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We consider the problem of constructing facilities such as hospitals, airports, or malls in a country with a
nonuniform population density, such that the average distance from a person’s home to the nearest facility is
minimized. We review some previous approximate treatments of this problem that indicate that the optimal
distribution of facilities should have a density that increases with population density, but does so slower than
linearly, as the two-thirds power. We confirm this result numerically for the particular case of the United States
with recent population data using two independent methods, one a straightforward regression analysis, the
other based on density-dependent map projections. We also consider strategies for linking the facilities to form
a spatial network, such as a network of flights between airports, so that the combined cost of maintenance of
and travel on the network is minimized. We show specific examples of such optimal networks for the case of
the United States.
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I. INTRODUCTION

Suppose we are given the population density ��r� of a
country or province, by which we mean the number of
people per unit area as a function of geographical position r.
And suppose we are charged with choosing the sites of p
facilities, such as hospitals, post offices, supermarkets, gas
stations, or schools, so that the mean distance to the nearest
facility averaged over the population is minimized. In most
countries, population density is highly nonuniform, in which
case a uniform distribution of facilities would be a poor
choice: it benefits us little to build a lot of facilities in
sparsely populated areas. A more sensible choice would be to
distribute facilities in proportion to population density, so
that a region with twice as many people has twice as many
facilities. But this distribution too turns out to be suboptimal,
because we also gain little by having closely spaced facilities
in the highly populated areas—when facilities are closely
spaced the typical person is not much farther from their
second-closest facility than from their closest, so one or the
other can often be removed with little penalty and substantial
savings.

Although an exact analytic solution to this optimal loca-
tion problem has yet to be found, a variety of approximate
treatments have been given, which suggest that the ideal so-
lution lies somewhere between these two extremes, with the
density of facilities increasing as the two-thirds power of
population density, a prediction that we verify here using
simulations and visualizations based on cartograms, with ac-
tual population data for the United States. In addition, one is
often interested in connections between facilities, such as
flights between airports �1� or transmission lines between
power stations �2�. In the second half of this paper, we gen-
erate networks based on a simple model that optimizes net-
work topology with respect to the cost of maintaining and
traveling across the network. Depending on the benefit func-
tion chosen, we find structures ranging from completely de-
centralized networks to hub-and-spoke networks.

II. OPTIMAL DISTRIBUTION OF FACILITIES

We wish to distribute p facilities over a two-dimensional
area A such that the objective function

f�r1, . . . ,rp� = �
A

��r� min
i��1¯p�

�r − ri�d2r �1�

is minimized. Here �r1 , . . . ,rp� is the set of positions of the
facilities and ��r� is the population density within the region
A of interest. This objective function is proportional to the
mean distance that a person will have to travel to reach their
nearest facility.

Seemingly simple, this so-called p-median problem has
been shown to be NP-hard �3�, so in practice most studies
rely either on approximate numerical optimization or ap-
proximate analytic treatments �4�. A number of different ap-
proaches have been used �5–9�; the calculation given here is
essentially that of Gusein-Zade �10�.

Our p facilities naturally partition the area A into Voronoi
cells. �The Voronoi cell Vi for the ith facility is defined as the
set of points that are closer to ri than to any other facility.�
Let us define s�r� to be the area of the Voronoi cell to which
the point r belongs. In two dimensions, a person living at
point r will on average be a distance g�s�r��1/2 from the
nearest facility, where g is a geometric factor of order 1,
whose exact value depends on the shape of the Voronoi cell,
but which will in any case drop out of the final result. The
distance to the nearest facility averaged over all members of
the population is proportional to

f = g�
A

��r��s�r��1/2d2r , �2�

where we are making an approximation by neglecting varia-
tion of the geometric factor g between cells.
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The value of s�r� is constrained by the requirement that
there be p facilities in total. Noting that s�r� is constant and
equal to s�ri� within Voronoi cell Vi, we see that the integral
of �s�r��−1 over Vi is

�
Vi

�s�r��−1d2r = �s�ri��−1�
Vi

d2r = 1. �3�

Summing over all Vi, we can then express the constraint on
the number of facilities in the form

�
A

�s�r��−1d2r = p . �4�

Subject to this constraint, optimization of the mean dis-
tance f above gives

�

�s�r�	g�
A

��r��s�r��1/2d2r − �
p − �
A

�s�r��−1d2r�� = 0,

�5�

where � is a Lagrange multiplier. Performing the functional
derivatives and rearranging for s�r�, we find s�r�
= �2� / �g��r���2/3. The Lagrange multiplier can be evaluated
by substituting into Eq. �4�, and we arrive at the result

D�r� =
1

s�r�
= p

���r��2/3

� ���r��2/3d2r

, �6�

where we have introduced the notation D�r�= �s�r��−1 for the
density of the facilities.

Thus, if facilities are distributed optimally for the given
population distribution, their density should increase with
population density but it should do so slower than linearly, as
a power law with exponent 2

3 �29�. In addition to the argu-
ment given here, which roughly follows Ref. �10�, this result
has also been derived previously by a number of other meth-
ods �5–9�, although all are approximate.

Equation �6� places most facilities in the densely popu-
lated areas where most people live while still providing rea-
sonable service to those in sparsely populated areas where a
strictly population-proportional allocation might leave inhab-
itants with little or nothing. Its derivation makes two ap-
proximations: it assumes that the geometric factor g is the
same for all Voronoi cells and that s�r� is a continuous func-
tion. Neither assumption is strictly true, but we expect them
to be approximately valid if � varies little over the typical
size of a Voronoi cell. As a test of these assumptions, we
have optimized numerically the distribution of p=5000 fa-
cilities over the lower 48 states of the United States �Fig. 1�
using population data from the most recent U.S. Census �11�,
which counts the number of residents within more than 8
million blocks across the study region. To create a continu-
ous density function �, we convolved these data with a nor-
malized Gaussian distribution of width 20 km �30�. The fa-
cility locations were then determined by optimizing the full
p-median objective function �1� by simulated annealing �12�.

The relation D��2/3 can be tested as follows. First, we
determine the Voronoi cell around each facility. Then we

calculate D�r� as the inverse of the area of the corresponding
cell and � as the number of people living in the cell divided
by its area. Figure 2 shows a scatter plot of the resulting data
on doubly logarithmic scales. If the anticipated 2

3-power re-
lation holds, we expect the data to fall along a line of slope
2
3 . And indeed a least-squares fit �solid line in the figure�
yields a slope 0.66 with r2=0.94.

Some statistical concerns might be raised about this
method. First, we used the Voronoi cell area to calculate both
D and �, so the measurements of x and y values in the plot
are not independent, and one might argue that a positive
slope could thus be a result of artificial correlations between
the values rather than a real result �13�. Second, it is known
that estimating the exponent of a power law such as Eq. �6�
from a log-log plot can introduce systematic biases �14,15�.
In the next section, we introduce an entirely different test of
Eq. �6� that, in addition to being of interest in its own right,
suffers from neither of these problems.

III. DENSITY-EQUALIZING PROJECTIONS

If we neglect finite-size effects, it is straightforward to
demonstrate that optimally located facilities in a uniformly

FIG. 1. �Color online� Facility locations determined by simu-
lated annealing and the corresponding Voronoi tessellation for p
=5000 facilities located in the lower 48 United States, based on
population data from the U.S. Census for the year 2000.

FIG. 2. �Color online� Facility density D from Fig. 1 vs popu-
lation density � on a log-log plot. A least-squares linear fit to the
data gives a slope of 0.66 �solid line, r2=0.94�.
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populated space lie on the vertices of a regular triangular
lattice �16�. It has been conjectured that for a non uniform
population there is a general class of map projections that
will transform the pattern of facilities to a similarly regular
structure �17�. The obvious candidate projections are popu-
lation density equalizing maps or cartograms, i.e., maps in
which the sizes of geographic regions are proportional to the
populations of those regions �18–21�. Densely populated re-
gions appear larger on a cartogram than on an equal-area
map such as Fig. 1, and the opposite is true for sparsely
populated regions. Since most facilities are located where the
population density is high, a cartogram projection will effec-
tively reduce the facility density in populated areas and in-
crease it where the population density is low. Therefore, one
might expect that a cartogram leads to a more uniform facil-
ity density than that shown in Fig. 1. And indeed some au-
thors have used population density equalizing projections as
the basis for facility location methods �22,23�.

In Fig. 3�a�, we show the facilities of Fig. 1 on a popula-
tion density equalizing cartogram created using the
diffusion-based technique of �24�. Although the population
density is now equal everywhere, the facility density is ob-
viously far from uniform. A comparison between Figs. 1 and
3�a� reveals that we have overshot the mark since the facili-
ties are now concentrated in areas where there are few in
actual space.

Equation �6� makes clear what is wrong with this ap-
proach. Since D grows slower than linearly with �, a projec-
tion that equalizes � will necessarily overcorrect the density
of facilities. On the other hand, based on our earlier result,
we would expect a projection equalizing �2/3 instead of � to
spread out the facilities approximately uniformly. Hence, one
way to determine the actual exponent for the density of fa-
cilities is to create cartograms that equalize �x, x�0, and
find the value of x that minimizes the variation of the
Voronoi cell sizes on the cartogram. This approach does not
suffer from the shortcomings of our previous method based
on the doubly logarithmic plot in Fig. 2, since we neither use
the Voronoi cells to calculate the population density nor take
logarithms. One might argue that the Voronoi cells on the
cartogram are not equal to the projections of the Voronoi
cells in actual space, which is true—the cells generally will
not even remain polygons under the cartogram transforma-
tion. The difference, however, is small if the density does not
vary much between neighboring facilities.

In Fig. 4, we show the measured coefficient of variation
�i.e., the ratio of the standard deviation to the mean� for
Voronoi cell sizes on �x cartograms as a function of the ex-

ponent x �solid curve�. As the figure shows, the minimum is
indeed attained at or close to the predicted value of x= 2

3 .
Figure 3�b� shows the corresponding cartogram for this ex-
ponent. This projection finds a considerably better compro-
mise between regions of high and low population density
than either Fig. 1 or Fig. 3�a�.

For comparison, we have also made the same measure-
ment for 5000 points distributed randomly in proportion to
population. Since the density of these points is by definition
equal to �, we expect the minimum standard deviation of the
cell areas to occur on a cartogram with x=1. Our numerical
results for this case �dashed curve in Fig. 4� agree well with
this prediction. Comparing the solid and the dashed curves in
the plot, we see that not only the positions of the minima
differ, but also the minimal values themselves. The lower
standard deviation for the p-median distribution indicates
that optimally located facilities are not randomly distributed
with a density ��2/3. Instead, the optimally located facilities
occupy space in a relatively regular fashion reminiscent of
the triangular lattice of the uniform population case �16,25�.
We can confirm this observation by measuring the interior
angles formed by the edges of the Voronoi cells. The Voronoi
cells of a triangular lattice are regular hexagons and hence all
the interior angles are 120°. Figure 5 shows a histogram of
the angles for the cells in the equal-area projection of Fig. 1.
Since the population is nonuniform, the cells are not exactly
regular hexagons, but, as Fig. 5 shows, the angles are none-

FIG. 3. �Color online� Near-
optimal facility location on �a� a
cartogram equalizing the popula-
tion density � and �b� a cartogram
equalizing �2/3.

FIG. 4. �Color online� The coefficient of variation �i.e., the ratio
of the standard deviation to the mean� for Voronoi cell areas as they
appear on a cartogram, against the exponent x of the underlying
density �x for a p-median �solid curve� and a random population-
proportional distribution �dashed curve�. Inset: An expanded view
of the minimum for the p-median distribution.
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theless narrowly distributed around 120°—more so than for
the cells of the random distribution.

IV. OPTIMAL NETWORKS OF FACILITIES

In many cases of practical interest, finding the optimal
location of facilities is only half the problem. Often facilities
are interconnected to form networks, such as airports con-
nected by flights or warehouses connected by truck deliver-
ies. In these cases, one would also like to find the best way to
connect the facilities so as to optimize the performance of the
system as a whole.

Consider then a situation in which our facilities form the
nodes or vertices of a network and connections between
them form the edges. The efficiency of this network, as we
will consider it here, depends on two factors. On the one
hand, the smaller the sum of the lengths of all edges, the
cheaper the network is to construct and maintain. On the
other hand, the shorter the distances through the network
between vertices, the faster the network can perform its in-
tended function �e.g., transportation of passengers between
nodes or distribution of mail or cargo�. These two objectives
generally oppose each other: a network with few and short
connections will not provide many direct links between dis-
tant points, and paths through the network will tend to be
circuitous, while a network with a large number of direct
links is usually expensive to build and operate. The optimal
solution lies somewhere between these extremes.

Let us define lij to be the shortest geographic distance
between two vertices i and j measured along the edges in the
network. If there is no path between i and j, we formally set
lij =�. Introducing the adjacency matrix A with elements
Aij =1 if there is an edge between i and j and Aij =0 other-
wise, we can write the total length of all edges as

T = 
i	j

Aijlij . �7�

We assume this quantity to be proportional to the cost of
maintaining the network. Clearly this assumption is only ap-
proximately correct; networked systems in the real world
will have many factors affecting their maintenance costs that
are not accounted for here. It is, however, the obvious first
assumption to make and, as we will see, can provide us with
good insight about network structure.

The typical cost of shipping a commodity or traveling
through the network depends on the distances lij as well as
the amount of traffic wij �e.g., weight of cargo, number of
passengers, etc.� that flows between vertices i and j �26�. In
a spirit similar to our assumption about maintenance costs,
we assume that the total travel cost is proportional to

Z = 
i	j

wijlij . �8�

We assume that wij is proportional to the product of popula-
tions in the Voronoi cells Vi and Vj around i and j, so that

wij = �
Vi

��r�d2r�
Vj

��r��d2r� �9�

in appropriate units. And the total cost of running the net-
work is proportional to the sum T+
Z with 
�0 a constant
that measures the relative importance of the two terms. Then
the optimal network is the one minimizing this sum �27,28�.

Using again the contiguous 48 states of the United States
as an example, we have first determined the optimal place-
ment of p=200 facilities, which we then try to connect to-
gether optimally. The number of edges in the network de-
pends on the parameter 
. If 
→0, the cost of travel 
Z
vanishes and the optimal network is the one that simply
minimizes the total length of edges. That is, it is the mini-
mum spanning tree, with exactly p−1 edges between the p
vertices. Conversely, if 
→�, then Z dominates the optimi-
zation, regardless of the cost T of maintaining the network,
so that the optimum is a fully connected network or clique
with all 1

2 p�p−1� possible edges present. For intermediate
values of 
, finding the optimal network is a nontrivial com-
binatorial optimization problem. The number of edges in-
creases with 
, but it is difficult to determine the exact set of
edges optimizing the cost. Nevertheless, we can derive good,
though usually not perfect, solutions using again the method
of simulated annealing �31�.

There is, however, another complicating factor. In Eq. �8�,
we assumed that travel costs are proportional to geometric
distances between vertices, which is a plausible starting
point. In a road network, for example, the quickest and
cheapest route is usually not very different from the shortest
route measured in kilometers. But in other networks, travel
costs can also depend on the number of legs in a journey. In
an airline network, for instance, passengers often spend a lot
of time waiting for connecting flights, so that they care both
about the total distance they travel and the number of stop-
overs they have to make. Similarly, the total time required
for an Internet packet to reach its destination depends on two
factors, the propagation delay proportional to the physical
distance between vertices �computers and routers� and the
store and forward delays introduced by the routers, which
grow with the number of intermediate vertices.

To account for such situations, we generalize our defini-
tion of the length of an edge and assign to each edge an
effective length

FIG. 5. �Color online� The distribution of angles in the Voronoi
diagram for a p-median and a random population-proportional dis-
tribution of facilities.
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l̃i j = �1 − ��lij + � �10�

with 0���1. The parameter � determines the user’s pref-
erence for measuring distance in terms of kilometers or legs.
Now we define the effective distance between two �not nec-
essarily adjacent� vertices to be the sum of the effective
lengths of all edges along a path between them, minimized
over all paths. The travel cost is then proportional to the sum
of all effective path lengths

Z = 
i	j

wijl̃ij , �11�

and the optimal network for given 
 and � is again the one
that minimizes the total cost T+
Z. Since the second term in
Eq. �10� is dimensionless, we normalize the length appearing
in the first term by setting the average “crow flies” distance
between a vertex and its nearest neighbor equal to 1.

What is a realistic value for 
? We can make an order of
magnitude estimate as follows. The sum in Eq. �7� has m
nonzero terms, where m is the number of edges in the net-
work. Most real networks are sparse, with m=O�p�. Further-
more, edges are of typical length 1 in our length scale, so
that T=O�p�, with p�200 in the examples studied here. The
sum in Eq. �11�, on the other hand, contains 1

2 p�p−1�
=O�p2� nonzero terms. If P is the total population, the
weights wij have typical value �P / p�2. Thus Z=O�P2�
�1017 for the U.S. with a current population of P�2.8
�108. Assuming that our investments in maintenance and
travel costs are of the same order of magnitude and setting
T�
Z then leads to an estimate for 
 of order 10−15or 10−14.

In Fig. 6, we show the results for 
=10−14. When �=0,
passengers �or cargo shippers� care only about total kilome-
ters traveled and the optimal network strongly resembles a
network of roads, such as the U.S. interstate network. As �
increases, the number of legs in a journey starts playing a
more important role and the approximate symmetry between
the vertices is broken as the network begins to form hubs.

Around �=0.5, we see networks emerging that constitute a
compromise between the convenience of direct local connec-
tions and the efficiency of hubs, while by �=0.8 the network
is dominated by a few large hubs in Philadelphia, Columbus,
Chicago, Kansas City, and Atlanta that handle the bulk of the
traffic. On the highly populated California coast, two smaller
hubs around San Francisco and Los Angeles are visible. In
the extreme case �=1, where the user cares only about num-
ber of legs and not about distance at all, the network is domi-
nated by a single central hub in Cincinnati, with a few
smaller local hubs in other locations such as Los Angeles.

V. CONCLUSIONS

We have studied the problem of optimal facility location,
also called the p-median problem, which consists of choos-
ing positions for p facilities in geographic space such that the
mean distance between a member of the population and the
nearest facility is minimized. Analytic arguments indicate
that the optimal density of facilities should be proportional to
the population density to the two-thirds power. We have con-
firmed this relation by solving the p-median problem numeri-
cally and projecting the facility locations on density-
equalizing maps. We have also considered the design of
optimal networks to connect our facilities together. Given
optimally located facilities, we have searched numerically
for the network configuration that minimizes the sum of
maintenance and travel costs. A simple two-parameter model
allows us to take different user preferences into account. The
model gives us intuition about a number of situations of
practical interest, such as the design of transportation net-
works, parcel delivery services, and the Internet backbone.
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FIG. 6. �Color online� Optimal
networks for the population distri-
bution of the United States with
p=200 vertices and 
=10−14 for
different values of �.
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