
Components, Partitioning and Clustering

Vincenzo Bonifaci

March 28, 2017

1 Cliques, density, and k-cores

See the slides.

2 Independent paths and k-connectivity

Two paths between u and v are node-independent (or node-disjoint) if they do not share any node
except for u and v.

Two paths between u and v are edge-independent (or edge-disjoint) if they do not share any edge. If
two paths between u and v are node-independent, they are also edge-independent, but the reverse is
not true.

The number of independent paths between two nodes is called the connectivity of the two vertices. It
can be thought as a measure of how strongly connected the two nodes are.

A node cut set for u and v is a set of nodes whose removal disconnects u from v. Similarly, an edge
cut set for u and v is a set of edges whose removal disconnects u from v. A minimum cut set for u
and v is the smallest cut set that disconnects u and v. A minimum cut set need not be unique.

Theorem 2.1 (Menger’s Theorem). If there is no cut set of size less than k between a given pair of
nodes, then there are at least k independent paths between the same nodes.

Note that the theorem is true for both situations: 1) comparing edge cut sets to edge indepedent
paths, and 2) comparing node cut sets to node independent paths.

Therefore, the size of the minimum node (respectively, edge) cut set that disconnects a given pair of
nodes in a network is equal to the node (respectively, edge) connectivity of the same nodes.

Menger’s Theorem is closely related to the maximum flow / minimum cut theorem, which applies to
networks where the edges have weights (often also called capacities). In this case, a minimum edge
cut set is an edge cut set with the smallest sum of weights that separates a given pair of nodes.

Theorem 2.2 (Max-flow/min-cut Theorem). The maximum flow between a given pair of nodes in a
network is equal to the sum of the weights on the edges of the minimum edge cut set that separates the
same two nodes.

1

3 GRAPH BIPARTITIONING 2

A maximum flow in a weighted graph (with rational weights) can be computed relatively efficiently.
For example, in time O(m2n) with the Edmonds-Karp algorithm, or in time O(mF), where F is the
maximum flow value, with the Ford-Fulkerson algorithm.

The maximum flow algorithms can, in particular, be used to determine the edge connectivity between
any two vertices s and t: apply the algorithm to a network where the capacity of every edge is 1; the
value of the maximum flow between s and t will be the value of the edge connectivity between s and
t.

To determine vertex connectivity, we can use the following reduction to the edge connectivity problem.
Assume that the graph is directed (if it is not, first replace each edge by two opposite directed
edges). Then replace every node with two nodes separated by a directed edge; all original incoming
edges connect to the first of these two, and all outgoing edges to the second. The value of the edge
connectivity between s and t in the new digraph is equal to the value of the node connectivity in the
original graph.

Exercise 2.1. Prove that the edge and vertex connectivity between two nodes of a simple connected
graph (that is, without repeated edges) can both be computed in time O(mn). Hint: use the Ford-
Fulkerson algorithm.

3 Graph bipartitioning

In the graph bipartitioning problem we want to divide a graph into two parts of prescribed sizes n1
and n2. The goal is to minimize the number of edges cut by the resulting partition. This problem is
NP-hard, so here we discuss some heuristics.

3.1 Local search: the Kernighan-Lin heuristic

A popular approach is the Kernighan-Lin heuristic, which is a local-search type algorithm. Let e(S, T)
be the size of a partition (S, T) (our objective function). This is the algorithm:

1. Start with an arbitrary partition of the nodes into two sets S, T of size n1, n2 respectively (for
example, a random one). Initially, all nodes are unmarked. A new “round” of the algorithm
starts. Let S∗ := S, T ∗ := T .

2. Find the unmarked pair (u, v) ∈ S × T , such that swapping u and v decreases the cut size the
most. Then swap u and v:

S := S \ {u} ∪ {v},

T := T \ {v} ∪ {u}.

(Note: we perform the swap even if the decrease is negative, that is, it is actually an increase in
cut size). Also, mark u and v.

3. If e(S, T) < e(S∗, T ∗), set S∗ := S, T ∗ := T .

3 GRAPH BIPARTITIONING 3

4. If there are more unmarked pairs, go back to step 2. When no swappable unmarked pair exists,
the round ends. Go back to 1., but instead of starting with a random partition, start with
(S∗, T ∗).

5. The algorithm ends when e(S∗, T ∗) stops decreasing, or after a maximum number r of rounds.

How do we implement the algorithm efficiently? Let’s consider these values for (u, v) ∈ S × T :
δS(u) (the degree of u within S), δT (u), δS(v), δT (v), and Auv (the entry of the adjacency matrix
corresponding to the pair (u, v)). We call δS(u) the internal degree of node u, while δT (u) is its
external degree. For v ∈ T , δS(v) is the external degree and δT (v) is the internal degree. We can show
the following.

Lemma 3.1. The decrease in cut size when swapping the unmarked pair (u, v) ∈ S × T is exactly

δT (u)− δS(u) + δS(v)− δT (v)− 2Auv.

Proof. Let C be the cost due to all edges between S and T that are not incident to u or v. Then

costold = C + δT (u) + δS(v)−Auv,

while
costnew = C + δS(u) + δT (v) +Auv.

So, costold − costnew = δT (u)− δS(u) + δS(v)− δT (v)− 2Auv.

Thus, to implement step 2 of the algorithm, we keep track of the difference between external degree
and internal degree of each node:

∆(z)
def
=

{
δT (z)− δS(z) if z ∈ S,
δS(z)− δT (z) if z ∈ T.

The Lemma says that if we swap u and v, the decrease in the objective function is

costold − costnew = ∆(u) + ∆(v)− 2Auv. (1)

The ∆ values can be computed at the beginning of each round in O(n) time for each node (O(n2)
total). After each swap, we need to update the ∆ values of the (remaining) unmarked nodes, using
the fact that, if z ∈ S is unmarked,

∆new(z) =

{
∆old(z) + 2Auz − 2Avz if z ∈ S,
∆old(z)− 2Auz + 2Avz if z ∈ T.

Recomputing each such value costs O(1) time; so we use O(n−k) time after k pairs have been swapped,
since we only recompute the values for the O(n− k) unmarked nodes. In one round, the total update
time grows as

n− 1 + n− 2 + . . .+ 2 + 1 = O(n2).

3 GRAPH BIPARTITIONING 4

Every round we swap at most n/2 pairs. Each time, to identify an optimal pair, we evaluate the
expression in Equation (1) for all O(n1n2) = O(n2) unmarked pairs. This gives a total time of O(n3)
per round, or O(rn3) in total for r rounds. With an additional trick, one can get a “typical case”
bound of O(rn2 log n), although in the worst case it is still O(rn3).

The Kernighan-Lin heuristic often produces good quality solutions in practice, but it has no quality
guarantee and it may be quite slow.

3.2 Spectral partitioning

Another popular approach to partitioning uses the matrix properties of the graph Laplacian – in
particular, the second smallest eigenpair. This is why this approach is called spectral partitioning.

Note that, if c : V → {S, T} is the function that assigns every node its “side” (either S or T), we can
write e(S, T) = 1

2

∑
i,j: ci 6=cj

Aij . For i ∈ V , we introduce variables

si =

{
+1 if ci = S

−1 if ci = T.

Note that any such vector s has Euclidean length
√
n, since

∑
i∈V s

2
i = n.

Also, observe that

1

2
(1− sisj) =

{
1 if ci 6= cj

0 if ci = cj .

So we can write

e(S, T) =
1

4

∑
i,j∈V

Aij(1− sisj).

We can rewrite ∑
i,j

Aij =
∑
i

deg(i) =
∑
i

deg(i)s2i =
∑
i,j

deg(i)δijsisj ,

where deg(i) is the degree of i, and δij is the Kronecker symbol: δij = 1 if i = j, δij = 0 if i 6= j.
Therefore

e(S, T) =
1

4

∑
i,j

(deg(i)δij −Aij)sisj =
1

4

∑
i,j

Lijsisj ,

where Lij = deg(i)δij −Aij is the (i, j)-th element of the graph Laplacian matrix. In matrix form,

e(S, T) =
1

4
s>Ls.

In other words, our goal is to minimize the quadratic form s>Ls, subject to si ∈ {−1,+1} for all i,
and

∑
i∈V si = n1 − n2. In general this is NP-hard to optimize exactly. We will take the following

approach: instead of ranging in the set {−1,+1}n, we first allow the vector s to be any vector in Rn

3 GRAPH BIPARTITIONING 5

of total length
√
n (we will later see how to get back to the original domain). That is, we allow s ∈ Rn,

but we require ∑
i∈V

s2i = n.

We also still require that
∑

i si = n1 − n2 as before, which can also be expressed as

1>s = n1 − n2.

We can solve the relaxed problem optimally, by the method of Lagrangian multipliers. The theory
of Lagrangian multipliers tells use that if s ∈ Rn is an optimal solution of the relaxed problem, then
there exist two “multipliers” λ, µ ∈ R such that, for all i,

∂

∂si

∑
j,k

Ljksjsk + λ(n−
∑
j

s2j) + µ

(n1 − n2)−
∑
j

sj

 = 0.

This implies (after redefining µ← µ/2) ∑
j

Lijsj = λsi + µ,

which in matrix notation is
Ls = λs+ µ1.

Recall that 1 is always an eigenvector of L, with eigenvalue 0, so multiplying both sides by 1> gives

0 = λ1>s+ µ1>1 = λ(n1 − n2) + µn,

equivalent to

µ = −n1 − n2
n

λ.

If we define the vector

x
def
= s+

µ

λ
1 = s− n1 − n2

n
1,

then the Lagrangian condition tells us that

Lx = L(s+
µ

λ
1) = Ls = λs+ µ1 = λx,

so λ must be an eigenvalue of L, and x its associated eigenvector! Notice also that

1>x = 1>s− µ

λ
1>1 = (n1 − n2)−

n1 − n2
n

n = 0,

so x should be orthogonal to 1 (so λ cannot be the zero eigenvalue of L!). Other than this, it seems
that we can choose any eigenpair (λ, x) of L, but which one gives the smallest cut? Note that our
objective function satisfies

e(S, T) =
1

4
s>Ls =

1

4
x>Lx =

1

4
λx>x.

3 GRAPH BIPARTITIONING 6

On the other hand,

x>x = s>s+
µ

λ
(s>1 + 1>s) +

µ2

λ2
1>1

= n− 2
n1 − n2

n
(n1 − n2) +

(n1 − n2)2

n2
n

=
(n1 + n2)

2 − (n1 − n2)2

n

= 4
n1n2
n

,

and hence
e(S, T) =

n1n2
n

λ.

Since n1, n2 and n are fixed, it means that the smaller the λ, the better. We know that λ1 = 0 and
0 ≤ λ2 ≤ . . . ≤ λn. We cannot pick λ1 because then x would not be orthogonal to 1. So the optimal
choice is to pick λ2 and its associated eigenvector, v2. That is, we pick x proportional to v2, but scaled
to satisfy x>x = 4n1n2/n. This is indeed the optimal solution to the relaxed problem. In terms of
the vector s,

si = xi +
n1 − n2

n
.

At this point we know the optimal solution of the relaxed problem. However, remember that what
we really wanted is to have si ∈ {−1,+1}. A heuristic to do so is to make the inner product of the
binary vector with the “desired” (but non-binary) vector as large as possible: that is, maximize

s>(x+
n1 − n2

n
1) =

∑
i

si(xi +
n1 − n2

n
).

This is achieved by setting si = +1 for the n1 nodes with largest xi value and si = −1 for the other
n2 nodes.

There is also another natural solution that we can consider: above we assumed that |S| = n1, |T | = n2,
but the symmetric situation is equally valid, therefore we can also assign si = +1 for the n2 nodes
with largest xi value and si = −1 for the other n1 nodes. Clearly, among these solutions we prefer
the one with the smallest cut value. In summary, our heuristic is:

1. Compute the second eigenpair (λ2, v2) of the graph Laplacian.

2. Each element of v2 yields a score for a node of G. Sort the scores.

3. One candidate partition puts the n1 nodes with largest score in S and the others in T .

4. The other candidate partition puts the n1 nodes with smallest score in S and the others in T .

5. Among the two partitions above, return the one with the lower cut value.

3 GRAPH BIPARTITIONING 7

3.3 Bipartitioning without prescribed sizes

Above we assumed that we know the sizes (n1, n2) of the partition that we are looking for. However,
often one does not know n1 and n2 in advance. In this case, it does not make sense to just minimize
e(S, T) – most likely we would get a single node in one of the two partitions. Instead, it is more
appropriate to minimize a value normalized by the partition sizes (to avoid excessive imbalance). One
possibility is the cut ratio, also called sparsity of the cut:

σ(S, T) =
e(S, T)

|S| · |T |
.

Another similar possibility is the conductance of the partition:

φ(S, T) =
e(S, T)

min(vol(S), vol(T))
,

where vol(U) is the sum of the degrees of the nodes in a subset U ⊆ V . The conductance of a graph
G is the minimum conductance of a partition of G:

φG = min
(S,T)

φ(S, T),

where (S, T) ranges over all possible nontrivial partitions of V .

Finding a partition with minimum conductance is still an NP-hard problem. However, it admits a
guaranteed approximation algorithm, based on a spectral partitioning approach similar to the one we
discussed for the case of prescribed sizes. Here is the algorithm:

1. Compute the second eigenpair (λ2, v2) of the normalized graph Laplacian1.

2. Each element of v2 yields a score for a node of G. Sort the scores to obtain an ordering v1, . . . , vn
of the nodes of G.

3. Consider the n− 1 cuts of the form

S = {v1, . . . , vi}, T = {vi+1, . . . , vn}

for i = 1, . . . , n− 1.

4. Return the minimum conductance cut among those n− 1 cuts.

We omit the proof of the following result (for a proof, see F.Chung, ICCM 2007, Theorem 1).

Theorem 3.2. The partition (S, T) found by the above algorithm satisfies

φG ≤ φ(S, T) ≤ 2φ
1/2
G .

1The normalized Laplacian L is obtained by normalizing each row and column of L by the square root of the degree
of the corresponding node. It has entries Lij = −1/

√
deg(i) deg(j) for (i, j) ∈ E, and Lii = 1 on the diagonal.

4 CLUSTERING AND COMMUNITY DETECTION 8

4 Clustering and community detection

4.1 Modularity

Let ci be the class (category) or type of node i. The total number of edges running between nodes of
the same type is ∑

(i,j)∈E

δ(ci, cj) =
1

2

∑
i,j∈V

Aijδ(ci, cj),

where δ(ci, cj) = 1 if ci = cj and 0 otherwise. We compare this quantity with the expected number of
edges between nodes if edges are placed at random. This is

1

2

∑
i,j

kikj
2m

δ(ci, cj),

where ki is the degree of i. The normalized difference between the above two quantities is a measure
of the assortative mixing of the network, called the modularity of the network:

Q =
1

2m

∑
i,j

(
Aij −

kikj
2m

)
δ(ci, cj).

The modularity is a real number between −1 and +1 (why?). A positive modularity implies associative
mixing (nodes of the same kind tend to connect more with each other); a negative modularity implies
dissociative mixing (nodes of the same kind tend to connect less with each other).

4.2 Girvan-Newman

The Girvan-Newman method is a divisive hierarchical clustering algorithm. It produces a sequence
of partitions of the nodes of the graph, where each partition is a refinement of the previous partition.
At the end of the sequence it returns the best partition seen so far.

1. Initially, all nodes have the same type.

2. Compute the modularity. If it is higher than the best modularity computed so far, store this
value (and the corresponding partition).

3. Find the edge(s) of highest betweenness.

4. Remove it (or them) from the graph. If the graph splits into multiple components, this is a level
of regions in the partitioning of the graph: label the components with different types (nodes in
the same component get the same type, nodes in different components get different types).

5. If edges are still present, go back to point 2.

6. At the end, return the partition with highest modularity.

4 CLUSTERING AND COMMUNITY DETECTION 9

4.3 Greedy Modularity Maximization

Since the Girvan-Newman method is based on recomputing the betweennesses of all edges many
times, it can be quite slow. Newman proposed a faster algorithm based on agglomerative hierarchical
clustering.

1. Initially, each node has a distinct type.

2. Compute the modularity. If it is higher than the best modularity computed so far, store this
value (and the corresponding partition).

3. Join the pair of communities that results in the largest increase (or smallest decrease) of modu-
larity. Update the type labels accordingly.

4. If there is still more than one type, go back to point 2.

5. At the end, return the partition with highest modularity.

The algorithm can be implemented faster than Girvan-Newman (see Newman’s 2004 paper for
details; implementing this algorithm and testing it on real network could make for an interesting
project).

4.4 Spectral Modularity Maximization

We can apply a spectral approach to modularity maximization assuming two communities. If si ∈
{−1,+1} is the variable indicating where node i belongs to community 1 or community 2, notice
that (sisj + 1)/2 equals 1 when i and j are in the same group and 0 otherwise, therefore δ(ci, cj) =
(sisj + 1)/2. Define

Bij = Aij −
kikj
2m

,

so the modularity can be written as

Q =
1

4m

∑
i,j

Bij(sisj + 1) =
1

4m

∑
i,j

Bijsisj + 0.

In matrix terms,

Q =
1

4m
s>Bs,

where the n× n matrix B has elements Bij . B is called the modularity matrix.

The problem is again hard given the binary nature of the s vector. So we relax the binary constrain
to allow s ∈ Rn, but we keep the constraint s>s = n.

Using the technique of Lagrangian multipliers, we find there exists β such that for each i,

∂

∂si

∑
j,k

Bjksjsk + β(n−
∑
j

s2j)

 = 0.

4 CLUSTERING AND COMMUNITY DETECTION 10

That is,
∑

j Bijsj = βsi, which in vector form is Bs = βs. So s is an eigenvector of B. The corre-
sponding modularity value is

Q =
1

4m
βs>s =

n

4m
β,

so for maximum modularity we want to have β as large as possible. In other words we want β to
be the largest (most positive) eigenvalue of the matrix B, and the optimal solution to the relaxed
problem is its associated eigenvector u1.

Again, we cannot really set s = u1 in the original problem, because of the binary constraints si ∈
{−1,+1}. But, heuristically, we can maximize s>u1 =

∑
i si(u1)i, i.e. we pick si = +1 if (u1)i > 0

and si = −1 if (u1)i < 0.

A potential issue with the efficiency of this method is that the B matrix is not sparse (differently from
the Laplacian). Indeed, B could have n2 nonzero entries. So, if we apply the power method blindly,
we incur a high cost per iteration. But, the adjacency matrix A is sparse, and note that B differs
from A just by a very special term (that has rank 1):

B = A− kk>

2m
,

where k is the vector of node degrees. So we can still compute a matrix-vector product Bx in O(m+n)
operations, by first computing the number k>x (in O(n) time), and then computing

Bx = Ax− k(k>x)

2m

for a cost of O(m+n). Using the power method, we can then compute u1, in the following way. Note
that u1 is the eigenvector associated to the most positive eigenvalue of B, which may or may not be
the dominant one (the dominant eigenvalue is either the most positive, or the most negative). After
applying the power method once, we obtain a dominant eigenpair (β∗, u∗). If β∗ ≥ 0, then u1 = u∗.
Otherwise, we can compute u1 by applying the power method to the matrix B − β∗I.

Exercise 4.1. Prove that, if β∗ < 0, then u1 is a dominant eigenvector of B − β∗I.

