Community structure: Clusters and partitions

Seminars in Social Networks and Markets

Tightly-knit subgroups

Tightly-knit subgroups

A coauthorship network of physicists and applied mathematicians working on networks

Tightly-knit subgroups

What is a "cluster"?

- The exact notion of "tightly-knit subgroup" may depend on the domain
- But a formal definition is crucial, if we want to identify such regions or clusters
- Let's discuss some of the possibilities

Cliques

- A \boldsymbol{k}-clique is a subset of k nodes forming a complete subgraph

For example,

$\{A, C, D\}$ is a 3-clique
$\{A, D\}$ is a 2-clique

Maximal vs maximum cliques

- A k-clique is maximal if it is not contained in any q-clique with $q>k$
- A k-clique is maximum if there is no q-clique in the graph with $q>k$

$\{A, C, D\}$ is a maximal and
maximum 3-clique
$\{A, D\}$ is a 2-clique but it is not maximal
$\{A, B\}$ is a maximal 2-clique but it is not maximum, because of $\{A, C, D\}$

Finding cliques

- We can look for k-cliques in time $O\left(n^{k} \cdot k^{2}\right)$ by enumerating all subsets of k nodes
- Practical only if k is a very small constant
- In fact, finding a maximum clique is NP-hard, even if we allow approximations!
- Finding a maximal clique is easy:
- Start from any node (a 1-clique!) and greedily try to extend the clique one node at a time

Density of a set of nodes

- The clique definition can be relaxed
- The density of a set S of at least 2 nodes is

$$
\operatorname{density}(S)=\frac{\frac{1}{2} \sum_{v \in S} \operatorname{deg}_{S}(v)}{\binom{|S|}{2}}
$$

- density(S) is always between 0 and 1 :
- 0 if the subgraph induced by S consists of isolated nodes
- 1 for a clique
- In fact, density(S) is exactly the probability that two distinct random nodes of S are linked by an edge
- However, finding large, high-density subsets of nodes remains NP-hard...

k-cores

- A \boldsymbol{k}-core is a set of nodes S such that each node in S has at least k neighbors in S
- Any k-clique is a $(k-1)$-core, but the reverse is not true

The blue nodes form a 2-core
(but not a 3-clique)

Finding the k-cores

- Iterative approach:

1. Consider the input graph G
2. Remove from G all nodes with degree $<k$
3. If no node is removed, stop; else go back to 2

- Polynomial time, even if k is large

k-connected components

- We already defined the connected components of a graph:
- A connected component is a maximal set of nodes S such that there is a path between every pair of nodes in S
- To generalize this to k-connected components, we need a notion of independence between paths
- Two paths between u and v are node-independent if they do not share any node, except u and v
- Two paths between u and v are edge-independent if they do not share any edge

k-connected components

- A k-(node)-connected component is a maximal set of nodes S, of at least k nodes, such that there are k node-independent paths between every pair of nodes in S
- So, to disconnect S we have to remove at least k nodes

- The above graph has two 2-connected components: $\{A, C, D, E\}$ and $\{A, B, F\}$
- The graph itself is connected but not 2-connected

k-edge-connected components

- A k-edge-connected component is a maximal set of nodes S such that there are k edge-independent paths between every pair of nodes in S
- So, to disconnect S we have to remove at least k edges

- The above graph has two 3-edge-connected components: $\{A, C, D, E\}$ and $\{B, F, G, H\}$
- The graph itself is 1 -edge-connected but not 2-edge-connected

Menger's Theorem

- Let s, t be distinct nodes of a graph
- Edge version: the minimum number of edges whose removal disconnects s and t is equal to the maximum number of edge-independent paths from s to t
- Node version: if s and t are not adjacent, the minimum number of nodes whose removal disconnects s and t is equal to the maximum number of node-independent paths from s to t

Connectivity values of a subgraph

- $\mathrm{k}(\mathrm{G})=\max \{\mathrm{k}: \mathrm{G}$ is k -connected $\}$
- $\lambda(G)=\max \{\lambda: G$ is λ-edge-connected $\}$
- $\mathrm{k}(\mathrm{G}) \leq \lambda(\mathrm{G}) \leq$ minimum degree
- $\lambda(\mathrm{G})$ can be arbitrarily larger than $k(G)$:

Computing node- and edge-connectivity

- The max-flow/min-cut theorem is a generalization of Menger's Theorem (edge version)
- To compute the edge-connectivity between two nodes s and t, we can use any maximum-flow algorithm:
- assign capacity 1 to every edge
- invoke the max-flow algorithm, with source s and sink t
- the maximum amount of flow that can be sent is the value of the edge-connectivity between s and t
- To compute $\lambda(G)$, repeat for all pairs s, t and return the minimum
- In fact, the source can be fixed arbitrarily! Iterate only over t
- A similar approach works for node-connectivity as well

Graph bipartitioning

- How "well" can a network be split into two parts?
- Partition V(G) into S, T:
- $\mathrm{S} \cup \mathrm{T}=\mathrm{V}(\mathrm{G})$
- $S \cap T=\varnothing$

- But: need to formalize the objective function...
- One idea is to minimize the size of the cut:

$$
e(S, T)=|\{\{u, v\} \in E(G): u \in S, v \in T\}|
$$

Graph bipartitioning

- Finding a globally minimum cut is easy, but it may yield trivial solutions:

Graph bipartitioning

- Different options to circumvent the problem:

1. Impose that S and T have prescribed size

- $|S|=p,|T|=q$ for given p, q

2. Impose that S and T have similar size

- $|S| \leq(1+\varepsilon) n / 2,|T| \leq(1+\varepsilon) n / 2$ for given $\varepsilon>0$

3. Incorporate the sizes in the objective function

Graph bipartitioning objective functions

- Expansion:

$$
\frac{e(S, T)}{\min (|S|,|T|)}
$$

- Cut-ratio (or sparsity):

$$
\frac{e(S, T)}{|S| \cdot|T|}
$$

- Conductance:

$$
\begin{gathered}
\frac{e(S, T)}{\min (\operatorname{vol}(S), \operatorname{vol}(T))} \\
\left(\operatorname{vol}(X)=\sum_{i \in X} \operatorname{deg}(i)\right)
\end{gathered}
$$

Graph bipartitioning algorithms we'll discuss

- With prescribed sizes:
- Local search: Kernighan-Lin algorithm
- Spectral bipartitioning
- Conductance minimization:
- Variant of spectral bipartitioning

Homophily, assortativity and modularity

Homophily

- Social networks often exhibit homophily: people tend to select friends with similar characteristics
- Immutable characteristics (like ethnicity, language) influence the formation of links (selection)
- In turn, existing links influence people's behavior and mutable characteristics (like living place) (social influence)

Spatial segregation

Spatial segregation

Assortative and disassortative mixing

- Homophily is also known as assortative mixing
- The reverse phenomenon is disassortative mixing, where people tend to form links with others who are unlike them
- More rare: main example is the sexual contact network

Quantifying assortativity: notation

- Let c_{i} be the class (category), or type, of node i
- The number of edges running between nodes of the same type is

$$
\sum_{(i, j) \in E} \delta\left(c_{i}, c_{j}\right)=\frac{1}{2} \sum_{i, j \in V} A_{i j} \delta\left(c_{i}, c_{j}\right)
$$

where $\delta\left(c_{i}, c_{j}\right)=1$ if $c_{i}=c_{j}$ and 0 otherwise

Quantifying assortativity: notation

- We compare this with the expected number of edges between nodes when edges are placed at random:

$$
\frac{1}{2} \sum_{i, j \in V} \frac{k_{i} k_{j}}{2 m} \delta\left(c_{i}, c_{j}\right)
$$

where k_{i} is the degree of i

The modularity score

- The normalized difference is called the modularity of the clustered network:

$$
Q(G)=\frac{1}{2 m} \sum_{i, j \in V}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right) \delta\left(c_{i}, c_{j}\right)
$$

- Modularity is between -1 and +1
- Positive modularity = assortativity
- Negative modularity = disassortativity

General approaches to clustering

- Divisive methods
- Start with 1 global cluster, and recursively subdivide it into smaller clusters
- Agglomerative methods
- Start with n individual node clusters, and iteratively aggregate them into larger clusters
- Other methods
- Local search, algebraic, ...

Girvan-Newman method

- Example of a divisive hierarchical method
- Produces a sequence of partitions: each is a refinement of the previous one
- At the end, return the partition with highest modularity score

Girvan-Newman method

1. Initialization: all nodes have the same type
2. Find the edge(s) with highest betweenness
3. Remove that edge(s) from the graph

- If the graph splits, assign a different type to each component

4. If there are edges, go back to point 2
5. Return the partition with highest modularity

Girvan-Newman example

Girvan-Newman example

Girvan-Newman example

7
8

Girvan-Newman example

Girvan-Newman example

Girvan-Newman in practice

- Works well for moderate size networks (up to a few thousand nodes)
- Recomputing the betweenness values at every step is the computational bottleneck
- Option: use approximate betweenness (Riondato \& Kornaropoulos 2014)

Newman's greedy method

- Example of an agglomerative hierarchical method
- Produces a sequence of partitions: each is a coarsening of the previous one
- At the end, return the partition with highest modularity score

Newman's greedy method

1. Initialization: each node has a distinct type
2. Join the pair of communities that results in the larger increase in modularity (may be negative!)
3. Merge their types
4. If there is more than one type, go back to 2
5. Return the partition with highest modularity

Spectral modularity maximization

1. Consider the modularity matrix, B :

$$
B_{i j}=A_{i j}-\frac{\operatorname{deg}(i) \operatorname{deg}(j)}{2 m}
$$

2. Compute the eigenvector x of B associated to the largest (= most positive) eigenvalue
3. Each node i goes in community 1 if $x_{i} \geq 0$, and in community 2 if $x_{i}<0$

- Good quality solutions, but limited to 2 clusters

