
Fast Approximation Algorithms for the Diameter and
Radius of Sparse Graphs

Liam Roditty
∗

Bar Ilan University
liam.roditty@biu.ac.il

Virginia Vassilevska Williams
†

UC Berkeley and Stanford University
virgi@eecs.berkeley.edu

ABSTRACT
The diameter and the radius of a graph are fundamental
topological parameters that have many important practi-
cal applications in real world networks. The fastest com-
binatorial algorithm for both parameters works by solving
the all-pairs shortest paths problem (APSP) and has a run-

ning time of Õ(mn) in m-edge, n-node graphs. In a seminal
paper, Aingworth, Chekuri, Indyk and Motwani [SODA’96
and SICOMP’99] presented an algorithm that computes in

Õ(m
√
n+ n2) time an estimate D̂ for the diameter D, such

that �2/3D� ≤ D̂ ≤ D. Their paper spawned a long line of
research on approximate APSP. For the specific problem of
diameter approximation, however, no improvement has been
achieved in over 15 years.

Our paper presents the first improvement over the diame-
ter approximation algorithm of Aingworth et al. , producing
an algorithm with the same estimate but with an expected

running time of Õ(m
√
n). We thus show that for all sparse

enough graphs, the diameter can be 3/2-approximated in
o(n2) time. Our algorithm is obtained using a surprisingly
simple method of neighborhood depth estimation that is
strong enough to also approximate, in the same running
time, the radius and more generally, all of the eccentrici-
ties, i.e. for every node the distance to its furthest node.

We also provide strong evidence that our diameter approx-
imation result may be hard to improve. We show that if for
some constant ε > 0 there is an O(m2−ε) time (3/2 − ε)-
approximation algorithm for the diameter of undirected un-
weighted graphs, then there is an O∗((2 − δ)n) time algo-
rithm for CNF-SAT on n variables for constant δ > 0, and
the strong exponential time hypothesis of [Impagliazzo, Pa-
turi, Zane JCSS’01] is false.

∗Work supported by the Israel Science Foundation (grant
no. 822/10).
†Partially supported by NSF Grants CCF-0830797 and
CCF-1118083 at UC Berkeley, and by NSF Grants IIS-
0963478 and IIS-0904325, and an AFOSR MURI Grant, at
Stanford University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’13, June 1 - 4, 2013, Palo Alto, California, USA.
Copyright 2013 ACM 978-1-4503-2029-0/13/06 ...$15.00.

Motivated by this negative result, we give several im-
proved diameter approximation algorithms for special cases.
We show for instance that for unweighted graphs of constant
diameter D not divisible by 3, there is an O(m2−ε) time al-
gorithm that gives a (3/2 − ε) approximation for constant
ε > 0. This is interesting since the diameter approximation
problem is hardest to solve for small D.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]; G.2.2
[Graph Theory]: Graph algorithms

Keywords
graph diameter; approximation algorithm; shortest paths

1. INTRODUCTION
The diameter and the radius are two of the most basic

graph parameters. The diameter of a graph is the largest
distance between its vertices. The center of a graph is a ver-
tex that minimizes the maximum distance to all other nodes,
and the radius is the distance from the center to the node
furthest from it. Being able to compute the diameter, center
and radius of a graph efficiently has become an increasingly
important problem in the analysis of large networks [35].
The diameter of the web graph for instance is the largest
number of clicks necessary to get from one document to an-
other, and Albert et al. were able to show experimentally
that it is roughly 19 [2]. The problem of computing a center
vertex and the radius of a graph is often studied as a facility
location problem for networks: pick a single vertex facility
so that the maximum distance from a demand point (client)
in the network is minimized.

The algorithmic complexity of the diameter and radius
problems is very well-studied. For special classes of graphs
there are efficient algorithms [21, 19, 15, 11, 12, 5]. E.g. the
radius in chordal graphs can be found in linear time. How-
ever, for general graphs with arbitrary edge weights, the
only known algorithms computing the diameter and radius
exactly compute the distance between every pair of vertices
in the graph, thus solving the all-pairs shortest paths prob-
lem (APSP).

For dense directed unweighted graphs, one can compute
both the diameter and the radius using fast matrix multipli-
cation (this is folklore; for a recent simple algorithm see [17]),

thus obtaining Õ(nω) time algorithms, where ω < 2.38 is the
matrix multiplication exponent [14, 33, 34] and n is the num-
ber of nodes in the graph. It is not known whether APSP

515

in such graphs can be solved in Õ(nω) time – the best al-
gorithm is by Zwick [36] running in O(n2.54) time [25], and
hence for directed unweighted graphs diameter and radius
can be solved somewhat faster than APSP. For undirected
unweighted graphs the best known algorithm for diameter
and radius is Seidel’s Õ(nω) time APSP algorithm [32].
For sparse directed or undirected unweighted graphs, the

best known algorithm (ignoring poly-logarithmic factors)1

for APSP, diameter and radius, does breadth-first search
(BFS) from every node and hence runs in O(mn) time,
where m is the number of edges in the graph. For sparse
graphs with m = O(n), the running time is Θ(n2) which
is natural for APSP since the algorithm needs to output n2

distances. However, for the diameter and the radius the out-
put is a single integer, and it is not immediately clear why
one should spend Ω(n2) time to compute them.
A natural question is whether one can get substantially

faster diameter and radius algorithms by settling for an ap-
proximation. It is well-known that a 2-approximation for
both the diameter and the radius in an undirected graph
is easy to achieve in O(m + n) time using BFS from an
arbitrary node. On the other hand, for APSP, Dor et al.
[18] show that any (2 − ε)-approximation algorithm in un-
weighted undirected graphs running in T (n) time would im-
ply an O(T (n)) time algorithm for Boolean matrix multi-
plication (BMM). Hence apriori it could be that (2 − ε)-
approximating the diameter and radius of a graph may also
require solving BMM.

In a seminal paper from 1996, Aingworth et al. [1] showed
that it is in fact possible to get a subcubic (2− ε) - approx-
imation algorithm for the diameter in both directed and
undirected graphs without resorting to fast matrix multi-
plication. They designed an Õ(m

√
n + n2) time algorithm

computing an estimate D̂ that satisfies �2D/3� ≤ D̂ ≤ D.
Their algorithm has several important and interesting prop-
erties. It is the only known algorithm for approximating
the diameter polynomially faster than O(mn) for every m
that is superlinear in n. It always runs in truly subcubic
time even in dense graphs, and does not explicitly compute
all-pairs approximate shortest paths.

For the radius problem, Berman and Kasiviswanathan [6]
showed that the approach of Aingworth et al. can be used
to obtain in Õ(m

√
n+ n2) time an estimate r̂ that satisfies

r ≤ r̂ ≤ 3/2r, where r is the radius of the graph. Thus

both radius and diameter admit Õ(m
√
n + n2) time 3/2-

approximations.
Aingworth et al. also presented an algorithm that com-

putes an additive 2-approximation for the APSP problem

in Õ(n2.5) time, that is for every u, v ∈ V the algorithm re-

turns a value d̂(u, v) such that d(u, v) ≤ d̂(u, v) ≤ d(u, v)+2,
where d(u, v) is the distance between u and v. Their pa-
per spawned a long line of research on distance approxi-
mation. However, none of the following works considered
the specific problems of diameter and radius approxima-
tion, but rather focused on approximation algorithms for
APSP. Dor, Helperin, and Zwick [18] presented an additive
2-approximation for APSP in unweighted undirected graphs

with a running time of Õ(min{n3/2m1/2, n7/3}), thus im-
proving on Aingworth et al. ’s APSP approximation algo-
rithm. Baswana et al. [3] presented an algorithm for un-

1Chan [10] and Blelloch et al. [8] presented algorithms with
O(mn/poly log n) running times.

weighted undirected graphs with an expected running time
of O(m2/3n log n + n2) that computes an approximation of
all distances with a multiplicative error of 2 and an additive
error of 1. Elkin [20] presented an algorithm for unweighted
undirected graphs with a running time of O(mnρ + n2ζ)
that approximates the distances with a multiplicative error
of (1 + ε) and an additive error that is a function of ζ, ρ
and ε. Cohen and Zwick [13] extended the results of [18]
to weighted graphs. Baswana and Kavitha [4] presented an

Õ(m
√
n+n2) time multiplicative 2-approximation algorithm

and an Õ(m2/3n+n2) time 7/3-approximation algorithm for
APSP in weighted undirected graphs.

Since Aingworth et al. ’s paper, the only paper that con-
siders the diameter approximation problem directly is by
Boitmanis et al. [9]. They presented an algorithm with

Õ(m
√
n) running time that computes the diameter with an

additive error of
√
n. Although such an additive error could

be small for graphs with large diameter, it is prohibitive
when it comes to graphs with small diameter.

A simple random sampling argument shows that for all

graphs with diameter at least nδ, there is an Õ(mn1−δ/ε)
time (1 + ε)-approximation algorithm for all ε > 0. Hence
diameter approximation is hardest for graphs with small di-
ameter. For such graphs the additive approximation of Boit-
manis et al. presents no significant approximation guarantee.

Our contributions.
We give the first improvement over the diameter approxi-

mation algorithm of Aingworth et al. for sparse graphs. We
present an algorithm with a slightly better approximation

and an expected running time of Õ(m
√
n). This is always

faster than runtime of [1] for m = o(n1.5).

Theorem 1. Let G = (V,E) be a directed or an undi-
rected unweighted graph with diameter D = 3h + z, where

h ≥ 0 and z ∈ {0, 1, 2}. In Õ(m
√
n) expected time one can

compute an estimate D̂ of D such that 2h+ z ≤ D̂ ≤ D for
z ∈ {0, 1} and 2h+ 1 ≤ D̂ ≤ D for z = 2.

We obtain our efficient algorithm by a surprisingly simple
node sampling technique that allows us to replace an expen-
sive neighborhood computation with a cheap estimate.

The diameter and radius are the maximum and minimum
eccentricities in the graph, respectively. In an unweighted
graph, the eccentricity of a vertex is the distance to its fur-
thest node. Our techniques are general enough that we can
obtain good estimates of all n eccentricities in an undirected

unweighted graph in Õ(m
√
n) time. We prove:

Theorem 2. Let G = (V,E) be an undirected unweighted

graph with diameter D and radius r. In Õ(m
√
n) expected

time one can compute for every node v ∈ V an estimate ê(v)
of its eccentricity ecc(v) such that:

max{r, 2/3ecc(v)} ≤ ê(v) ≤ min{D, 3/2ecc(v)}.

We note that until now the only known approximation al-
gorithm for all node eccentricities that runs in o(n2) time
for sparse graphs is the simple 2-approximation algorithm
for radius and diameter that runs BFS from a single node.
That algorithm only achieves estimates ê(v) for which

max{r, ecc(v)/2} ≤ ê(v) ≤ min{D, 2ecc(v)}.

516

Our approximation algorithm for radius follows directly
from Theorem 2 by taking r̂ = minv ê(v). We obtain:

Theorem 3. In Õ(m
√
n) expected time one can compute

an estimate r̂ of the radius r of an undirected unweighted
graph such that r ≤ r̂ ≤ 3/2r.

Our diameter, radius and eccentricity algorithms natu-
rally extend to graphs with nonnegative edge weights, simi-
lar to the algorithm of Aingworth et al.
A natural question is whether there is an almost linear

time approximation scheme for the diameter problem: an al-
gorithm that for any constant ε > 0 runs in Õ(m) time and

returns an estimate D̂ such that (1− ε)D ≤ D̂ ≤ D. Bern-
stein [7] showed that related problems in directed graphs
such as the second shortest path between two nodes and
the replacement paths problem admit such approximation
schemes. Such an algorithm for diameter would be of im-
mense interest, and has not so far been explicitly ruled out,
even conditionally.

Here we give strong evidence that a fast (3/2 − ε) - di-
ameter approximation algorithm may be very hard to find,
even for undirected unweighted graphs. We prove:

Theorem 4. Suppose there is a constant ε > 0 so that
there is a (3/2 − ε)-approximation algorithm for the diam-
eter in m-edge undirected unweighted graphs that runs in
O(m2−ε) time for every m. Then, SAT for CNF formulas
on n variables can be solved in O∗((2 − δ)n) time for some
constant δ > 0.

The fastest known algorithm for CNF-SAT is the exhaus-
tive search algorithm that runs in O∗(2n) time by trying all
possible 2n assignments to the variables. It is a major open
problem whether there is a faster algorithm. Several other
NP-hard problems are known to be equivalent to CNF-SAT
so that if one of these problems has a faster algorithm than
exhaustive search, then all of them do [16]. Hence, our result
has the following surprising implication: if the diameter can
be approximated fast enough, then problems such as Hitting
Set, Set Splitting, or NAE-SAT, all seemingly unrelated to
the diameter, can be solved faster than exhaustive search.

The strong exponential time hypothesis (SETH) of Im-
pagliazzo, Paturi, and Zane [23, 24] implies that there is no
improved O∗((2 − δ)n) time algorithm for CNF-SAT, and
hence our result also implies that there is no (3/2 − ε)-
approximation algorithm for the diameter approximation
running in O(m2−ε) time unless SETH fails. (We elaborate
on this hypothesis later on in the paper.)

We prove Theorem 4 by showing that any O(n2−ε) time
algorithm that distinguishes whether the diameter of a given
sparse (m = O(n)) undirected unweighted graph is 2 or at
least 3 would imply an improved CNF-SAT algorithm. This
implies that unless SETH fails, O(n2) time is essentially re-
quired to get a (3/2−ε)-approximation algorithm for the di-

ameter in sparse graphs, within no(1) factors. Hence, within
no(1) factors, the time for (3/2 − ε)-approximating the di-
ameter in a sparse graph is the same as the time required
for computing APSP exactly!

In their paper, Aingworth et al. showed that one can dis-

tinguish between graphs of diameter 2 and 4 in Õ(m
√
n)

time, whereas we show that distinguishing between 2 and
3 fast may be difficult. We further explore which graph

diameters can be efficiently distinguished, and prove the fol-
lowing two theorems that improve upon the approximation
of Aingworth et al. algorithm.

Theorem 5. Let G = (V,E) be a directed or undirected
unweighted graph with diameter D = 3h + z, where h ≥ 0
and z ∈ {0, 1, 2}. There is an Õ(m2/3n4/3) time algorithm

that reports an estimate D̂ such that 2h+ z ≤ D̂ ≤ D.

Theorem 6. There is an Õ(m2/3n4/3) time algorithm that
when run on an undirected unweighted graph with diameter
D, reports an estimate D̂ with �4D/5� ≤ D̂ ≤ D.

Theorem 5 shows for instance that one can efficiently dis-
tinguish between directed or undirected graphs of diameter
3 and 5, and Theorem 6 obtains a 5/4-approximation for
the diameter that runs in O(mn/nε) time for some constant
ε > 0 in all undirected graphs with a superlinear number of
edges. The previous best approximation quality achievable
polynomially faster than O(mn) time for such graphs was
Aingworth et al. ’s 3/2-approximation.

We further investigate whether one can ever obtain a (3/2−
ε)-approximation for the diameter in O(m2−ε) time, and
show that this is indeed possible for graphs with constant
diameter that is not divisible by 3. This is intriguing since,
as we pointed out earlier, the diameter approximation prob-
lem is hardest for graphs with small diameter. We prove:

Theorem 7. There is an Õ(m2−1/(2h+3)) time determin-

istic algorithm that computes an estimate D̂ with 	2D/3
 ≤
D̂ ≤ D for all m-edge unweighted graphs of diameter D =
3h+z with h ≥ 0 and z ∈ {0, 1, 2}. In particular, D̂ ≥ 2h+z.

Notation.
Let G = (V,E) denote a graph. It can be directed or

undirected; this will be specified in each context. If the
graph is weighted, then there is a function on the edges
w : E → Q+ ∪ {0}. Unless explicitly specified, the graphs
we consider are unweighted.

For any u, v ∈ V , let d(u, v) denote the distance from u

to v in G. Let BFSin(v) and BFSout(v) be the incoming
and outgoing breadth-first search (BFS) trees of v, respec-
tively, that is the BFS trees starting at v in G and in G with

the edges reversed. Let din(v) be the depth of BFSin(v),

i.e. the largest distance from a vertex of BFSin(v) to v.

Similarly, let dout(v) be the depth of BFSout(v).
In an unweighted graph, the eccentricity of a vertex v de-

noted with ecc(v) is the depth of its BFS tree BFS(v). In
a weighted graph, the eccentricity ecc(v) of v is the max-
imum over all u ∈ V of d(v, u). The radius of a graph is
r = minv∈V ecc(v), and the diameter is D = maxv∈V ecc(v).

For h ≤ din(v), let BFSin(v, h) be the vertices in the

first h levels of BFSin(v). Similarly, for h ≤ dout(v),

let BFSout(v, h) be the vertices in the first h levels of

BFSout(v).

Let N in
s (v) (Nout

s (v)) be the set of the s closest incoming
(outgoing) vertices of v, where ties are broken by taking the
vertex with the smaller id. We assume throughout the paper

that for each v and each s ≤ n, |N in
s (v)| = |Nout

s (v)| = s,
as otherwise the diameter of the graph would be ∞, and this
can be checked with two BFS runs from and to an arbitrary
node. For undirected graphs Ns(v) = N IN

s (v) = NOUT
s (v).

517

Let dins (v) be the largest distance from a vertex of N in
s (v)

to v, and douts (v) be the largest distance from v to a ver-

tex of Nout
s (v). Let dins = maxv∈V dins (v) and douts =

maxv∈V douts (v).
For a set S ⊆ V and a vertex v ∈ V we define pS(v) to

be a vertex of S such that d(v, pS(v)) ≤ d(v, w) for every
w ∈ S, i.e. the closest vertex of S to v.

For a degree Δ we define pΔ(v) to be the closest vertex
to v of degree at least Δ, that is, d(v, pΔ(v)) ≤ d(v, w) for
every w ∈ V of degree at least Δ.

We use the following standard notation for running times.
For a function of n, f(n), Õ(f(n)) denotes O(f(n)poly log n)
and O∗(f(n)) denotes O(f(n)poly(n)).

We write whp to mean with high probability, i.e. with
probability at least 1− 1/poly(n).

2. DIAMETER
In this section we present the proof of Theorem 1. We

first revisit the algorithm of Aingworth et al. and tighten
its approximation analysis. We then present our new neigh-
borhood estimation approach that is at the basis of our im-
proved algorithm.

2.1 The algorithm of Aingworth et al.

The algorithm of Aingworth, Chekuri, Indyk and Mot-
wani [1], computes a (roughly) 3/2-approximation of the di-

ameter of a directed (or undirected) graph in Õ(m
√
n+n2)

time. Let s be a given parameter in [1, n]. The algorithm

works as follows. First, it computes Nout
s (v) for every v ∈

V . Then, for a vertex w, where douts (w) = douts it com-

putes BFSout(w) and for every u ∈ Nout
s (w) it computes

BFSin(u). Next, it computes a set S that hits Nout
s (v) for

every v ∈ V and for every u ∈ S it computes BFSout(u).
As an estimate, the algorithm returns the depth of the deep-
est computed BFS tree. The next lemma appears in [1]. We
state it for completeness.

Lemma 1. The algorithm runtime is Õ(ns2+(n/s+s)m).

Aingworth et al. set s =
√
n and obtain their running

time. We note that if one sets s = m1/3 instead, one can

get a runtime of Õ(m2/3n) that is better for sparse graphs;
we later show that both of these runtimes can be improved
using our new method.

We now analyze the quality of the estimate returned by
the algorithm. Aingworth et al. [1] proved that this estimate
is at least �2D/3� in graphs with diameter D. Here we
present a tighter analysis.

Lemma 2. Let G = (V,E) be a directed graph with diam-

eter D = 3h+z, where h ≥ 0 and z ∈ {0, 1, 2}. Let D̂ be the
estimate returned by the algorithm. For z ∈ {0, 1}, we have

2h+ z ≤ D̂ ≤ D. For z = 2, we have that 2h+ 1 ≤ D̂ ≤ D.

Proof. Let a, b ∈ V such that d(a, b) = D. First notice
that the algorithm always returns the depth of some shortest
paths tree and hence D̂ ≤ D.

If douts (w) ≤ h then also douts (a) ≤ h and as S hits

Nout
s (a), one of the BFS trees computed for vertices of S

has depth at least 2h+ z. Hence, assume that douts (w) > h.

We can also assume that dout(w) < 2h + z as otherwise

when we compute BFSout(w), the estimate would become
at least 2h+ z.

As dout(w) < 2h + z, also d(w, b) < 2h + z. Since

douts (w) > h, we have that BFSout(w, h) ⊆ Nout
s (w).

Hence there is a vertex w′ ∈ Nout
s (w) on the path from w to

b such that d(w,w′) = h and hence d(w′, b) < h + z. Since
d(a, b) = 3h+z, we must have that d(a,w′) ≥ 2h+1. As the

algorithm computes BFSin(u) for every u ∈ Nout
s (w), in

particular, it computes BFSin(w′), and returns an estimate
≥ 2h + 1. For z ∈ {0, 1}, d(a,w′) ≥ 2h + 1 ≥ 2h + z and
hence the final estimate returned is always at least 2h + z.
For z = 2 we only have that d(a,w′) ≥ 2h+ 1 and if the al-
gorithm returns d(a,w′) as an estimate, it may return 2h+1
instead of 2h+ z. �

2.2 Improving the running time
The algorithm of Aingworth et al. [1] runs in Õ(ns2 +

(n/s + s)m). In this section we show how to get rid of
the ns2 term with some randomization, while keeping the
quality of the estimate unchanged. By choosing s =

√
n, we

get an algorithm running in Õ(m
√
n) time.

The term of ns2 in the running time comes from the com-

putation of Nout
s (v) for every v ∈ V . This computation is

done to accomplish two tasks. One task is to obtain douts (v)
for every v ∈ V and then to use it to find a vertex w such

that douts (w) = douts . A second task is to obtain, deter-

ministically, a hitting set S of size Õ(n/s) that hits the set

Nout
s (v) of every v ∈ V .
Our main idea is to accomplish these two tasks without

explicitly computing Nout
s (v) for every v ∈ V . The major

step in our approach is to completely modify the first task
above by picking a different type of vertex to play the role of
w. Making the second task above fast can be accomplished
easily with randomization. We elaborate on this below.

Our algorithm works as follows. First, it computes a hit-
ting set by using randomization, that is, it picks a random
sample S of the vertices of size Θ(n/s log n). This guaran-
tees that with high probability (at least 1 − n−c, for some

constant c), S ∩ Nout
s (v) �= ∅, for every v ∈ V . This ac-

complishes the second task above in Õ(n) time, with high
probability. Similarly to the algorithm of Aingworth et al.

[1], our algorithm computes BFSout(v), for every v ∈ S.
We now explain the main idea of our algorithm, i.e. how

to replace the first task above with a much faster step. First,
for every v ∈ V our algorithm computes the closest node of
S, pS(v), to v, by creating a new graph as follows. It adds
an additional vertex r with edges (u, r), for every u ∈ S. It

computes BFSin(r) in this graph. It is easy to see that for
every v ∈ V the last vertex before r on the shortest path
from v to r is pS(v). This step takes O(m) time.
Now, the crucial point of our algorithm is that, as op-

posed to the algorithm of Aingworth et al. that picks a

vertex w such that douts (w) = douts , our algorithm finds
a vertex w ∈ V that is furthest away from S: i.e. such
that d(w, pS(w)) ≥ d(u, pS(u)), for every u ∈ V . The vertex
w plays the same role as its counterpart in [1]: Our algo-

rithm computes BFSout(w) and obtains Nout
s (w) from it.

Finally, it computes BFSin(u) for every u ∈ Nout
s (w). As

an estimate, the algorithm returns the depth of the deepest
BFS tree that it has computed.

518

In the next Lemma we analyze the running time of the
algorithm.

Lemma 3. The algorithm runtime is Õ((n/s+ s)m).

Proof. A hitting set S is formed in Õ(n) time. With a
single BFS computation, in O(m) time, we find pS(v) for
every v ∈ V , and hence also find w. The cost of computing

a BFS tree for every v ∈ S ∪Nout
s (w) is Õ((n/s+ s)m). �

Next, we show that the estimate produced by our algo-
rithm is of the same quality as the estimate produced by
Aingworth et al. algorithm, whp.

Lemma 4. Let G = (V,E) be a directed (or undirected)
graph with diameter D = 3h + z, where h ≥ 0 and z ∈
{0, 1, 2}. Let D̂ be the estimate returned by the above algo-

rithm. With high probability, 2h + z ≤ D̂ ≤ D whenever
z ∈ {0, 1}, and 2h+ 1 ≤ D̂ ≤ D whenever z = 2.

Proof. Let a, b ∈ V such that d(a, b) = D. Let w be a
vertex that satisfies d(w, pS(w)) ≥ d(u, pS(u)), ∀u ∈ V .
If d(w, pS(w)) ≤ h then also d(a, pS(a)) ≤ h. As the

algorithm computes BFSout(v) for every v ∈ S, it follows

that BFSout(pS(a)) is computed as well and its depth is at
least 2h+ z as required. Hence, assume that d(w, pS(w)) >

h. We can assume also that dout(w) < 2h + z since the

algorithm computes BFSout(w) and if dout(w) ≥ 2h + z
then it computes a BFS tree of depth at least 2h+ z.

Since dout(w) < 2h + z it follows that d(w, b) < 2h + z.

Moreover, since d(w, pS(w)) > h and S hits Nout
s (w) whp,

we must have that Nout
s (w) contains a node at distance > h

from w, and hence BFSout(w, h) ⊆ Nout
s (w). This implies

that there is a vertex w′ ∈ Nout
s (w) on the path from w to

b such that d(w,w′) = h and hence d(w′, b) < h + z. Since
d(a, b) = 3h+ z, we also have that d(a,w′) ≥ 2h+ 1.

The algorithm computesBFSin(u) for every u ∈ Nout
s (w),

and in particular, it computes BFSin(w′), thus returning an
estimate at least d(a,w′) ≥ 2h+1. Hence for z ∈ {0, 1} the
final estimate is always ≥ 2h+ z, and for z = 2 the estimate
could be 2h+ 1 but no less. �

We now turn to prove Theorem 1 from the introduction.

Reminder of Theorem 1 Let G = (V,E) be a directed
or an undirected graph with diameter D = 3h + z, where

h ≥ 0 and z ∈ {0, 1, 2}. In Õ(m
√
n) expected time one can

compute an estimate D̂ of D such that 2h+ z ≤ D̂ ≤ D for
z ∈ {0, 1} and 2h+ 1 ≤ D̂ ≤ D for z = 2.

Proof. From Lemma 3 we have that if we set s =
√
n the

algorithm runs in Õ(m
√
n) worst case time. From Lemma 4

we have that whp, the algorithm returns an estimate of the
desired quality. We now show how to convert the algorithm
into a Las-Vegas one so that it always returns an estimate

of the desired quality but the running time is Õ(m
√
n) in

expectation.
Randomization is used only in order to obtain a set that

hits Nout
s (v) for every v ∈ V . The only place that the

hitting set affects the quality of the approximation is in
Lemma 4 where we used the fact that, whp, S contains a

node of Nout
s (w), so that if d(w, S) > h, Nout

s (w) contains
a node at distance > h from w.

Algorithm 1: Approx-Ecc(G)

Let S be a random sample of Θ(n/s log n) nodes.
Let w be such that d(w, pS(w)) ≥ d(u, pS(u)) for all
u ∈ V .
foreach x ∈ Ns(w) ∪ S do

BFS(x).

foreach v ∈ V do
if d(v, vt) ≤ d(vt, w) then

ê(v) = max{maxq∈S d(v, q), d(v, w), ecc(vt)}
else

ê(v) =
max{maxq∈S d(v, q), d(v, w),minq∈S ecc(s)}

Note that the algorithm computes Nout
s (w) and we can

check whether S intersects it in Õ(s) time. If it does not,
we can rerun the algorithm until we have verified that S ∩
Nout

s (w) �= ∅. In each run, S∩Nout
s (w) = ∅ holds with very

small probability: S is large enough so that whp it intersects
the s-neighborhoods of all n vertices of the graph. Thus, the

expected running time of the algorithm is Õ(m
√
n) and its

estimate is guaranteed to have the required quality. �

Just as in [1], our algorithm works for graphs with non-
negative weights as well by replacing every use of BFS with
Dijkstra’s algorithm. The proofs are analogous, the running
time is increased by at most a log n factor, and the quality of
the approximation only suffers an additive W term, where
W is the maximum edge weight in the graph. (The same
approximation quality is achieved by Aingworth et al. but

with an Õ(m
√
n+ n2) running time.) We obtain:

Theorem 8. Let G = (V,E) be a directed or an undi-
rected graph with nonnegative edge weights at most W and

diameter D. In Õ(m
√
n) expected time one can compute an

estimate D̂ of D such that �2D/3−W � < D̂ ≤ D.

3. ECCENTRICITIES
In this section we show that our method can be generalized

to compute for every vertex v in an undirected unweighted
graph, a good approximation ê(v) of its eccentricity ecc(v).
We prove Theorem 2.

Reminder of Theorem 2 Let G = (V,E) be an undirected

graph with diameter D and radius r. In Õ(m
√
n) expected

time one can compute for every node v ∈ V an estimate ê(v)
of its eccentricity ecc(v) such that:

max{r, 2/3ecc(v)} ≤ ê(v) ≤ min{D, 3/2ecc(v)}.

We note that our eccentricities algorithm can also be made
to work for undirected graphs with nonnegative weights at
most W by again using Dijkstra’s algorithm in place of

BFS. Then the running time is still Õ(m
√
n) and the ap-

proximation quality becomes 2/3ecc(v) − 2W < ê(v) <
3/2ecc(v) +W .

One can immediately obtain our 3/2-approximation of the
radius in unweighted undirected graphs stated in Theorem 3
as a corollary to Theorem 2 by taking r̂ = minv ê(v). For
this choice, r̂ ≥ r, and r̂ ≤ minv 3/2ecc(v) = 3/2r.

519

The algorithm starts similarly to the algorithm for diam-
eter. It first picks a random set S on O(

√
n log n) nodes,

and finds the vertex w furthest from S. Then it computes
all BFS trees for the vertices of S ∪Ns(w) for s =

√
n. Let

vt ∈ Ns(w) be the closest vertex to v on the shortest path
between w and v. Such a vertex exists since w ∈ Ns(w),
and for every v it can be computed during the computation
of the BFS tree from w.

The main idea in computing estimates for the eccentric-
ities is to compare between d(v, vt) and d(vt, w) for each
v. Let e′(v) = max{maxq∈S d(v, q), d(v, w)}. The algorithm
sets ê(v) as follows:

ê(v) =

{
max{e′(v), ecc(vt)} if d(v, vt) ≤ d(vt, w)
max{e′(v),minq∈S ecc(s)} if d(v, vt) > d(vt, w)

The algorithm is presented in Algorithm 1. It is straight-

forward to see that it runs in Õ(m
√
n) time when s is set to√

n. In the next three lemmas we prove the bounds on the
approximation.

Lemma 5. For every v ∈ V , ê(v) ≤ 3/2ecc(v).

Proof. We divide the proof into two cases:
Case 1: [d(v, vt) ≤ d(vt, w)] In this case we only need

to show that ecc(vt) ≤ 3/2ecc(v) as maxq∈S d(v, q) ≤ ecc(v)
and d(v, w) ≤ ecc(v). Since d(v, vt) ≤ d(vt, w), it follows
that d(v, vt) ≤ d(v, w)/2, and hence d(v, vt) ≤ ecc(v)/2.
From the triangle inequality we have ecc(vt) ≤ d(vt, v) +
ecc(v), thus, d(vt) ≤ 3/2ecc(v).

Case 2: [d(v, vt) > d(vt, w)] We only need to show that
minq∈S d(q) ≤ 3/2ecc(v). Since d(v, vt) > d(vt, w), we must
have d(vt, w) < d(v, w)/2 ≤ ecc(v)/2.
Now, since S hits the set Ns(w) with high probability, ev-

ery node at distance < d(w, S) from w is in Ns(w). Consider
the node v′t that is after vt on the shortest path between w
and v. Since vt is the closest node to v on the shortest path
between w and v that belongs to Ns(w) it follows that v′t /∈
Ns(w). Moreover, since d(w, v′t) = d(w, vt)+1 it follows that
d(w, v′t) ≤ ecc(v)/2, and so if d(w, S) > ecc(v)/2, then v′t ∈
Ns(w) which would be a contradiction. Hence d(w, S) ≤
ecc(v)/2. But as w is the vertex that is furthest from S,
d(w, S) ≥ d(v, S) and it follows that d(v, S) ≤ ecc(v)/2.
Now if d(v, q′) = d(v, S) and q′′ = argminq∈S ecc(q), then

ecc(q′′) ≤ ecc(q′) ≤ d(q′, v) + ecc(v) ≤ 3/2ecc(v). �

Lemma 6. For every v ∈ V , ê(v) ≥ 2/3ecc(v).

Proof. If maxq∈S d(v, q) ≥ 2/3ecc(v) then we are done
since our estimate is always at least as large as this. Hence
assume that for all q ∈ S, d(v, q) < 2/3ecc(v). Let xv be
the other endpoint of the eccentricity path from v. Then,
d(S, xv) > ecc(v)/3 since ecc(v) ≤ d(v, q)+d(q, xv) < 2/3ecc(v)
+d(q, xv) for all q ∈ S. Since w is the furthest node from S,
we must also have d(w, S) > ecc(v)/3. Since S hits Ns(w)
with high probability, all nodes at distance ≤ ecc(v)/3 from
w must be in Ns(w). Hence, d(w, vt) ≥ ecc(v)/3.

Now we have two cases:
Case 1: [d(v, vt) > d(vt, w)] Here we return an estimate

that is at least d(v, w) = d(v, vt) + d(vt, w) > 2d(vt, w) ≥
2/3ecc(v).

Case 2: [d(v, vt) ≤ d(vt, w)] Here d(v, vt) = d(v, w) −
d(vt, w) ≤ d(v, w)−ecc(v)/3. Since we are done if d(v, w) ≥
2/3ecc(v), assume that d(v, w) < 2/3ecc(v), and so d(v, vt) ≤
ecc(v)/3. By the triangle inequality, ecc(vt) ≥ ecc(v) −
d(v, vt) ≥ 2/3ecc(v). �

Lemma 7. For every v ∈ V , ê(v) ∈ [r,D].

Proof. In all cases, we return a distance in the graph,
so that ê(v) ≤ D. Moreover, our algorithm works in such a
way that for every v ∈ V there exists a vertex v′ ∈ V such
that ê(v) ≥ ecc(v′), hence, ê(v) ≥ r. �

4. HARDNESS UNDER SETH
Impagliazzo, Paturi, and Zane [23, 24] introduced the Ex-

ponential Time Hypothesis (ETH) and its stronger variant,
the Strong Exponential Time Hypothesis (SETH). These
two complexity hypotheses assume lower bounds on how
fast satisfiability problems can be solved. They have fre-
quently been used as a basis for conditional lower bounds for
other concrete computational problems. ETH states that
3-SAT on n variables and m clauses cannot be solved in
2δnpoly(m,n) time for some δ > 0.

A natural question is how fast can one solve r-SAT as r
grows. Impagliazzo, Paturi, and Zane define:

sr = inf{δ | ∃O∗(2δn) time algorithm solving

r-SAT instances with n variables},
and s∞ = limr→∞ sr.
The sequence sr is clearly nondecreasing. Impagliazzo,

Paturi, and Zane show that if ETH holds, then sr also in-
creases infinitely often. Furthermore, all known algorithms
for r-SAT nowadays take time O(2n(1−c/r)) for some con-
stant c independent of n and r (e.g. [22, 26, 28, 27, 30, 31]).
Because of this, it seems plausible that s∞ = 1, and this is
exactly the strong exponential time hypothesis.

Hypothesis 1 ([23, 24]). SETH: s∞ = 1.

One immediate consequence of SETH is that CNF-SAT
on n variables cannot be solved in 2n(1−ε)poly(n) time for
any ε > 0. The best known algorithm for CNF-SAT is
the O∗(2n) time exhaustive search algorithm which tries all
possible 2n assignments to the variables, and it has been a
major open problem to obtain an improvement. Cygan et
al. [16] showed that SETH is also equivalent to the assump-
tion that several other NP-hard problems cannot be solved
faster than by exhaustive search, and the best algorithms
for these problems are the exhaustive search ones.

Assuming SETH, one can prove tight conditional lower
bounds on the complexity of some problems in P as well.
Pǎtraşcu and Williams [29] give several tight lower bounds
(matching the known upper bounds) for problems such as
k-dominating set (for any constant k ≥ 3), 2SAT with two
extra unrestricted length clauses, and HornSAT with k extra
unrestricted length clauses.

For constant k, k-dominating set is defined as follows:
given an undirected graph G = (V,E), is there a set S of k
vertices so that every vertex v ∈ V is either in S or has an
edge to some vertex in S?

The best algorithm for k-dominating set for k ≥ 7 runs
in nk+o(1) time, and obtaining O(nk−ε) time would break
SETH [29]. The k-dominating set problem is well-studied
in the area of fixed-parameter complexity. It is complete
for W[2], and improving on the nk+o(1) running time is a
major open problem. In this section we will prove that fast
diameter approximation in sparse graphs would not only fal-
sify SETH, but that it would imply faster algorithms for k-

520

dominating set as well, a problem that could be potentially
harder than CNF-SAT. 2

Theorem 9. Suppose one can distinguish between diam-
eter 2 and 3 in an m-edge undirected unweighted graph in
time O(m2−ε) for some constant ε > 0. Then for all inte-
gers k ≥ 2/ε, 2k-dominating set can be solved in O∗(n2k−ε)
time. Moreover, CNF-SAT on n variables and m clauses is
in O(2n(1−ε/2)poly(m,n)) time, and SETH is false.

Remark: Theorem 9 immediately implies Theorem 4 in
the introduction, as any (3/2− ε)-approximation algorithm
can distinguish between diameter 2 and 3.

Proof. Given an instance G = (V,E) of 2k-Dominating
set for constant k, we construct an instance of the 2 vs 3
diameter problem and we show that 2k-Dominating set in
n-node graphs can be solved in O∗(n2k−δ) time for some
constant δ > 0 depending on ε.

Take all k-subsets of the vertices in V and add a node for
each of them to the 2 vs 3 instance G′. Add a node for every
vertex in V – call this set of nodes V ′ and make V ′ into a
clique.

For every k-subset S of vertices of V , connect S to v ∈ V ′

in G′ iff S does not dominate v in G. While we do this
we check whether each S is a k-dominating set in G, and if
so, we stop. From now on we can assume that none of the
k-subsets S are dominating sets in G.

Now, notice that if S and T are two k-subsets so that
their union is not a (≤ 2k)-dominating set in G, then the
distance in G′ between S and T is 2: there is some u that
is dominated by neither S nor T and so S − u− T is a path
of length 2. If, on the other hand, S ∪ T is a dominating
set in G, then there is no such path and the shortest path
between S and T in G′ is to go from S to some v that S
doesn’t dominate, then to some u that T doesn’t dominate
(V ′ is a clique) and then from u to T .
The distance between any u and v in V ′ is 1, and the

distance between any u and any S is at most 2: go from u
to some node v that S doesn’t dominate and then to S.

Hence, if there is no 2k-dominating set in G, then the
diameter of G′ is 2, and if there is one, then the diameter
of G′ is 3. G′ has

(
n
k

)
+ n nodes and at most O(n · (n

k

)
) ≤

O(nk+1) edges.
Since we can solve the diameter problem in O(m2−ε) time,

applying that algorithm to G′ solves 2k-dominating set in G
for any k ≥ 2 in time O(n2k+2−εk−ε).
We want this to be O(n2k−δ) for some δ > 0, so it suffices

to pick k so that −δ ≥ 2− ε(k + 1). If we want δ = ε, then
k ≥ 2/ε suffices.
To prove the statement for CNF-SAT, one can apply the

reduction from [29], and one would obtain that a O(n2−ε)
time algorithm for diameter approximation would imply an

O∗(2n(1−ε2/4)) time algorithm for CNF-SAT. Here we show
a direct reduction from CNF-SAT to diameter that gives the
runtime given in the theorem.

Given an instance of CNF-SAT on n variables and m
clauses, we first partition the variables into two sets S1 and
S2 on n/2 variables each. Create a vertex for every one

of the 2n/2 partial assignments to the variables in S1 and

2Pǎtraşcu and Williams [29] are able to show that improv-
ing the runtime for k-dominating set can be reduced to im-
proving the known algorithms for a problem related to CNF-
SAT, but that problem could still be harder than CNF-SAT.

similarly a vertex for every assignment to the variables in
S2. Create two nodes t1 and t2 and add an edge to ti from
each assignment to the variables of Si. Create a node for
every clause, and connect all clause nodes together with t1
and t2 into a clique of size m + 2. Then, similarly to the
reduction from k-dominating set, connect every assignment
node to the clauses that it does not satisfy. Now, this graph
has diameter 3 iff there are two partial assignments, φ1 to
S1 and φ2 to S2 that together form a satisfying assignment
to the CNF formula, i.e. the distance between φ1 and φ2 in
the graph is 3 iff they form a satisfying assignment, and all
other node distances are ≤ 2. The graph has O(m + 2n/2)

nodes and O(m2n/2) edges. The statement follows. �

5. IMPROVED APPROXIMATIONS
In this section we show that in some cases it is possible to

obtain fast (3/2 − ε)-approximations for the diameter. We
present two algorithms, one works well for dense graphs and
the other for sparse graphs.

5.1 Dense graphs
Here we prove Theorems 5 and 6. Both theorems rely

on algorithm Approx-Diam(G) that works as follows. First,
it runs the Aingworth et al. algorithm both on the input
graph G and on the input graph with the edge directions
reversed, GR. Let D̂ be the maximum value returned by
these two runs. A byproduct of this step is that for ev-

ery v ∈ V we have computed BFSout(v, douts (v) − 1) and

BFSin(v, dins (v)− 1). Next, the algorithm scans all pairs of
vertices u and v and checks whether the following condition

holds: BFSout(u, douts (u)−1) and BFSin(v, dins (v)−1) are

disjoint and there is no edge between BFSout(u, douts (u)−
1) and BFSin(v, dins (v) − 1). Given vertices u and v for

which the condition holds, the algorithm updates D̂ to be the

maximum between its current value and douts (u) + dins (v).
We start by showing that the estimate reported by the

algorithm is upper-bounded by the graph diameter.

Lemma 8. Let G = (V,E) be a graph of diameter D. If

D̂ = Approx-Diam(G), then D̂ ≤ D.

Proof. If Approx-Diam(G) returns the value that it gets
from one of the runs of Aingworth et al. algorithm then
the claim follows from Lemma 2. If the algorithm reports

douts (u) + dins (v) for some pair of vertices u, v ∈ V it is

because there is no edge from BFSout(u, douts (u) − 1) to

BFSin(v, dins (v) − 1), and no vertex in common between
the two trees. This means that there is no path of length at

most douts (u) + dins (v)− 1 from u to v, and hence, any path
from u to v, and in particular the shortest one, is of length

at least douts (u) + dins (v) ≤ D as required. �

Next, we lower-bound the diameter estimate D̂.

Lemma 9. Let G = (V,E) be a graph of diameter D =

3h + z, where h ≥ 1 and z ∈ {0, 1, 2}. If D̂ = Approx-

Diam(G) then 2h+ z ≤ D̂ ≤ 3h+ z.

Proof. Let a, b ∈ V such that d(a, b) = D. Running the
algorithm of Aingworth et al. for G and the reverse GR of
G implies that we get an approximation of 2h + z in the
following cases.

521

Case 1: [z �= 2]. From Lemma 2, we have that the esti-
mate is at least 2h+ z.

Case 2: [douts (a) ≤ h or dins (b) ≤ h]. If douts (a) ≤ h then
the hitting set computed by the Aingworth et al. algorithm
contains a vertex at distance at most h from a and hence
one of the BFS trees that it computes has depth at least
2h + z. Running the algorithm on GR guarantees that the

same holds when dins (b) ≤ h.

Case 3: [∃w ∈ V s.t. douts (w) ≥ h + 2]. In this case let

w be the vertex with the largest douts (w) value. The Aing-

worth et al. algorithm computes BFSout(w). If dout(w) ≥
2h + 2 then the claim holds so assume that dout(w) ≤
2h + 1. The algorithm computes BFSin(v) for every v ∈
BFSout(w, h+ 1) and since d(w, b) ≤ 2h+ 1 there is a ver-

tex w′ ∈ BFSout(w, h + 1) such that d(w′, b) ≤ h. As the

algorithm computes BFSin(w′) and d(a,w′) ≥ 2h + z the
claim holds.

For the rest of the proof we assume that the three cases

above do not hold, hence, z = 2, douts (a) = h + 1 and

dins (b) = h + 1. The second part of our algorithm searches
for a pair of vertices u, v ∈ V such that there is no edge from

BFSout(u, douts (u) − 1) to BFSin(v, dins (v) − 1) (and no
vertex in common between the two trees). As D = d(a, b) =

3h + 2 > 2h + 1, and douts (a) − 1 = h and dins (b) − 1 = h,

we have that there is no edge from BFSout(a, douts (a)− 1)

to BFSin(b, dins (b)− 1) (and no vertex in common between
the two trees). Since the estimate reported by the algorithm

is the maximum among values that also include douts (a) +

dins (b) = 2h+ 2, we get that D̂ ≥ 2h+ 2, as required. �

Reminder of Theorem 5 Let G = (V,E) be a directed
or undirected unweighted graph with diameter D = 3h + z,
where h ≥ 0 and z ∈ {0, 1, 2}. There is an Õ(m2/3n4/3) time

algorithm that reports an estimate D̂ with 2h+z ≤ D̂ ≤ D.

Proof. The bounds on the estimate follow from Lemma 9
and Lemma 8. Running the algorithm of Aingworth et al.

takes Õ(m(s + n/s) + ns2) time. Finding a pair of ver-

tices u, v ∈ V such that there is no edge from BFSout(u,

douts (u) − 1) to BFSin(v, dins (v) − 1) takes O(n2s2) time.

Setting s = (m/n)1/3 gives us the running time. �

We can use Theorem 5 to obtain an even better approxi-
mation for undirected graphs.

Reminder of Theorem 6 There is an Õ(m2/3n4/3) time
algorithm that in undirected unweighted graphs with diame-
ter D, reports an estimate D̂ with �4D/5� ≤ D̂ ≤ D.

Proof. Using [18] we compute the distances between ev-
ery pair of vertices in the graph, with an additive error of 2 in
O(min(n3/2√m,n7/3)) time. If D̂ is the maximum distance

minus 2 then D−2 ≤ D̂ ≤ D. For every D ≥ 6 we have that
D − 2 ≥ �4/5D�. Thus, when D̂ ≥ 4 we get an estimate of

at least �4D/5�. If D̂ = 3 then D might be either 3, 4 or 5,
that is, D = 3 + z, where z ∈ {0, 1, 2}. If D = 5, an esti-
mate of 3 is not good enough, thus we run Approx-Diam(G).
Let D′ be the estimate reported by Approx-Diam(G). From
Lemma 9 it follows that if D = 5 then D′ ≥ 4 and we
have the required approximation. If D̂ = 2 then D might

be either 2, 3 or 4, and for this case we can just use the
Aingworth et al. algorithm to get an estimate of 3 whenever
D = 4 which gives the desired approximation. �

5.2 Sparse graphs
We now show that for graphs of constant diameter, it is

sometimes possible to obtain a better than 3/2-approximation

in Õ(m2−ε) time for constant ε > 0.

Our result is based on algorithm Approx-Diam-Sparse(G, h̃).

This algorithm is given an estimate h̃ of h so that h̃ ≥ h and
works as follows. Let Δ be a parameter and let H be the
set of vertices of outdegree at least Δ. For every vertex of
H, the algorithm computes an outgoing BFS tree. Then,
it computes the distance from every node in V \ H to H.
This is done by adding an extra node r to the graph with
edges from each node of H to r and then computing an in-
coming BFS to r in O(m) time. The distance of a node
v to H is its distance to r, minus 1. The algorithm then
picks the vertex w that is furthest from H and computes

BFSout(w). Let h′ = min{h̃+ 1, d(w,H)}. The algorithm

computes BFSin(v) for every v ∈ BFSout(w, h′). Finally,
it returns the maximum depth of all computed BFS trees.

We now analyze the quality of the approximation.

Lemma 10. Let G = (V,E) be a graph of constant di-

ameter D = 3h + z, where h ≥ 0 and z ∈ {0, 1, 2}. If D̂ =

Approx-Diam-Sparse(G, h̃) for h̃ ≥ h, then 2h+z ≤ D̂ ≤ D.

Proof. First notice, that in any case the algorithm re-
turns the depth of some BFS tree in the graph, thus D̂ ≤ D.

Now, let a, b ∈ V such that d(a, b) = D and let H ⊆ V be
the set of vertices of outdegree at least Δ. Let yo ∈ H be the
vertex with the deepest outgoing BFS in H. Let yi be the
vertex with the deepest incoming BFS among the vertices of

BFSout(w, h′), where h′ = min{h̃+ 1, d(w,H)}. The algo-

rithm returns as an estimate max(dout(yo), dout(w), din(yi)).

If d(a,H) ≤ h, then dout(yo) is at least 2h + z and the
estimate is of the desired quality. So assume that d(a,H) >
h, and hence d(w,H) ≥ d(a,H) ≥ h + 1. Thus h′ ≥ h + 1,

as we also have h̃ ≥ h by assumption. Assume also that

BFSout(w) is of depth at most 2h + z − 1 as if it is of
depth at least 2h + z then the estimate is of the desired

quality. Then, there is a vertex w′ ∈ BFSout(w, h′) on the
shortest path from w to b with d(w,w′) = h + 1 and hence
d(w′, b) ≤ h+ z − 2. As d(a, b) = 3h+ z, we must also have

d(a, w′) ≥ 2h + 2 and as din(yi) ≥ d(a,w′), the estimate is
of the desired quality. �

Next, we analyze the running time of the algorithm.

Lemma 11. Let G = (V,E) be a graph of diameter D =

3h + z, where h ≥ 0 and z ∈ {0, 1, 2}. If h̃ ≥ h, Approx-

Diam-Sparse(G, h̃) runs in O(m2/Δ+Δh̃+1m) time.

Proof. The algorithm computes a BFS tree for every
vertex of H. |H| = O(m/Δ) since there are at most that
many vertices of outdegree at least Δ. Hence the BFS com-
putation from H takes O(m2/Δ) time.

Computing the distances of the nodes in V \H to H takes
only O(m) time. Picking the node w at largest distance to

H takes O(n) time. The algorithm computes BFSout(w)

in O(m) time. It then computes BFSin(v) for every v ∈

522

BFSout(w, h′) where h′ ≤ h̃ + 1. Since we also have that

h′ ≤ d(w,H), every v ∈ BFSout(w, h′ − 1) has outde-

gree at most Δ. Thus, |BFSout(w, h′)| ≤ Δh′ ≤ Δh̃+1.

The running time of computing BFSin(v) for every v ∈
BFSout(w, h′) is hence at most O(mΔh̃+1). �

We now prove Theorem 7 from the introduction.

Reminder of Theorem 7 There is an Õ(m2−1/(2h+3))

time deterministic algorithm that computes an estimate D̂
with 	2D/3
 ≤ D̂ ≤ D for all m-edge unweighted graphs
of diameter D = 3h + z with h ≥ 0 and z ∈ {0, 1, 2}. In

particular, D̂ ≥ 2h+ z.

Proof. In O(m) time we can get a 2-approximation to
the diameter, i.e. an estimate E with D/2 ≤ E ≤ D. Since
D = 3h + z, we have that (E − 2)/3 ≤ h ≤ 2E/3. Setting

h̃ = 2E/3 guarantees that h ≤ h̃ ≤ 2h+ 4/3 < 2h+ 2, and

hence h ≤ h̃ ≤ 2h+ 1.
The quality of the estimate follows from Lemma 10 and by

Lemma 11, the runtime is O(m2/Δ+mΔ2h+2). Picking Δ =

m1/(2h+3) minimizes the running time at O(m2−1/(2h+3)). �

Acknowledgements.
The first author wants to thank Edith Cohen, Haim Ka-

plan and Yahav Nussbaum for fruitful discussions on the
problem. The second author wants to thank Bob Tarjan for
asking whether there is an almost linear time approxima-
tion scheme for the diameter, and Ryan Williams for many
discussions on the hardness of diameter and SETH.

6. REFERENCES
[1] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani.

Fast estimation of diameter and shortest paths
(without matrix multiplication). SIAM J. Comput.,
28(4):1167–1181, 1999.

[2] R. Albert, H. Jeong, and A.L. Barabasi. Diameter of
the world wide web. Nature, 401:130 – 131, 1999.

[3] S. Baswana, V. Goyal, and S. Sen. All-pairs nearly
2-approximate shortest paths in o(n2poly log n) time.
Theor. Comput. Sci., 410(1):84–93, 2009.

[4] S. Baswana and T. Kavitha. Faster algorithms for
all-pairs approximate shortest paths in undirected
graphs. SIAM J. Comput., 39(7):2865–2896, 2010.

[5] B. Ben-Moshe, B. K. Bhattacharya, Q. Shi, and
A. Tamir. Efficient algorithms for center problems in
cactus networks. Theoretical Computer Science,
378(3):237 – 252, 2007.

[6] P. Berman and S. P. Kasiviswanathan. Faster
approximation of distances in graphs. In Proc. WADS,
pages 541–552, 2007.

[7] A. Bernstein. A nearly optimal algorithm for
approximating replacement paths and k shortest
simple paths in general graphs. In Proc. SODA, pages
742–755, 2010.

[8] G. Blelloch, V. Vassilevska, and R. Williams. A new
combinatorial approach to sparse graph problems. In
Proc. ICALP, pages 108–120, 2008.

[9] K. Boitmanis, K. Freivalds, P. Ledins, and
R. Opmanis. Fast and simple approximation of the
diameter and radius of a graph. In WEA, pages
98–108, 2006.

[10] T. M. Chan. All-pairs shortest paths for unweighted
undirected graphs in o(mn) time. ACM Transactions
on Algorithms, 8(4):34, 2012.

[11] V. Chepoi, F. Dragan, and Y. Vaxès. Center and
diameter problems in plane triangulations and
quadrangulations. In Proc. SODA, pages 346–355,
2002.

[12] V. Chepoi and F. F. Dragan. A linear-time algorithm
for finding a central vertex of a chordal graph. In
ESA, pages 159–170, 1994.

[13] E. Cohen and U. Zwick. All-pairs small-stretch paths.
J. Algorithms, 38(2):335–353, 2001.

[14] D. Coppersmith and S. Winograd. Matrix
multiplication via arithmetic progressions. J. Symbolic
Computation, 9(3):251–280, 1990.

[15] D.G. Corneil, F.F. Dragan, M. Habib, and C. Paul.
Diameter determination on restricted graph families.
Discr. Appl. Math., 113:143 – 166, 2001.

[16] M. Cygan, H. Dell, D. Lokshtanov, D. Marx,
J. Nederlof, Y. Okamoto, R. Paturi, S. Saurabh, and
M. Wahlstrom. On problems as hard as CNFSAT. In
Proc. CCC, pages 74–84, 2012.

[17] M. Cygan, H. N. Gabow, and P. Sankowski.
Algorithmic applications of baur-strassen’s theorem:
Shortest cycles, diameter and matchings. In Proc.
FOCS, 2012.

[18] D. Dor, S. Halperin, and U. Zwick. All-pairs almost
shortest paths. SIAM J. Comput., 29(5):1740–1759,
2000.

[19] D. Dvir and G. Handler. The absolute center of a
network. Networks, 43:109 – 118, 2004.

[20] M. Elkin. Computing almost shortest paths. ACM
Transactions on Algorithms, 1(2):283–323, 2005.

[21] S.L. Hakimi. Optimum location of switching centers
and absolute centers and medians of a graph. Oper.
Res., 12:450 – 459, 1964.

[22] E. A. Hirsch. Two new upper bounds for SAT. In
Proc. SODA, pages 521–530, 1998.

[23] R. Impagliazzo and R. Paturi. On the complexity of
k-SAT. J. Comput. Syst. Sci., 62:367–375, 2001.

[24] R. Impagliazzo, R. Paturi, and F. Zane. Which
problems have strongly exponential complexity? J.
Comput. Syst. Sci., 63:512–530, 2001.

[25] F. Le Gall. Faster algorithms for rectangular matrix
multiplication. In Proc. FOCS, 2012.

[26] B. Monien and E. Speckenmeyer. Solving satisfiability
in less than 2n steps. Discrete Applied Mathematics,
10(3):287 – 295, 1985.

[27] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An
improved exponential-time algorithm for k-SAT. J.
ACM, 52(3):337–364, 2005.

[28] R. Paturi, P. Pudlák, and F. Zane. Satisfiability coding
lemma. Chicago J. Theor. Comput. Sci., 1999, 1999.

[29] M. Pǎtraşcu and R. Williams. On the possibility of
faster SAT algorithms. In Proc. SODA, pages
1065–1075, 2010.

[30] I. Schiermeyer. Solving 3-satisfiability in less then
1.579n steps. In CSL, pages 379–394, 1992.

[31] U. Schöning. A probabilistic algorithm for k-SAT and
constraint satisfaction problems. In Proc. FOCS,
pages 410–414, 1999.

523

[32] R. Seidel. On the all-pairs-shortest-path problem in
unweighted undirected graphs. J. Comput. Syst. Sci.,
51(3):400–403, 1995.

[33] A. Stothers. On the complexity of matrix
multiplication. Ph.D. Thesis, U. Edinburgh, 2010.

[34] V. Vassilevska Williams. Multiplying matrices faster
than Coppersmith-Winograd. In Proc. STOC, 2012.
To appear.

[35] D. J. Watts and S. H. Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393:440–442, 1998.

[36] U. Zwick. All pairs shortest paths using bridging sets
and rectangular matrix multiplication. J. ACM,
49(3):289–317, 2002.

524

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

