
Fast Approximation of Betweenness Centrality
through Sampling

Matteo Riondato
Dept. of Computer Science

Brown University
Providence, RI, USA

matteo@cs.brown.edu

Evgenios M. Kornaropoulos
Dept. of Computer Science

Brown University
Providence, RI, USA

evgenios@cs.brown.edu

ABSTRACT
Betweenness centrality is a fundamental measure in social network
analysis, expressing the importance or influence of individual ver-
tices in a network in terms of the fraction of shortest paths that
pass through them. Exact computation in large networks is pro-
hibitively expensive and fast approximation algorithms are required
in these cases. We present two efficient randomized algorithms
for betweenness estimation. The algorithms are based on random
sampling of shortest paths and offer probabilistic guarantees on the
quality of the approximation. The first algorithm estimates the be-
tweenness of all vertices: all approximated values are within an ad-
ditive factor ε from the real values, with probability at least 1 − δ.
The second algorithm focuses on the top-K vertices with highest
betweenness and approximate their betweenness within a multi-
plicative factor ε, with probability at least 1 − δ. This is the first
algorithm that can compute such approximation for the top-K ver-
tices. We use results from the VC-dimension theory to develop
bounds to the sample size needed to achieve the desired approxi-
mations. By proving upper and lower bounds to the VC-dimension
of a range set associated with the problem at hand, we obtain a sam-
ple size that is independent from the number of vertices in the net-
work and only depends on a characteristic quantity that we call the
vertex-diameter, that is the maximum number of vertices in a short-
est path. In some cases, the sample size is completely independent
from any property of the graph. The extensive experimental eval-
uation that we performed using real and artificial networks shows
that our algorithms are significantly faster and much more scalable
as the number of vertices in the network grows than previously pre-
sented algorithms with similar approximation guarantees.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph algorithms;
H.2.8 [Database Management]: Database Applications—Data min-
ing

Keywords
Betweenness centrality, graph mining, range set, sampling, social
network analysis, VC-dimension, vertex diameter

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WSDM’14, February 24–28, 2014, New York, New York, USA.
Copyright 2014 ACM 978-1-4503-2351-2/14/02 ...$15.00.
http://dx.doi.org/10.1145/2556195.2556224.

1. INTRODUCTION
Centrality indices are fundamental metrics for network analysis.

They express the relative importance of a vertex in the network.
Some of them, e.g., degree centrality, reflect local properties of the
underlying graph, while others, like betweenness centrality, give
information about the global network structure, as they are based
on shortest path computation and counting [28]. In this work we
are interested in betweenness centrality [3, 14], that is, for every
vertex in the graph, the fraction of shortest paths that goes through
that vertex (see Section 3 for formal definitions) . Betweenness
centrality has been used to analyze social and protein interaction
networks, to evaluate traffic in communication networks, and to
identify important intersections in road networks [15, 28]. There
exist polynomial-time algorithms to compute the exact between-
ness centrality [8], but they are not practical for the analysis of the
very large networks that are of interest these days. Graphs repre-
senting online social networks, communication networks, and the
web graph have millions of nodes and billions of edges, making
a polynomial-time algorithm too expensive in practice. Given that
data mining is exploratory in nature, approximate results are usu-
ally sufficient, especially if the approximation error is guaranteed to
be within user-specified limits. In practice, the user is interested in
the relative ranking of the vertices according to their betweenness,
rather than the actual value of the betweenness, so a very good es-
timation of the value of each vertex is sufficiently informative for
most purposes. It is therefore natural to develop algorithms that
trade off accuracy for speed and efficiently compute high-quality
approximations of the betweenness of the vertices. Nevertheless,
in order for these algorithms to be practical it is extremely impor-
tant that they scale well and have a low runtime dependency on the
size of the network (number of vertices and/or edges).

Our contributions. We present two randomized algorithms to
approximate the betweenness centrality (and some of its variants)
of the vertices of a graph. The first algorithm guarantees that the
estimated betweenness values for all vertices are within an additive
factor ε from the real values, with probability at least 1−δ. The sec-
ond algorithm focuses on the top-K vertices with highest between-
ness and returns a superset of the top-K, while ensuring that the es-
timated betweenness for all returned vertices is within a multiplica-
tive factor ε from the real value, with probability at least 1−δ. This
is the first algorithm to reach such a high-quality approximation for
the set of top-K vertices. The algorithms are based on random sam-
pling of shortest paths. The analysis to derive the sufficient sample
size is novel and uses notions and results from VC-dimension the-
ory. We define a range set associated with the problem at hand and
prove strict bounds to its VC-dimension. The resulting sample size
does not depend on the size of the graph, but only on the maximum

413

number of vertices in a shortest path, a characteristic quantity of
the graph that we call the vertex-diameter. For some networks, we
show that the VC-dimension is actually at most a constant and so
the sample size depends only on the approximation parameters and
not on any property of the graph, a somewhat surprising fact that
points out interesting insights. Thanks to the lower runtime depen-
dency on the size of the network, our algorithms are much faster
and more scalable than previous contributions [10, 15, 18], while
offering the same approximation guarantees. Moreover, the amount
of work performed by our algorithms per sample is also less than
that of others algorithms. We extensively evaluated our methods
on real graphs and compared their performances to the exact algo-
rithm for betweenness centrality [8] and to other sampling-based
approximation algorithms [10, 15, 18], showing that our methods
achieve a huge speedup (3 to 4 times faster) and scale much better
as the number of vertices in the network grows.

We present related work in Sect. 2. Section 3 introduces all the
basic definitions and results that we will use throughout the pa-
per. A range set for the problem at hand and the bounds to its
VC-dimension are presented in Sect. 4. Based on these results we
develop and analyze algorithms for betweenness estimation that we
present in Sect. 5. Section 6 reports the methodology and the re-
sults of our extensive experimental evaluation.

2. RELATED WORK
Over the years, a number of centrality measures have been de-

fined [28]. In this work we focus on betweenness centrality and
some of its variants.

Betweenness centrality was introduced in the sociology litera-
ture [3, 14]. Brandes [9] presents a number of minor variants. A
particularly interesting one, k-bounded-distance betweenness, lim-
its the length of the shortest paths considered when computing the
centrality [7, 9, 29]. This is not to be confused with k-path be-
tweenness centrality defined by Kourtellis et al. [20], which con-
siders simple random walks that are not necessarily shortest paths.
Dolev et al. [12] present a generalization of betweenness centrality
which takes into account routing policies in the network.

The need of fast algorithms to compute the betweenness of ver-
tices in a graph arose as large online social networks started to
appear. Brandes [8] presents the first efficient algorithm for the
task, running in time O(nm) on unweighted graphs and O(nm +
n2 logn) on weighted ones. The algorithm computes, for each ver-
tex v, the shortest path to every other vertex and then traverses
these paths backwards to efficiently compute the contribution of
the shortest paths from v to the betweenness of other vertices. For
very large networks, the cost of this algorithm would still be pro-
hibitive in practice, so many approximation algorithms were devel-
oped [4, 10, 15, 18, 23, 25]. The use of random sampling was one
of the more natural approaches to speed up the computation of be-
tweenness. Inspired by the work of Eppstein and Wang [13], Jacob
et al. [18] and independently Brandes and Pich [10] present an algo-
rithm that mimics the exact one, with the difference that, instead of
computing the contribution of all vertices to the betweenness of the
others, it only considers the contributions of some vertices sampled
uniformly at random. To guarantee that all estimates are within ε
from their real value with probability at least 1 − δ, the algorithm
from [10, 18] needsO(log(n/δ)/ε2) samples. The analysis for the
derivation of the sample size uses Hoeffding bounds [17] and the
union bound [26]. Geisberger et al. [15] noticed that this can lead
to an overestimation of the betweenness of vertices that are close
to the sampled ones and introduced different unbiased estimators
that are experimentally shown to have smaller variance and do not
suffer from this overshooting. Our algorithm is different from these

because we sample, each time, a single random shortest path. This
leads to a much smaller sample size and less work done for each
sample, resulting in a much faster way to compute approximations
of the betweenness with the same probabilistic guarantees. We
delve more in the comparisons with these algorithms in Sect. 5.3
and 6.

A number of works explored the use of adaptive sampling, in
contrast with the previous algorithms (and ours) which use a fixed
sample size. Bader et al. [4] present an adaptive sampling algo-
rithm which computes good estimations for the betweenness of
high-centrality vertices, by keeping track of the partial contribution
of each sampled vertex, obtained by performing a single-source
shortest paths computation to all other vertices. Maiya and Berger-
Wolf [25] use concepts from expander graphs to select a connected
sample of vertices. They estimate the betweenness from the sam-
ple, which includes the vertices with high centrality. They build the
connected sample by adding the vertex which maximizes the num-
ber of connections with vertices not already in the sample. Modi-
fied versions of this algorithm and an extensive experimental evalu-
ation appeared in [23]. The algorithm does not offer any guarantee
on the quality of the approximations. Compared to these adaptive
sampling approaches, our methods ensure that the betweenness of
all (or top-K) vertices is well approximated, while using a fixed,
predetermined amount of samples. Sariyüce et al. [33] present an
algorithm that pre-processes the network in multiple ways by re-
moving degree-1 vertices and identical vertices, and splits it in sep-
arate components where the computation of betweenness can be
performed independently and then aggregated. They do not present
an analysis of the complexity of the algorithm.

In the analysis of our algorithm we use results from VC-dimension
theory [34], a key component of statistical learning theory. We
compute an upper bound to the VC-dimension of a range set de-
fined on shortest paths. Kranakis et al. [21] present a number of
results on the VC-dimension of various range sets for graphs (stars,
connected sets of vertices, sets of edges), but do not deal with short-
est paths. Abraham et al. [1] use VC-dimension to speed up short-
est path computation but their range set is different from the one
we use: their ground set is the set of vertices while ours is defined
on shortest paths.

3. PRELIMINARIES
In this section we introduce the definitions and lemmas that we

will use to develop and analyze our results throughout the paper.

3.1 Graphs and betweenness centrality
Let G = (V,E) be a graph, where E ⊆ V × V , with n = |V |

vertices and m = |E| edges. The graph G can be directed or
undirected. We assume that there are no self-loops from one vertex
to itself and no multiple edges between a pair of vertices. Each edge
e ∈ E has a non-negative weight w(e). Given a pair of distinct
vertices (u, v) ∈ V × V , u 6= v, a path puv ⊆ V from u to v is
an ordered sequence of vertices puv = (w1, . . . , w|puv|) such that
w1 = u, w|puv| = v and for each 1 ≤ i < |puv|, (wi, wi+1) ∈
E. The vertices u and v are called the end points of puv and the
vertices in Int(puv) = puv \{u, v} are the internal vertices of puv .
The weight w(puv) of a path puv = (u = w1, w2, · · · , wp|uv| =

v) from u to v is the sum of the weights of the edges composing
the path: w(puv) =

∑|puv|−1
i=1 w((wi, wi+1)). We denote with

|puv| the number of vertices composing the path and call this the
size of the path puv . Note that if the weights are not all unitary,
it is not necessarily true that w(puv) = |puv| − 1. A special and

414

degenerate path is the empty path p∅ = ∅, which by definition has
weight w(p∅) =∞, no end points, and Int(p∅) = ∅.

Given two distinct vertices (u, v) ∈ V × V , the shortest path
distance duv between u and v is the weight of a path with minimum
weight between u and v among all paths between u and v. If there
is no path between u and v, duv = ∞. We call a path between u
and v with weight duv a shortest path between u and v. There can
be multiple shortest paths between u and v and we denote the set of
these paths as Suv and the number of these paths as σuv = |Suv|.
If there is no path between u and v, then Suv = {p∅}1. We denote
with SG the union of all the Suv’s, for all pairs (u, v) ∈ V × V of
distinct nodes u 6= v:

SG =
⋃

(u,v)∈V×V
u6=v

Suv .

We now define a characteristic quantity of a graph that we will
use throughout the paper.

Definition 1. Given a graph G = (V,E), the vertex-diameter
VD(G) of G is the size of the shortest path in G with maximum
size:

VD(G) = max {|p| : p ∈ SG} .

The vertex-diameter is the maximum number of vertices among all
shortest paths inG. If all the edge weights are unitary, then VD(G)
is equal to diam(G) + 1, where diam(G) is the number of edges
composing the longest shortest path in G.

Given a vertex v, let Tv ⊆ SG be the set of all shortest paths that
v is internal to:

Tv = {p ∈ SG : v ∈ Int(p)} .

In this work we are interested in the betweenness centrality of the
vertices of a graph.

Definition 2. [3, 14] Given a graph G = (V,E), the between-
ness centrality of a vertex v ∈ V is defined as2

b(v) =
1

n(n− 1)

∑
puw∈SG

1Tv (p)

σuv
.

It is easy to see that b(v) ∈ [0, 1]. Brandes [8] presented an
algorithm to compute the betweenness centrality for all v ∈ V in
time O(nm) for unweighted graphs and O(nm + n2 logn) for
weighted graphs.

A “local” variant of betweenness, called k-bounded-distance be-
tweenness3 only considers the contribution of shortest paths of size
up to k + 1 [7, 9]. For k > 1 and any pair of distinct vertices
u, v ∈ V , u 6= V , let S(k)

uv ⊆ Suv be the set of shortest paths from
u to v of size at most k+ 1, with σ(k)

uv = |S(k)
uv |, and let S(k)

G be the
union of all the S(k)

uv . Let T (k)
v ⊆ Tv be the set of all shortest paths

of size up to k that v is internal to, for each v ∈ V .

Definition 3. [7, 9] Given a graph G = (V,E) and an integer
k > 1, the k-bounded-distance betweenness centrality of a vertex

1Note that even if p∅ = ∅, the set {p∅} is not empty. It contains
one element.
2We use the normalized version of betweenness as we believe it to
be more suitable for presenting approximation results.
3Bounded-distance betweenness is also known as k-betweenness.
We prefer the former denomination to avoid confusion with k-path
betweenness.

v ∈ V is defined as

bb(k)(v) =
1

n(n− 1)

∑
puw∈S

(k)
G

1T (k)
v

(p)

σ
(k)
uw

.

Other variants of centrality are presented in the extended version [31].

3.2 Vapnik-Chervonenkis dimension
The Vapnik-Chernovenkis (VC) dimension of a class of subsets

defined on a set of points is a measure of the complexity or ex-
pressiveness of such class [34]. Given a probability distribution on
the set of points, a finite bound on the VC-dimension of the class of
subsets implies a bound on the number of random samples required
to approximate the probability of each subset in the class with its
empirical average. We outline here some basic definitions and re-
sults and refer the reader to the book by Mohri et al. [27] for an
in-depth presentation.

Let D be a domain andR be a collection of subsets from D. We
call R a range set on D. Given B ⊆ D, the projection of R on B
is the set PR(B) = {B ∩ A : A ∈ R}. We say that the set B is
shattered byR if PR(B) = 2B .

Definition 4. The Vapnik-Chervonenkis (VC) dimension of R,
denoted as VC(R), is the cardinality of the largest subset of D that
is shattered byR.

The main application of VC-dimension in statistics and learning
theory is in computing the number of samples needed to approxi-
mate the probabilities of the ranges using their empirical averages
as unbiased estimators. Formally, let Xk

1 = (X1, . . . , Xk) be a
collection of independent identically distributed random variables
taking values in D, sampled according to some distribution φ de-
fined on the elements of D. For a set A ⊆ D, let φ(A) be the
probability that a sample from φ belongs to the set A, and let the
empirical average of φ(A) on Xk

1 be

φXk
1

(A) =
1

k

k∑
j=1

1A(Xj) .

The empirical average of φ(A) can be used as an unbiased estima-
tor for φ(A).

Definition 5. Let R be a range set on D and φ be a probability
distribution on D. For ε ∈ (0, 1), an ε-approximation to (R, φ) is
a bag S of elements of D such that

sup
A∈R
|φ(A)− φS(A)| ≤ ε .

When an upper bound to the VC-dimension of R is available, it
is possible to build an ε-approximation by sampling points of the
domain according to the distribution φ.

THEOREM 1 (THM. 2.12 [16] (SEE ALSO [22])). Let R be
a range set on a domain D with VC(R) ≤ d, and let φ be a distri-
bution on D. Given ε, δ ∈ (0, 1) let S be a collection of |S| points
from D sampled according to φ, with

|S| = c

ε2

(
d+ ln

1

δ

)
(1)

where c is an universal positive constant. Then S is an ε-approximation
to (R, φ) with probability at least 1− δ.

The constant c is approximately 0.5 [24]. It is possible to obtain
relative guarantees on the approximation.

415

Definition 6. Let R be a range set on D and φ be a probability
distribution onD. For p, ε ∈ (0, 1), a relative (p, ε)-approximation
to (R, φ) is a bag S of elements from D such that

• For any A ∈ R such that φ(A) ≥ p, we have

|φ(A)− φS(A)| ≤ εφ(A) .

• For any B ∈ R such that φ(B) < p, we have φS(B) ≤
(1 + ε)p.

THEOREM 2 (THM. 2.11 [16]). Let R be a range set on a
domain D with VC(R) ≤ d, and let φ be a distribution on D.
Given ε, δ, p ∈ (0, 1) let S be a collection of |S| points from D
sampled according to φ, with

|S| ≥ c′

ε2p

(
d log

1

p
+ log

1

δ

)
(2)

where c′ is an absolute positive constant. Then S is a relative
(p, ε)-approximation to (R, φ) with probability at least 1− δ.

It is important to mention that if VC(R) and/or the upper bound
d do not depend on |D| or on |R| neither do the sample sizes pre-
sented in Thm. 1 and 2. This will make our algorithms scale well
as the size of the network increases.

4. A RANGE SET OF SHORTEST PATHS
We now define a range set of the shortest paths of a graph G =

(V,E), and present a strict upper bound to its VC-dimension. We
use the range set and the bound in the analysis of our algorithms
for estimating the betweenness centrality of vertices of G.

The range set RG is defined on the set SG of all shortest paths
between vertices of G. It contains, for each vertex v ∈ V , the set
Tv of shortest paths that v is internal to:

RG = {Tv : v ∈ V } .

LEMMA 1. VC(RG) ≤ blog2(VD(G)− 2)c+ 1.

PROOF. Let ` > blog2(VD(G) − 2)c + 1 and assume for the
sake of contradiction that VC(RG) = `. From the definition of
the VC-dimension there is a set Q ⊆ SG of size ` that is shattered
by RG. Let p be an element of Q. There are 2`−1 non-empty
subsets of Q containing the path p. Let us label these non-empty
subsets of Q containing p as S1, . . . , S2`−1 , where the labelling
is arbitrary. Given that Q is shattered, for each set Si there must
be a range Ri in RG such that Si = Q ∩ Ri. Since all the Si’s
are different from each other, then all the Ri’s must be different
from each other. Given that p belongs to each Si, then p must also
belong to each Ri, that is, there are 2`−1 distinct ranges in RG

containing p. But p belongs only to the ranges corresponding to
internal vertices of p, i.e., to vertices in Int(p). This means that the
number of ranges in RG that p belongs to is equal to |p| − 2. But
|p| ≤ VD(G), by definition of VD(G), so p can belong to at most
VD(G)− 2 ranges from RG. Given that 2`−1 > VD(G)− 2, we
reached a contradiction and there cannot be 2`−1 distinct ranges
containing p, hence not all the sets Si can be expressed as Q ∩ Ri

for some Ri ∈ RG. Then Q cannot be shattered and VC(RG) ≤
blog2(VD(G)− 2)c+ 1.

Unique shortest paths.
In the restricted case when the graph is undirected and every

pair of distinct vertices has either none or a unique shortest path
between them, the VC-dimension of RG reduces to a constant.

This is a somewhat surprising result with interesting consequences.
From a theoretical point of view, it suggests that there should be
other characteristic quantities of the graph different from the vertex
diameter that control the VC-dimension of the range set of shortest
paths, and these quantities are constant on graph with unique short-
est paths between vertices. From a more practical point of view,
we will see in Sect. 5 that this result has an impact on the sam-
ple size needed to approximate the betweenness centrality of net-
works where the unique-shortest-path property is satisfied or even
enforced, like road networks [15]. In particular, the resulting sam-
ple size will be completely independent from any characteristic of
the network, and will only be a function of the parameters control-
ling the desired approximation guarantees. We are currently inves-
tigating whether this result can be extended to the case of directed
graphs. Due to space constraints, we defer the proof to the extended
online version of the paper [31].

LEMMA 2. LetG = (V,E) be an undirected graph with |Suv| ≤
1 for all pairs (u, v) ∈ V × V . Then VC(RG) ≤ 3.

Bounded-distance betweenness.
For the case of k-bounded-distance betweenness, if we letR(k)

G =

{T (k)
v : v ∈ V }, it is easy to bound VC(R(k)

G) following the same
reasoning as in Lemma 1.

LEMMA 3. VC(R(k)
G) ≤ blog2(k − 1)c+ 1.

4.1 Tightness
The bound presented in Lemma 1 is strict in the sense that for

each d ≥ 1 we can build a graphGd with vertex-diameter VD(Gd) =
2d+1 and such that the range setRGd associated to the set of short-
est paths of Gd has VC-dimension exactly d = blog2(VD(Gd) −
2)c+ 1.

There is a class G = (Gd)d≥1 of graphs indexed by d, such that
the graphs in G are the ones for which we can show the tightness
of the bound to the VC-dimension of the associated range set. We
call the graph Gd ∈ G the d-th concertina graph. Figure 1 shows
G1, G2, G3, and G4. The generalization to higher values of d
should be straightforward. Each graph Gd has 3(2d−1 vertices and
vertex-diameter d.

LEMMA 4. VC(RGd) = d.

Due to space constraints, we defer the proof to the extended online
version of the paper [31].

v
l

vr
G
1

v
l

vr

G
2

v
l

vr

G
3

v
l

vr

G
4

Figure 1: Examples of concertina graphs Gd for d = 1, 2, 3, 4.

The upper bound presented in Lemma 2 for the case of unique
shortest paths is also strict in the same sense. The proof can be
found in the extended online version of the paper [31].

416

LEMMA 5. There is a graph G = (V,E) with |Suv| ≤ 1 for
all pairs (u, v) ∈ V × V such that the range setRG associated to
the shortest paths in G has VC-Dimension exactly 3.

5. ALGORITHMS
In this section we present our algorithms to compute a set of ap-

proximations for the betweenness centrality of the (top-K) vertices
in a graph through sampling, with probabilistic guarantees on the
quality of the approximations.

5.1 Approximation for all the vertices
The intuition behind the algorithm to approximate the between-

ness values of all vertices is the following. Given a graph G =
(V,E) with vertex-diameter VD(G) and two parameters ε, δ ∈
(0, 1) we first compute a sample size r using (1) with

d = blog2(VD(G)− 2)c+ 1 .

The resulting sample size is

r =
c

ε2

(
blog2(VD(G)− 2)c+ 1 + ln

1

δ

)
. (3)

This is sufficient to achieve the desired accuracy (expressed through
ε) with the desired confidence (expressed through 1−δ). The algo-
rithm repeats the following steps r times: 1. it samples a pair u, v
of distinct vertices uniformly at random, 2. it computes the set Suv
of all shortest paths between u and v, 3. it selects a path p from Suv
uniformly at random, 4. it increases by 1/r the betweenness esti-
mation of each vertex in Int(p). Note that if the sampled vertices u
and v are not connected, we can skip steps 3 and 4 because we de-
fined Suv = {p∅}. Denoting with S the set of the sampled shortest
paths, the unbiased estimator b̃(w) for the betweenness b(w) of a
vertex w is the sample average

b̃(w) =
1

r

∑
p∈S

1Int(p)(w) =
1

r

∑
p∈S

1Tw (p) .

There are two crucial steps in this algorithm: the computation
of VD(G) and the sampling of a path uniformly at random from
Suv . We first deal with the latter, and then present a linear-time
constant-factor approximation algorithm for VD(G). Algorithm 1
presents the pseudocode of the algorithm, including the steps to se-
lect a random path. The computeAllShortestPaths(u, v)
on line 8 is a call to a modified Dijkstra’s (or BFS) algorithm to
compute the set Suv , with the same modifications as [8]. The
getDiameterApprox() procedure computes an approximation
for VD(G).

Unique shortest paths.
When, for each pair (u, v) of vertices of G, either there is a

unique shortest path from u to v or v is unreachable from u, then
one can apply Lemma 2 and obtain a smaller sample size

r =
c

ε2

(
3 + ln

1

δ

)
to approximate the betweenness values of all the vertices. This is an
interesting result: the number of samples needed to compute a good
approximation to all vertices is a constant and completely indepen-
dent from G. Intuitively, this means that the algorithm is extremely
fast on graphs with this property. Unique shortest paths are com-
mon or even enforced in road networks by slightly perturbing the
edge weights or having a deterministic tie breaking policy [15].

Bounded-distance betweenness.
For the case of k-bounded-distance betweenness, the sample size

on line 6 of Alg. 1 can be reduced to

r =
c

ε2

(
blog2(k − 1)c+ 1 + ln

1

δ

)
and the computation of the shortest paths on line 8 can be stopped
after we reached the vertices that are k “hops” far from u.

Sampling a shortest path.
Our procedure to select a random shortest path from Suv is in-

spired by the dependencies accumulation procedure used in Bran-
des’ exact algorithm [8]. Let u and v be the vertices sampled by
our algorithm (Step 7 of Alg. 1). We assume that u and v are con-
nected otherwise the only possibility is to select the empty path p∅.
Let y be any vertex belonging to at least one shortest path from u
to v. Following Brandes [8], we can compute σuy and Suy while
we compute the set Suv of all the shortest paths from u to v. We
can then use this information to select a shortest path p uniformly
at random from Suv as follows. For each vertex w let Pu(w) be
the subset of neighbors of w that are predecessors of w along the
shortest paths from u to w. Let p∗ = {v}. Starting from v, we
select one of its predecessors z ∈ Pu(v) using weighted random
sampling: each z ∈ Pu(v) has probability σuz/

∑
w∈Pu(v) σuw

of being sampled. We add z to p∗ and then repeat the procedure
for z. That is, we select one of z’s predecessors from Pu(z) using
weighted sampling and add it to p∗, and so on until we reach u.
Note that we can update the estimation of the betweenness of the
internal vertices along p∗ (the only ones for which the estimation
is updated) as we compute p∗.

LEMMA 6. The path p∗ built according to the above procedure
is selected uniformly at random among the paths in Suv .

PROOF. The probability of sampling p∗ = (u, z1, . . . , z|p∗|−2, v)
equals to the product of the probabilities of sampling the vertices
internal to p∗, hence

Pr(p∗) =
σuz|p∗|−2

σuv

σuz|p∗|−3

σuz|p∗|−2

· · · 1

σuz2

=
1

σuv

where we used [8, Lemma3] which tells us that for w 6= u,

σuw =
∑

j∈Pu(w)

σuj

and the fact that for z1, which is a neighbor of u, σuz1 = 1.

Approximating the vertex-diameter.
The algorithm presented in the previous section requires the value

of the vertex-diameter VD(G) of the graph G (line 4 of Alg. 1).
Computing the exact value of VD(G) could be done by solving the
All Pair Shortest Paths (APSP) problem, and taking the shortest
path with the maximum size. Algorithms for exactly solving APSP
problem such as Johnson’s which runs in O(V 2 log V + V E) or
Floyd-Warshall’s (Θ(V 3)), would defeat our purposes: once we
have all the shortest paths for the computation of the diameter, we
could as well compute the betweenness of all the vertices exactly.
Given that Thm. 1 (and Thm. 2) only requires an upper bound to
the VC-dimension of the range set, an approximation of the vertex-
diameter would be sufficient for our purposes. Several refined al-
gorithms for approximating the diameter are known [2, 6, 32], with
various running times and quality of approximations. We briefly
present a well-known and simple approximation algorithm that has
the right balance of accuracy and speed for our purposes.

417

Algorithm 1: Computes approximations b̃(v) of the between-
ness centrality b(v) for all vertices v ∈ V .

Input : Graph G = (V,E) with |V | = n, ε, δ ∈ (0, 1)
Output: A set of approximations of the betweenness centrality

of the vertices in V
1 foreach w ∈ V do
2 b̃(v)← 0
3 end
4 VD(G)←getVertexDiameter(G)
5 r ← (c/ε2)(blog2(VD(G)− 2)c+ ln(1/δ))
6 for i← 1 to r do
7 (u, v)←sampleUniformVertexPair(V)
8 Suv ←computeAllShortestPaths(u, v)
9 if Suv 6= {p∅} then

//Random path sampling and
estimation update

10 j ← v
11 s← v
12 t← v
13 while t 6= u do
14 sample z ∈ Ps(t) with probability σuz/σus

15 if z 6= u then
16 b̃(z)← b̃(z) + 1/r
17 s← t
18 t← z

19 end
20 end
21 end
22 end
23 return {(v, b̃(v)), v ∈ V }

Let G = (V,E) be an undirected graph where all the edge
weights are equal. It is a well-known result that one can obtain
a 2-approximation ṼD(G) of the vertex-diameter VD(G) of G in
time O(V + E) in the following way: 1. select a vertex v ∈ V
uniformly at random, 2. compute the shortest paths from v to all
other vertices in V , and 3. finally take ṼD(G) to be the sum of
the lengths of the two shortest paths with maximum size (which
equals to the two longest shortest paths) from v to two distinct
other nodes u and w. In case we have multiple connected com-
ponents in G, we compute an upper bound to the vertex diameter
of each component separately by running the above algorithm on
each component, and then taking the maximum. The connected
components can be computed in O(n+m) by traversing the graph
in a Breadth-First-Search (BFS) fashion starting from a random v.
The time complexity of the approximation algorithm in the case of
multiple connected components is again O(n + m) since the sum
of the vertices of individual components is n and the sum of edges
is m.

The use of the above 2-approximation in the computation of the
sample size from line 6 of Alg. 1 results in at most c/ε2 additional
samples than if we used the exact value VD(G). The computa-
tion of ṼD(G) does not affect the running time of our algorithm:
for the construction of the first sample we can reuse the shortest
paths from the sampled vertex v that we used to obtain the ap-
proximation. Specifically, we can sample a new vertex u 6= v and
then choose with uniform probability one of the (already computed)
shortest paths between v and u.

If the graph is directed and/or not all edge weights are equal, the
computation of a good approximation to VD(G) becomes more
problematic. In particular, notice that there is no relationship be-
tween VD(G) and diam(G) when G is weighted, as the shortest
path with maximum size may not be the shortest path with maxi-
mum weight. In these cases, one can use the size (number of ver-
tices) of the largest Weakly Connected Component (WCC), as a
loose upper bound to VD(G). The WCC’s can again be computed
in O(n+m) using BFS. This quantity can be as high as n but for
the computation of the sample size we use its logarithm, mitigating
the crudeness of the bound. In this case our sample size is com-
parable to that proposed by Brandes and Pich [10]. Nevertheless
the amount of work done per sample by our algorithm is still much
smaller (see Sect. 5.3 and 6 for more details). In practice, it is pos-
sible that the nature of the network suggests a much better upper
bound to the vertex-diameter of the graph, resulting in a smaller
sample size.

Analysis.
Algorithm 1 offers probabilistic guarantees on the quality of all

approximations of the betweenness centrality.

LEMMA 7. With probability at least 1 − δ, all the approxima-
tions computed by the algorithm are within ε from their real value:

Pr
(
∃v ∈ V s.t. |b(v)− b̃(v)| > ε

)
< δ .

PROOF. For each puv ∈ SG let

πG(puv) =
1

n(n− 1)

1

σuv
.

It is easy to see that πG is a probability distribution and πG(puv) is
the probability of sampling the path puv during an execution of the
loop on line 6 in Alg. 1, given the way that the vertices u and v are
selected and Lemma 6.

Consider the range set RG and the probability distribution πG.
Let S be the set of paths sampled during the execution of the al-
gorithm. For r as in (3), Thm. 1 tells us that the sample S is a
ε-approximation to (RG, πG) with probability at least 1− δ. Sup-
pose that this is indeed the case, then from Def. 5 and the definition
ofRG we have that∣∣∣∣∣πG(Tv)− 1

r

∑
p∈S

1Tv (p)

∣∣∣∣∣ =
∣∣∣πG(Tv)− b̃(v)

∣∣∣ ≤ ε,∀v ∈ V .

From the definition of πG we have

πG(Tv) =
1

n(n− 1)

∑
puw∈Tv

1

σuw
= b(v),

which concludes the proof.

5.2 High-quality approximation of the top-K
betweenness vertices

Very often in practice one is interested only in identifying the
vertices with the highest betweenness centrality, as they are the
“primary actors” in the network. We present here an algorithm to
compute a very high-quality approximation of the set TOP(K,G)
of the top-K betweenness vertices in a graph G = (V,E). For-
mally, let v1, . . . , vn be a labelling of the vertices in V such that
b(vi) ≥ b(vj) for 1 ≤ i < j ≤ n. Then TOP(K,G) is defined as
the set of vertices with betweenness at least b(vK):

TOP(K,G) = {(v, b(v)), : v ∈ V and b(v) ≥ b(vK)} .

Note that TOP(K,G) may contain more than K vertices.

418

Our algorithm works in two phases. Each phase is basically a
run of the algorithm for approximating the betweenness of all ver-
tices. The two phases differ in the way they compute the number
of paths to sample and the additional operations at the end of each
phase. In the first phase, we compute a lower bound `′ to b(vK).
In the second phase we use `′ to compute the number of samples r
needed to obtain a relative (`′, ε)-approximation to (RG, πG). We
use r samples to approximate the betweenness of all vertices again,
and return a collection of vertices that is, with high probability, a
superset of TOP(K,G).

Let ṼD(G) be an upper bound to the vertex-diameter ofG. Given
ε, δ ∈ (0, 1), let δ′, δ′′ be two positive reals such that (1− δ′)(1−
δ′′) ≥ (1− δ). Let

r′ =
c

ε2

(
blog2(ṼD(G)− 2)c+ 1 + log

1

δ′

)
.

Let b̃′k be the K-th highest estimated betweenness obtained using
Algorithm 1 where r = r′, and let `′ = b̃K − ε, and

r′′ =
c′

ε2`′

(
(blog2(ṼD(G)− 2)c+ 1) log

1

`′
+ log

1

δ′′

)
.

We run Algorithm 1 with r = r′′ and let b̃′′K be the so-obtained
K-th highest estimated betweenness. Let `′′ = min{b̃′′(v)/(1 +

ε) : v ∈ V s.t. b̃′′(v) ≥ b̃′′K}. We return the collection T̃OP(K,G)

of vertices v such that b̃′′(v) ∗ (1 + ε)/(1− ε) ≥ `′′:

T̃OP(K,G) =

{
v ∈ V : b̃′′(v)

1 + ε

1− ε ≥ `
′′
}

.

LEMMA 8. With probability at least 1− δ,

1. TOP(K,G) ⊆ T̃OP(K,G), and
2. for all v ∈ TOP(K,G) we have |b̃′′(v) − b(v)| ≤ εb(v),

and
3. no vertex u ∈ T̃OP(K,G) \ TOP(K,G) has an estimated

betweenness greater than `′(1 + ε).

We refer the reader interested in the proof to the extended online
version of the paper [31].

The advantage of using our algorithm to approximate the collec-
tion of top-K betweenness vertices consists in the very high-quality
approximation of the betweenness values for the returned set of
vertices: they are all within a multiplicative factor ε from their ex-
act values. By reverse-sorting them according to the approximated
betweenness, one can obtain a ranking that is very similar to the
original exact one. Previous algorithms could not achieve such a
good ranking as they were only able to approximate the between-
ness values to within an additive error ε. The cost of computing the
high quality approximation for the top-K vertices is the cost of an
additional run of our algorithm to compute good approximations
for all the vertices.

5.3 Discussion
Jacob et al. [18] and independently Brandes and Pich [10] present

a sampling-based algorithm to approximate the betweenness cen-
trality of all the vertices of the graph. The algorithm (which we
call BP) creates a sample S = {v1, . . . , vr} of r vertices drawn
uniformly at random and computes all the shortest paths between
each vi to all other vertices in the graph. Their estimation b̃BP(u)
for b(u) is

b̃BP(u) =
1

(n− 1)r

∑
vi∈S

∑
w 6=vi
w 6=u

∑
p∈Sviw

1Int(p)(u)

|Sviw|
.

As it was for Algorithm 1, the key ingredient to ensure a correct
approximation for the betweenness centrality is the computation
of the sample size r. Inspired by the work of Eppstein and Wang
[13], Brandes and Pich [10] prove that, to obtain good (within ε)
estimations for the betweenness of all vertices with probability at
least 1− δ, it must be

r ≥ 1

2ε2

(
lnn+ ln 2 + ln

1

δ

)
.

From this expression it should be clear that this sample size is usu-
ally much larger than ours, as in practice VD(G) � n. For the
same reason, this algorithm would not scale well as the network
size increases (see also Sect. 6).

Another interesting aspect in which our algorithm and BP differ
is the amount of work done per sample. Our algorithm computes a
single set Suv for the sampled pair of vertices (u, v): it performs a
run of Dijkstra’s algorithm (or of BFS) from u, stopping when v is
reached. BP instead computes all the sets Suw from the sampled
vertices u to all other vertices, again with a single run of Dijkstra or
BFS, but without the “early-stopping condition” that we have when
we reach v. Although in the worst case the two computations have
the same time complexity4, in practice we perform many fewer op-
erations, as we can expect v not to always be very far from u and
therefore we can terminate early. This fact has a huge impact on the
running time. Our algorithm also touches many fewer edges than
BP. The latter can touch all the edges in the graph at every sample,
while our computation exhibits a much higher locality, exploring
only a neighborhood of u until v is reached. The results of our ex-
perimental evaluation presented in Sect. 6 highlights this and other
advantages of our method over the one from [10, 18]. In the fu-
ture, we plan to investigate the possibility of using bidirectional A∗

search [19, 30] to further speed up the computation for each sample
of our algorithms.

6. EXPERIMENTAL EVALUATION
We conducted an experimental evaluation of our algorithms, with

two major driving goals in mind: study the behavior of the algo-
rithms presented in this paper and compare it with that of other
related algorithms [8, 10, 15, 18], in terms of accuracy of the esti-
mation, execution time, work performed, and scalability as function
of the network size. Due to space limitations, we only report a sub-
set of our results and refer the reader to the extended online version
of the paper [31].

Implementation and environment.
We implemented our algorithms, the one presented in [10, 18]

and the linear scaling version from [15] in C, by extending the im-
plementation of the exact algorithm [8] contained in igraph [11]5.
The implementations are similarly engineered, given that they are
based on the same subroutines for the computation of the short-
est path (Dijkstra’s algorithm for weighted graphs, BFS for un-
weighted ones), and they received similar amounts of optimiza-
tion. We exposed our implementations through Python 3.3.1, which
was used for running the simulations. We run the experiments on
a quad-core AMD Phenom™II X4 955 Processor with 16GB of
RAM, running Debian wheezy with a Linux kernel version 3.2.0.

4It is a well-known open problem whether there is an algorithm to
perform a single s, t-shortest path computation between a pair of
vertices with smaller worst-case time complexity than the Single
Source Shortest Path computation.
5The implementations are available at http://cs.brown.
edu/~matteo/centrsampl.tar.bz2.

419

TimeBP
TimeVC

Graph Properties diam-2approx

Graph |V | |E| VD(G) min max

oregon1-010331 10,670 22,002 9 4.39 4.75
oregon1-010526 11,174 23,409 10 4.26 4.73

ca-HepPh 12,008 237,010 13 3.06 3.33
ca-AstroPh 18,772 396,160 14 3.26 3.76
ca-CondMat 23,133 186,936 15 3.75 4.08
email-Enron 36,692 421,578 12 3.60 4.16

(a) Undirected graphs

TimeBP
TimeVC

Graph Properties diam-exact diam-UB

Graph |V | |E| VD(G) min max min max

wiki-Vote 7,115 103,689 7 3.35 3.69 1.05 1.27
p2p-Gnutella25 22,687 54,705 11 5.45 5.78 1.94 2.09

cit-HepTh 27,770 352,807 14 3.58 3.83 1.39 1.61
cit-HepPh 34,546 421,578 12 4.91 5.01 1.60 1.71

p2p-Gnutella30 36,682 88,328 10 5.02 5.46 2.08 2.22
soc-Epinions1 75,879 508,837 13 4.20 4.25 1.35 1.38

(b) Directed graphs

Figure 2: Graph properties and running time ratios.

Datasets.
In our evaluation we used a number of graphs from the Stan-

ford Large Network Dataset Collection6. These are all real world
datasets including online social networks, communication (email)
networks, scientific citation and academic collaboration networks,
road networks, Amazon frequent co-purchased product networks,
and more. Basic information about the graphs we used are reported
in the two leftmost columns of Figs. 2b and 2a. We refer the reader
to the SLNDC website for additional details about each dataset. To
evaluate scalability we also created a number of artificial graphs
of different sizes (1,000 to 100,000 vertices) using the Barabási-
Albert model [5] as implemented by igraph [11].

Diameter approximation.
As we discussed in the previous sections the number of sam-

ples that the proposed algorithm requires depends on the vertex-
diameter of the graph. For the computation of the vertex-diameter
in case of undirected graphs we used the 2-approximation algo-
rithm that we briefly described in Sect. 5. We denote this as “diam-
2-approx” when reporting results in this section. For directed graphs,
we computed the number of samples using both the exact value of
the vertex-diameter (indicated as diam-exact) as well as the trivial
upper bound |V | − 2 (indicated as diam-UB).

6.1 Accuracy
Our theoretical results from Sect. 5 guarantee that, with prob-

ability at least 1 − δ, all estimations of the betweenness values
for all vertices in the graph are within ε for their real value. We
run Algorithm 1 five times for each graph and each value of ε
in {0.01, 0.015, 0.02, 0.04, 0.06, 0.08, 0.1}. The parameter δ was
fixed to 0.1 and we used c = 0.5 in (1) to compute the sample size,
as suggested by Löffler and Phillips [24]. As far as the confidence
is concerned, we report that in all the hundreds of runs we per-
formed, the guarantee on the quality of approximation was always
satisfied, not just with probability 1 − δ (= 0.9). We evaluated
how good the estimated values are by computing the average es-
timation error (

∑
v∈V |b(v) − b̃(v)|)/|V | across five runs of our

algorithm and taking the average and the standard deviation of this
measure, for different values of ε. We also compute the maximum
error |b(v) − b̃(v)| overall. The results are reported in Fig. 3a for
the directed graph p2p-Gnutella30, and in Fig. 3b for the undirected
graph email-Enron. Results for other graphs are similar [31]. It is
evident that the maximum error is an error of magnitude smaller
than the guaranteed value of ε and that the average error is al-
most two orders of magnitude smaller than the guarantees, and the

6http://snap.stanford.edu/data/index.html

Avg+Stddev points show that the estimation are quite concen-
trated around the average. We can conclude that in practice the
algorithm performs even better than guaranteed, achieving higher
accuracy and confidence than what the theoretical analysis indi-
cates. This is due to a number of factors, like the fact that we use
an upper bound to the VC-dimension of the range set.

6.2 Runtime
We compared the running time of Algorithm 1 (denoted in the

following as VC to that of the algorithm from [10, 15, 18] (denoted
as BP), and to that of the exact algorithm [8]. As VC and BP give
the same guarantees on the accuracy and confidence of the com-
puted estimations, it makes sense to compare their running times to
evaluate which is faster in achieving the goal. The performances of
the algorithm proposed in [15] takes the same time as BP, because
it follows the same sampling approach and only differs in the defini-
ton of the estimator for the betweenness, so we do not report those.
The algorithms VC and BP take parameters ε and δ and compute
the sample size accordingly. We run each experiments five times for
each value of ε, and measured the average running time across the
runs. The results are presented in Figs. 2 and 4. In Fig. 2a we report
the minimum and the maximum ratio of the running time of BP
over VC, taken over the ratios obtained by running the algorithms
with the different values of ε. As it can be seen from this table our
algorithm performs significantly faster, more than 300%. Similar
results are reported for directed graphs in Fig. 2b. The diam-UB
and the diam-exact values can be seen as the two extremes for the
performance of Algorithm 1 in terms of runtime. In the case of the
diam-exact we have as few samples as possible (for VC) since we
use the exact value of the vertex-diameter, whereas in the case of
diam-UB we have as many samples as possibles because we use the
worst case estimation for the vertex-diameter of the graph. From
Fig. 2a we can see that the value for the vertex-diameter that we
consider in the case of diam-UB (|V | − 2) is many orders of mag-
nitudes greater than the actual value, which translates in a signif-
icant increase of the number of samples. But even in the case of
this crude vertex-diameter approximation (diam-UB), the VC algo-
rithm performs uniformly faster than BP. In the case where the
exact value of the diameter was used, we can see that our algorithm
computes an estimation of the betweenness that satisfies the desired
accuracy and confidence guarantees 3 to 5 times faster than BP. In
Fig. 4a we study the directed graph p2p-Gnutella30 and we present
the measurements of the average running time of the algorithms for
different values of ε, using the exact algorithm from [8] as base-
line. The VC algorithm requires significantly less time than the
BP algorithm. The figure also shows that there are values of ε for
which BP takes more time than the exact algorithm, because the

420

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
10

−5

10
−4

10
−3

10
−2

epsilon

A
b

s
o

lu
te

 e
s
ti

m
a
ti

o
n

 e
rr

o
r

p2p−Gnutella30−d, |V|=36,682, |E|=88,328, δ=0.1, runs=5

Avg (diam−UB)

Avg+Stddev (diam−UB)

Max (diam−UB)

Avg (diam−exact)

Avg+Stddev (diam−exact)

Max (diam−exact)

(a) p2p-Gnutella30 (directed)

0 0.01 0.020.02 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.110.110.03

10
−4

10
−3

10
−2

10
−1

epsilon

A
b

s
o

lu
te

 e
s
ti

m
a
ti

o
n

 e
rr

o
r

email−Enron−u,|V|=36,692,|E|=367,662,δ=0.1,runs= 5

Avg (diam−2approx)

Avg+Stddev (diam−2approx)

Max (diam−2approx)

(b) email-Enron (undirected)

Figure 3: Betweenness estimation error |b̃(v)− b(v)| evaluation for directed and undirected graphs

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10

−1

10
0

10
1

10
2

10
3

epsilon

R
u

n
n

in
g

 T
im

e
 (

s
e
c
o

n
d

s
)

p2p−Gnutella30−d, |V|=36,682, |E|=88,328, δ=0.1, runs=5

VC (diam−exact)

VC (diam−UB)

BP

Exact

(a) p2p-Gnutella30 (directed)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

10
1

10
2

10
3

epsilon

R
u

n
n

in
g

 T
im

e
 (

s
e
c
o

n
d

s
)

email−Enron−u,|V|=36,692,|E|=367,662,δ= 0.1,runs= 5

VC (diam−2approx)

BP

Exact

(b) email-Enron (undirected)

Figure 4: Running time (seconds) comparison between VC, BP, and the exact algorithm.

resulting sample size is larger than the graph size. Given that VC
uses fewer samples and does fewer operations per sample, it can
be used with lower ε than BP, while still saving time compared to
the exact computation. Figure 4b shows the average running time
of the algorithms for the undirected graph email-Enron. The be-
havior is similar to that for the undirected case. Algorithm 1 is
faster than BP for two reasons, both originating from from our use
of results from the VC-dimension theory: 1) we use a significantly
smaller amount of samples and 2) VC performs the same amount of
computations per sample as BP only in the worst case. Indeed our
algorithm needs only to find the shortest path between a sampled
pair of vertices, whereas the algorithms from [10, 15] need to com-
pute the shortest paths between a sampled source and all the other
vertices. In our experimental evaluation we found out that the run-
ning time of the algorithms is directly proportional to the number
of edges touched during the shortest path computation. The use of
bidirectional A* search [19, 30] can help in lowering the number of
touched edges for VC and therefore the runtime of our algorithm
(BP would not benefit from this improvement). We plan to explore
this in future work.

6.3 Scalability
In Sect. 5.3 we argued about the reasons why Algorithm 1 is

more scalable than BP, while still offering the same approxima-
tion guarantees. To evaluate our argument in practice, we created

a number of graphs of increasing size (1,000 to 100,000 vertices)
using the Barabási-Albert [5] and run the algorithms on them, mea-
suring their running time. We report the results in Fig. 5. The most-
scalable algorithm would be completely independent from the size
(number of vertices) of the graph, corresponding to a flat (horizon-
tal) line in the plot. Therefore, the less steep the line, the more
independent from the network size would be the corresponding al-
gorithm. From the figure, we can appreciate that this is the case for
VC, which is much more scalable and independent from the size of
the sample than BP. This is very important, as today’s networks are
not only huge, but they also grow rapidly, and algorithms to mine
them must scale well with graph size.

7. CONCLUSIONS
In this work we presented two random-sampling-based algorithms

for accurately and efficiently estimate the betweenness centrality of
the (top-K) vertices in a graph, with high probability. Our algo-
rithms are based on a novel application of VC-dimension theory,
and therefore take a different approach than previous ones achiev-
ing the same guarantees [10, 15, 18]. The number of samples
needed to approximate the betweenness with the desired accuracy
and confidence does not depend on the number of vertices in the
graph, but rather on a characteristic quantity of the network that we
call vertex-diameter. In some cases, the sample size is completely
independent from any property of the graph. Our algorithms per-

421

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

200

400

600

800

1000

1200

1400

Number of Vertices

R
u

n
n

in
g

 T
im

e
 (

s
e
c
o

n
d

s
)

Undirected Random Barabasi−Albert Graphs, ε=0.02, δ=0.1, runs=5

VC (diam−2approx)

BP

Figure 5: Scalability on random [5] graphs.

form much less work than previously presented methods. As a con-
sequence, they are much faster and scalable, as verified in the exten-
sive experimental evaluation using many real and artificial graphs.
In future work we would like to explore the possibility of using
bidirectional A* search [19, 30] to further speed up our algorithms.

Acknowledgements. This project was supported, in part, by the
National Science Foundation under award IIS-1247581. We are
thankful to Eli Upfal for his guidance and to the anonymous re-
viewers whose comments helped us improving this work.

8. REFERENCES
[1] I. Abraham et al. VC-dimension and shortest path algorithms.

ICALP’11, 2011.

[2] D. Aingworth et al. Fast estimation of diameter and shortest
paths (without matrix multiplication). SIAM J. on Comput.,
28(4):1167–1181, 1999.

[3] J. M. Anthonisse. The rush in a directed graph. TR BN 9/71,
Stichting Mathematisch Centrum, Amsterdam, Netherlands,
1971.

[4] D. A. Bader et al. Approximating betweenness centrality.
WAW’07, 2007.

[5] A.-L. Barabási and R. Albert. Emergence of scaling in ran-
dom networks. Science, 286(5439):509–512, 1999.

[6] K. Boitmanis et al. Fast and simple approximation of the di-
ameter and radius of a graph. WEA’06, 2006.

[7] S. P. Borgatti and M. G. Everett. A graph-theoretic perspec-
tive on centrality. Soc. Net., 28(4):466–484, 2006.

[8] U. Brandes. A faster algorithm for betweenness centrality. J.
Math. Sociol., 25(2):163–177, 2001.

[9] U. Brandes. On variants of shortest-path betweenness central-
ity and their generic computation. Soc. Net., 30(2):136–145,
2008.

[10] U. Brandes and C. Pich. Centrality estimation in large net-
works. Intl. J. Bifurc. and Chaos, 17(07):2303–2318, 2007.

[11] G. Csárdi and T. Nepusz. The igraph software package for
complex network research. InterJournal, Complex Sys.:1695,
2006. URL http://igraph.sf.net.

[12] S. Dolev et al. Routing betweenness centrality. J. ACM, 57
(4):25:1–25:27, May 2010.

[13] D. Eppstein and J. Wang. Fast approximation of centrality.
J. Graph Alg. and Appl., 8(1):39–45, 2004.

[14] L. C. Freeman. A set of measures of centrality based on be-
tweenness. Sociometry, 40:35–41, 1977.

[15] R. Geisberger et al. Better approximation of betweenness cen-
trality. ALENEX’08, 2008.

[16] S. Har-Peled and M. Sharir. Relative (p, ε)-approximations
in geometry. Discr. & Comput. Geom., 45(3):462–496, 2011.

[17] W. Hoeffding. Probability inequalities for sums of bounded
random variables. J. Am. Stat. Assoc., 58(301):13–30, 1963.

[18] R. Jacob et al. Algorithms for centrality indices. LNCS, 3418:
62–82, 2005.

[19] H. Kaindl and G. Kainz. Bidirectional heuristic search recon-
sidered. J. Artif. Intell. Res., 7:283–317, 1997.

[20] Kourtellis et al. Identifying high betweenness centrality nodes
in large social networks. Soc. Net. Analysis and Mining, pages
1–16, 2012.

[21] Kranakis et al. The VC-dimension of set systems defined by
graphs. Discr. Appl. Math., 77(3):237–257, 1997.

[22] Y. Li et al. Improved bounds on the sample complexity of
learning. J. Comp. and Sys. Sci., 62(3):516–527, 2001.

[23] Y.-s. Lim et al. Online estimating the k central nodes of a
network. NSW’11, 2011

[24] M. Löffler and J. M. Phillips. Shape fitting on point sets with
probability distributions. ESA’09, 2009.

[25] A. Maiya and T. Berger-Wolf. Online sampling of high cen-
trality individuals in social networks. PAKDD’10, 2010.

[26] M. Mitzenmacher and E. Upfal. Probability and Computing:
Randomized Algorithms and Probabilistic Analysis. Cam-
bridge University Press, 2005.

[27] M. Mohri et al. Foundations of Machine Learning. The MIT
Press, 2012.

[28] M. E. J. Newman. Networks - An Introduction. Oxford Uni-
versity Press, 2010.

[29] J. Pfeffer and K. M. Carley. k-centralities: local approxima-
tions of global measures based on shortest paths. WWW’12,
2012.

[30] I. Pohl. Bidirectional Heuristic Search in Path Problems. PhD
thesis, Stanford University, 1969.

[31] M. Riondato and E. M. Kornaropoulos Fast Approximation
of Betweenness Centrality through Sampling. (extended
version) http://cs.brown.edu/~matteo/papers/
RiondatoKornarop-BetweennessSampling.pdf,
2013.

[32] L. Roditty and V. V. Williams. Approximating the diameter
of a graph. CoRR abs/1207.3622, 2012.

[33] A. E. Sariyüce et al. Shattering and compressing networks for
betweenness centrality. SDM’13, 2013.

[34] V. N. Vapnik and A. J. Chervonenkis. On the uniform conver-
gence of relative frequencies of events to their probabilities.
Theory of Prob. and its Appl., 16(2):264–280, 1971.

422

