the
changes inQ that would result from the amalgamation of
each pair of communities, choosing the largest of them, and
performing the corresponding amalgamation. One way to en-
visage(and implement) this process is to think of the net-
work as a multigraph, in which a whole community is rep-
resented by a vertex, bundles of edges connect one vertex to
another, and edges internal to communities are represented
by self-edges. The adjacency matrix of this multigraph has
elementsAij8 =2meij , and the joining of two communitiesi
and j corresponds to replacing theith and j th rows and col-
umns by their sum. In the algorithm of[32] this operation is
done explicitly on the entire matrix, but if the adjacency
matrix is sparse(which we expect in the early stages of the
process) the operation can be carried out more efficiently
using data structures for sparse matrices. Unfortunately, cal-
culating DQij and finding the pairi , j with the largestDQij
then becomes time consuming.

In our algorithm, rather than maintaining the adjacency
matrix and calculatingDQij , we instead maintain and update
a matrix of value ofDQij . Since joining two communities
with no edge between them can never produce an increase in
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Q, we need only storeDQij for those pairsi , j that are joined
by one or more edges. Since this matrix has the same support
as the adjacency matrix, it will be similarly sparse, so we can
again represent it with efficient data structures. In addition,
we make use of an efficient data structure to keep track of the
largestDQij . These improvements result in a considerable
saving of both memory and time.

In total, we maintain three data structures.
(1) A sparse matrix containingDQij for each pairi , j of

communities with at least one edge between them. We store
each row of the matrix both as a balanced binary tree[so that
elements can be found or inserted inOslog nd time] and as a
max-heap(so that the largest element can be found in con-
stant time).

(2) A max-heapH containing the largest element of each
row of the matrixDQij along with the labelsi , j of the cor-
responding pair of communities.

(3) An ordinary vector array with elementsai.
As described above we start off with each vertex being

the sole member of a community of one, in which caseeij
=1/2m if i and j are connected and zero otherwise, andai
=ki /2m. Thus we initially set

DQij = H1/2m− kikj/s2md2 if i, j are connected,

0 otherwise,
J s8d

and

ai =
ki

2m
s9d

for eachi. (This assumes the graph is unweighted; weighted
graphs are a simple generalization[34].)

Our algorithm can now be defined as follows.
(1) Calculate the initial values ofDQij andai according to

Eq. (8) and (9), and populate the max-heap with the largest
element of each row of the matrixDQ.

(2) Select the largestDQij from H, join the corresponding
communities, update the matrixDQ, the heapH, andai (as
described below), and incrementQ by DQij .

(3) Repeat step 2 until only one community remains.
Our data structures allow us to carry out the updates in

step 2 quickly. First, note that we need only adjust a few of
the elements ofDQ. If we join communitiesi and j , labeling
the combined communityj , say, we need only update thej th
row and column, and remove theith row and column alto-
gether. The update rules are as follows. If communityk is
connected to bothi and j , then

DQjk8 = DQik + DQjk. s10ad

If k is connected toi but not to j , then

DQjk8 = DQik − 2ajak. s10bd

If k is connected toj but not toi, then

DQjk8 = DQjk − 2aiak. s10cd

Note that these equations imply thatQ has a single peak over
the course of the algorithm, since after the largestDQ be-
comes negative all theDQ can only decrease.

To analyze how long the algorithm takes using our data
structures, let us denote the degrees ofi and j in the reduced
graph—i.e., the numbers of neighboring communities—asui u
and u j u, respectively. The first operation in a step of the algo-
rithm is to update thej th row. To implement Eq.(10a), we
insert the elements of theith row into thej th row, summing
them wherever an element exists in both columns. Since we
store the rows as balanced binary trees, each of theseui u
insertions takesOslogu j udøOslog nd time. We then update
the other elements of thej th row, of which there are at most
ui u+ u j u, according to Eqs.(10b) and(10c). In thekth row, we
update a single element, takingOslogukudøOslog nd time,
and there are at mostui u+ u j u values ofk for which we have to
do this. All of this thus takesOssui u+ u j udlog nd time.

We also have to update the max-heaps for each row and
the overall max-heapH. Reforming the max-heap corre-
sponding to thej th row can be done inOsu j ud time [35].
Updating the max-heap for thekth row by inserting, raising,
or lowering DQkj takesOslogukudøOslog nd time. Since we
have changed the maximum element on at mostui u+ u j u rows,
we need to do at mostui u+ u j u updates ofH, each of which
takesOslog nd time, for a total ofO(sui u+ u j udlog n).

Finally, the updateaj8=aj +ai (andai =0) is trivial and can
be done in constant time.

Since each join takesO(sui u+ u j udlog n) time, the total run-
ning time is at mostOslog nd times the sum over all nodes of
the dendrogram of the degrees of the corresponding commu-
nities. Let us make the worst-case assumption that the degree
of a community is the sum of the degrees of all the vertices
in the original network comprising it. In that case, each ver-
tex of the original network contributes its degree to all of the
communities it is a part of, along the path in the dendrogram
from it to the root. If the dendrogram has depthd, there are
at mostd nodes in this path, and since the total degree of all
the vertices is 2m, we have a running time ofOsmd log nd as
stated.

We note that, if the dendrogram is unbalanced, some time
savings can be gained by inserting the sparser row into the
less sparse one. In addition, we have found that in practical
situations it is usually unnecessary to maintain the separate
max-heaps for each row. These heaps are used to find the
largest element in a row quickly, but their maintenance takes
a moderate amount of effort and this effort is wasted if the
largest element in a row does not change when two rows are
amalgamated, which turns out often to be the case. Thus we
find that the following simpler implementation works quite
well in realistic situations: if the largest element of thekth
row wasDQki or DQkj and is now reduced by Eq.(10b) or
(10c), we simply scan thekth row to find the new largest
element. Although the worst-case running time of this ap-
proach has an additional factor ofn, the average-case run-
ning time is often better than that of the more sophisticated
algorithm. It should be noted that the dendrograms generated
by these two versions of our algorithm will differ slightly as
a result of the differences in how ties are broken for the
maximum element in a row. However, we find that in prac-
tice these differences do not cause significant deviations in
the modularity, the community size distribution, or the com-
position of the largest communities.
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III. AMAZON.COM PURCHASING NETWORK

The output of the algorithm described above is precisely
the same as that of the slower hierarchical algorithm of[32].
The much improved speed of our algorithm, however, makes
possible studies of very large networks for which previous
methods were too slow to produce useful results. Here we
give one example, the analysis of a copurchasing or “recom-
mender” network from the online vendor Amazon.com.
Amazon sells a variety of products, particularly books and
music, and as part of their web sales operation they list for
each itemA the ten other items most frequently purchased by
buyers ofA. This information can be represented as a di-
rected network in which vertices represent items and there is
an edge from itemA to another itemB if B was frequently
purchased by buyers ofA. In our study we have ignored the
directed nature of the network(as is common in community
structure calculations), assuming any link between two
items, regardless of direction, to be an indication of their
similarity. The network we study consists of items listed on

the Amazon web site in August 2003. We concentrate on the
largest component of the network, which has 409 687 items
and 2 464 630 edges.

The dendrogram for this calculation is of course too big to
draw, but Fig. 1 illustrates the modularity over the course of
the algorithm as vertices are joined into larger and larger
groups. The maximum value isQ=0.745, which is high as
calculations of this type go[21,32] and indicates strong com-
munity structure in the network. The maximum occurs when
there are 1684 communities with a mean size of 243 items
each. Figure 2 gives a visualization of the community struc-
ture, including the major communities, smaller “satellite”
communities connected to them, and “bridge” communities
that connect two major communities with each other.

Looking at the largest communities in the network, we
find that they tend to consist of items(books, music) in simi-

TABLE I. The ten largest communities in the Amazon.com network, which account for 87% of the vertices in the network.

Rank Size Description

1 114538 General interest: politics; art/literature; general fiction; human nature; technical books; how things,
people, computers, societies work, etc.

2 92276 The arts: videos, books, DVDs about the creative and performing arts

3 78661 Hobbies and interests I: self-help; self-education; popular science fiction, popular fantasy; leisure; etc.

4 54582 Hobbies and interests II: adventure books; video games/comics; some sports; some humor; some classic
fiction; some western religious material; etc.

5 9872 Classical music and related items

6 1904 Children’s videos, movies, music, and books

7 1493 Church/religious music; African-descent cultural books; homoerotic imagery

8 1101 Pop horror; mystery/adventure fiction

9 1083 Jazz; orchestral music; easy listening

10 947 Engineering; practical fashion

FIG. 1. The modularityQ over the course of the algorithm(the
x axis shows the number of joins). Its maximum value isQ
=0.745, where the partition consists of 1684 communities.

FIG. 2. A visualization of the community structure at maximum
modularity. Note that some major communities have a large number
of “satellite” communities connected only to them(top, lower left,
lower right). Also, some pairs of major communities have sets of
smaller communities that act as “bridges” between them(e.g., be-
tween the lower left and lower right, near the center).
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lar genres or on similar topics. In Table I, we give informal
descriptions of the ten largest communities, which account
for about 87% of the entire network. The remainder is gen-
erally divided into small, densely connected communities
that represent highly specific copurchasing habits, e.g., major
works of science fiction(162 items), music by John Cougar
Mellencamp(17 items), and books about(mostly female)
spies in the American Civil War(13 items). It is worth noting
that because few real-world networks have community meta-
data associated with them to which we may compare the
inferred communities, this type of manual check of the ve-
racity and coherence of the algorithm’s output is often nec-
essary.

One interesting property recently noted in some networks
[30,32] is that when partitioned at the point of maximum
modularity, the distribution of community sizess appears to
have a power-law formPssd,s−a for some constanta, at
least over some significant range. The Amazon copurchasing
network also seems to exhibit this property, as we show in
Fig. 3, with an exponenta.2. It is unclear why such a
distribution should arise, but we speculate that it could be a
result either of the sociology of the network(a power-law
distribution in the number of people interested in various
topics) or of the dynamics of the community structure algo-
rithm. We propose this as a direction for further research.

IV. CONCLUSIONS

Here, we have described an algorithm for inferring com-
munity structure from network topology which works by
greedily optimizing the modularity. Our algorithm runs in
time Osmd log nd for a network withn vertices andm edges
whered is the depth of the dendrogram. For networks that
are hierarchical, in the sense that there are communities at
many scales and the dendrogram is roughly balanced, we
haved, log n. If the network is also sparse,m,n, then the
running time is essentially linear,Osn log2 nd. This is consid-
erably faster than most previous general algorithms, and al-
lows us to extend community structure analysis to networks
that had been considered too large to be tractable. We have
demonstrated our algorithm with an application to a large
network of copurchasing data from the on-line retailer Ama-

zon.com. Our algorithm discovers clear communities within
this network that correspond to specific topics or genres of
books or music, indicating that the copurchasing tendencies
of Amazon customers are strongly correlated with subject
matter. Our algorithm should allow researchers to analyze
even larger networks with millions of vertices and tens of
millions of edges using current computing resources, and we
look forward to seeing such applications.
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