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FIG. 12: The network of interactions between major characters in the novel Les Misérables by Victor Hugo. The greatest
modularity achieved in the shortest-path version of our algorithm is Q = 0.54 and corresponds to the 11 communities represented
by the colors.

that our algorithms can reliably and sensitively extract
community structure from artificially generated networks
with known communities. We have also applied them
to real-world networks with known community structure
and again they extract that structure without difficulty.
And we have given examples of how our algorithms can
be used to analyze networks whose structure is otherwise
difficult to comprehend. The networks studied include a
collaboration network of scientists, in which our methods
allow us to generate schematic depictions of the overall
structure of the network and collaborations taking place
within and between communities, other social networks
of people and of animals, and a network of links between
pages on a corporate web site.

The primary remaining difficulty with our algorithms
is the relatively high computational demands they make.
The fastest of them, the one based on shortest-path be-
tweenness, operates in O(n3) time on a sparse graph,
which makes it usable for networks up to about 10 000
vertices, but for larger systems it becomes intractable.
Although the ever-improving speed of computers will cer-
tainly raise this limit in coming years, it would be more
satisfactory if a faster version of the method could be dis-
covered. One possibility is parallelization: the between-

ness calculation involves a sum over source vertices and
the elements of that sum can be distributed over different
processors, making the calculation trivially parallelizable
on a distributed-memory machine. However, a better
approach would be to find some improvement in the al-
gorithm itself to decrease its computational complexity.

Since the publication of our first paper on this
topic [25], several other authors have made use of the
shortest-path version of our algorithm. Holme et al. [42]
have applied it to a number of metabolic networks for
different organisms, finding communities that correspond
to functional units within the networks, while Wilkinson
and Huberman [43] have applied it to a network of re-
lations between genes, as established by co-occurrence
of names of genes in published research articles. An in-
teresting application to social networks is the study by
Gleiser and Danon [44] of the collaboration network of
early jazz musicians. They found, among other things,
that the network split into two communities along lines of
race, black musicians in one group, white musicians in the
other. Guimerà et al. [45] have applied the method to a
network of email messages passing between users at a uni-
versity, and found communities that reflect both formal
and informal levels of organization. Tyler et al. [46] have

Network of interactions between major characters in 
the novel Les Misérables by Victor Hugo
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FIG. 10: Illustration of the use of the community structure algorithm to make sense of a complex network. (a) The initial
network is a network of coauthorships between physicists who have published on topics related to networks. The figure shows
only the largest component of the network, which contains 145 scientists. There are 90 more scientists in smaller components,
which are not shown. (b) Application of the shortest-path betweenness version of the community structure algorithm produces
the communities shown by the colors. (c) A coarse-graining of the network in which each community is represented by a single
node, with edges representing collaborations between communities. The thickness of the edges is proportional to the number
of pairs of collaborators between communities. Clearly panel (c) reveals much that is not easily seen in the original network of
panel (a).

A coauthorship network of physicists and applied 
mathematicians working on networks
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A karate club became split into two clubs. Could we 
have predicted the boundaries from the network 
structure?  
1 = club administrator, 34 = instructor

P1: SBT

cuus984-net CUUS984-Easley 0 521 19533 1 November 30, 2009 16:2
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Figure 3.13. A karate club studied by Wayne Zachary [409] — a dispute during the course of
the study caused it to split into two clubs. Could the boundaries of the two clubs be predicted
from the network structure?



What is a “cluster”?

• The exact notion of “tightly-knit subgroup” may 
depend on the domain 

• But a formal definition is crucial, if we want to 
identify such regions or clusters 

• Let’s discuss some of the possibilities



Cliques

• A k-clique is a subset of k nodes forming a 
complete subgraph 

"

"

"

A

B

C

D
E

For example, 
"

{A, C, D} is a 3-clique 
"

{A, D} is a 2-clique



Maximal vs maximum cliques
• A k-clique is maximal if it is not contained in any  

q-clique with q > k 

• A k-clique is maximum if there is no q-clique in the 
graph with q > k 

"

"

"
A

B

C

D
E

"
{A, C, D} is a maximal and  
maximum 3-clique 
"
{A, D} is a 2-clique  
but it is not maximal 
 
{A, B} is a maximal 2-clique 
but it is not maximum,  
because of {A, C, D}



Finding cliques

• We can look for k-cliques in time O(nk·k2) by 
enumerating all subsets of k nodes 

• Practical only if k is a very small constant 

• In fact, finding a maximum clique is NP-hard, 
even if we allow approximations!  

• Finding a maximal clique is easy: 

• Start from any node (a 1-clique!) and greedily 
try to extend the clique one node at a time



Density of a set of nodes
• The clique definition can be relaxed 

• The density of a set S of at least 2 nodes is 

"

"

• density(S) is always between 0 and 1: 

• 0 if the subgraph induced by S consists of isolated nodes 

• 1 for a clique 

• In fact, density(S) is exactly the probability that two distinct random 
nodes of S are linked by an edge 

• However, finding large, high-density subsets of nodes remains NP-hard…

density(S) =
1
2

P
v2S degS(v)�|S|

2

�



• A k-core is a set of nodes S such that each node in 
S has at least k neighbors in S 

• Any k-clique is a (k-1)-core, but the reverse is not 
true 

"

"

"

k-cores

D

C A

E

C CB

The blue nodes  
form a 2-core 
(but not a 3-clique)



Finding the k-cores

• Iterative approach: 

1. Consider the input graph G 

2. Remove from G all nodes with degree < k 

3. If no node is removed, stop;  
else go back to 2 

• Polynomial time, even if k is large



k-connected components

• We already defined the connected components of a graph: 

• A connected component is a maximal set of nodes S such 
that there is a path between every pair of nodes in S 

• To generalize this to k-connected components, we need a 
notion of independence between paths 

• Two paths between u and v are node-independent if they 
do not share any node, except u and v 

• Two paths between u and v are edge-independent if they 
do not share any edge



• A k-(node)-connected component is a maximal set of nodes S, of at least k 
nodes, such that there are k node-independent paths between every pair of 
nodes in S 

• So, to disconnect S we have to remove at least k nodes 

"

"

"

"

"

• The above graph has two 2-connected components:  
{A, C, D, E} and {A, B, F} 

• The graph itself is connected but not 2-connected

k-connected components

D

C A

E

C CB

F



k-edge-connected components
• A k-edge-connected component is a maximal set of nodes S such that there 

are k edge-independent paths between every pair of nodes in S 

• So, to disconnect S we have to remove at least k edges 

"

"

"

"

"

• The above graph has two 3-edge-connected components: 
{A, C, D, E} and {B, F, G, H} 

• The graph itself is 1-edge-connected but not 2-edge-connected

D

C A

E

C

F

C G

H

B



Menger’s Theorem
• Let s, t be distinct nodes of a graph 

• Edge version: the minimum number of edges whose 
removal disconnects s and t is equal to the maximum 
number of edge-independent paths from s to t 

• Node version: if s and t are not adjacent, the minimum 
number of nodes whose removal disconnects s and t is 
equal to the maximum number of node-independent 
paths from s to t 

"



Connectivity values of a subgraph
• κ(G) = max {κ : G is κ-connected} 

• λ(G) = max {λ : G is λ-edge-connected} 

• κ(G) ≤ λ(G) ≤ minimum degree 

• λ(G) can be arbitrarily larger than κ(G): 

"

"

"
B

A

X

D

F

C E



Computing node- and edge-connectivity
• The max-flow/min-cut theorem is a generalization of Menger’s Theorem 

(edge version) 

• To compute the edge-connectivity between two nodes s and t, we can 
use any maximum-flow algorithm:  

• assign capacity 1 to every edge 

• invoke the max-flow algorithm, with source s and sink t 

• the maximum amount of flow that can be sent is the value of the 
edge-connectivity between s and t 

• To compute λ(G), repeat for all pairs s, t and return the minimum 

• In fact, the source can be fixed arbitrarily! Iterate only over t 

• A similar approach works for node-connectivity as well



Graph bipartitioning
• How “well” can a network be split into two parts?  

• Partition V(G) into S, T:  

• S ∪ T = V(G) 

• S ∩ T = ∅ 

• But: need to formalize the objective function… 

• One idea is to minimize the size of the cut: 

"
e(S, T ) = |{{u, v} 2 E(G) : u 2 S, v 2 T}|

S T



Graph bipartitioning
• Finding a globally minimum cut is easy, but it 

may yield trivial solutions: 

"

"

"

"

TS



• Different options to circumvent the problem: 

1. Impose that S and T have prescribed size 

• |S| = p, |T| = q for given p, q 

2. Impose that S and T have similar size 

• |S| ≤ (1+ε)n/2, |T| ≤ (1+ε)n/2 for given ε>0!

3. Incorporate the sizes in the objective 
function

Graph bipartitioning



• Expansion: 

"

• Cut-ratio (or sparsity):  

"

• Conductance:

Graph bipartitioning objective functions

e(S, T )

min(|S|, |T |)

e(S, T )

min(vol(S), vol(T ))

e(S, T )

|S| · |T |

(vol(X) =

X

i2X

deg(i))



• With prescribed sizes: 

• Local search: Kernighan-Lin algorithm 

• Spectral bipartitioning 

• Conductance minimization: 

• Variant of spectral bipartitioning

Graph bipartitioning algorithms we’ll discuss



Homophily, assortativity and 
modularity



Homophily

• Social networks often exhibit homophily:  
people tend to select friends with similar 
characteristics 

• Immutable characteristics (like ethnicity, 
language) influence the formation of links 
(selection) 

• In turn, existing links influence people’s behavior 
and mutable characteristics (like living place) 
(social influence)
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Figure 7: Ethnic map of Chicago for 1940. Blocks with 1-5 percent blacks are
colored yellow, with 5-10 percent are pink, with 10-25 percent are orange, 25-50
percent are red, 50-75 percent are dark red, 75-95 percent are brown and blocks
with more than 95 percent black households are black.
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Spatial segregation
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Figure 9: Ethnic map of Chicago for 1960. Blocks with 1-5 percent blacks are
colored yellow, with 5-10 percent are pink, with 10-25 percent are orange, 25-50
percent are red, 50-75 percent are dark red, 75-95 percent are brown and blocks
with more than 95 percent black households are black.
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Assortative and disassortative mixing

• Homophily is also known as assortative mixing 

• The reverse phenomenon is disassortative 
mixing, where people tend to form links with 
others who are unlike them 

• More rare: main example is the sexual contact 
network



Quantifying assortativity: notation

• Let ci be the class (category), or type, of node i 

• The number of edges running between nodes of 
the same type is 
 
 
 
 
 
where δ(ci, cj) = 1 if ci=cj and 0 otherwise

X

(i,j)2E

�(ci, cj) =
1

2

X

i,j2V

Aij�(ci, cj)



Quantifying assortativity: notation

• We compare this with the expected number of 
edges between nodes when edges are placed 
at random: 
 
 
 
 
 
where ki is the degree of i

1

2

X

i,j2V

kikj
2m

�(ci, cj)



The modularity score
• The normalized difference is called the 

modularity of the clustered network: 

"

"

• Modularity is between -1 and +1 

• Positive modularity = assortativity 

• Negative modularity = disassortativity

Q(G) =
1

2m

X

i,j2V

✓
Aij �

kikj
2m

◆
�(ci, cj)



General approaches to clustering
• Divisive methods!

• Start with 1 global cluster, and recursively 
subdivide it into smaller clusters 

• Agglomerative methods!

• Start with n individual node clusters, and 
iteratively aggregate them into larger clusters 

• Other methods!

• Local search, algebraic, …



Girvan-Newman method

• Example of a divisive hierarchical method 

• Produces a sequence of partitions:  
each is a refinement of the previous one 

• At the end, return the partition with highest 
modularity score



Girvan-Newman method
1. Initialization: all nodes have the same type 

2. Find the edge(s) with highest betweenness 

3. Remove that edge(s) from the graph 

• If the graph splits, assign a different type to 
each component 

4.  If there are edges, go back to point 2 

5. Return the partition with highest modularity



Girvan-Newman example
advanced material 65
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Figure 3.14. (a) A sample network and (b) tightly-knit regions and their nested structure. In
many networks, there are tightly-knit regions that are intuitively apparent, and they can even
display a nested structure, with smaller regions nesting inside larger ones.

General Approaches to Graph Partitioning. One class of methods focuses on iden-
tifying and removing the “spanning links” between densely connected regions. Once
these links are removed, the network begins to fall apart into large pieces; within these
pieces, further spanning links can be identified, and the process continues. We will
refer to these as divisive methods of graph partitioning, because they divide up the
network as they go.

An alternate class of methods starts from the opposite end of the problem, focusing
on the most tightly-knit parts of the network, rather than on the connections at their
boundaries. Such methods find nodes that are likely to belong to the same region and
merge them together. Once this is done, the network consists of a large number of
merged chunks, each containing the seeds of a densely connected region; the process
then looks for chunks that should be further merged together, and in this way the
regions are assembled “bottom-up.” We refer to these as agglomerative methods of
graph partitioning, because they glue nodes together into regions as they go.

To illustrate the conceptual differences between these two approaches, consider
the simple graph in Figure 3.14(a). Intuitively, as indicated in Figure 3.14(b), there
is a broad separation between one region, consisting of nodes 1–7, and another
region, consisting of nodes 8–14. Within each of these regions, there is a further split: on
the left into nodes 1–3 and nodes 4–6, and on the right into nodes 9–11 and nodes 12–14.
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Figure 3.16. The three steps (a)–(c) of the Girvan–Newman method applied to the network
from Figure 3.14(a).

The Girvan–Newman Method: Successively Deleting Edges of High Betweenness.
Edges of high betweenness are the edges that, over all pairs of nodes, carry the highest
volume of traffic along shortest paths. Based on the premise that these edges are the
most “vital” for connecting different regions of the network, it is natural to try to
remove these first. This approach is the crux of the Girvan–Newman method, which
can now be summarized as follows:

1. Find the edge of highest betweenness – or multiple edges of highest betweenness,
if there is a tie – and remove these edges from the graph. This may cause the graph
to separate into multiple components. If so, this is the first level of regions in the
partitioning of the graph.

2. Now recalculate all betweennesses, and again remove the edge or edges of highest
betweenness. This procedure may break some of the existing components into
smaller components; if so, these are regions nested within the larger regions.
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from Figure 3.14(a).

The Girvan–Newman Method: Successively Deleting Edges of High Betweenness.
Edges of high betweenness are the edges that, over all pairs of nodes, carry the highest
volume of traffic along shortest paths. Based on the premise that these edges are the
most “vital” for connecting different regions of the network, it is natural to try to
remove these first. This approach is the crux of the Girvan–Newman method, which
can now be summarized as follows:

1. Find the edge of highest betweenness – or multiple edges of highest betweenness,
if there is a tie – and remove these edges from the graph. This may cause the graph
to separate into multiple components. If so, this is the first level of regions in the
partitioning of the graph.

2. Now recalculate all betweennesses, and again remove the edge or edges of highest
betweenness. This procedure may break some of the existing components into
smaller components; if so, these are regions nested within the larger regions.
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The Girvan–Newman Method: Successively Deleting Edges of High Betweenness.
Edges of high betweenness are the edges that, over all pairs of nodes, carry the highest
volume of traffic along shortest paths. Based on the premise that these edges are the
most “vital” for connecting different regions of the network, it is natural to try to
remove these first. This approach is the crux of the Girvan–Newman method, which
can now be summarized as follows:

1. Find the edge of highest betweenness – or multiple edges of highest betweenness,
if there is a tie – and remove these edges from the graph. This may cause the graph
to separate into multiple components. If so, this is the first level of regions in the
partitioning of the graph.

2. Now recalculate all betweennesses, and again remove the edge or edges of highest
betweenness. This procedure may break some of the existing components into
smaller components; if so, these are regions nested within the larger regions.
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Figure 3.14. (a) A sample network and (b) tightly-knit regions and their nested structure. In
many networks, there are tightly-knit regions that are intuitively apparent, and they can even
display a nested structure, with smaller regions nesting inside larger ones.

General Approaches to Graph Partitioning. One class of methods focuses on iden-
tifying and removing the “spanning links” between densely connected regions. Once
these links are removed, the network begins to fall apart into large pieces; within these
pieces, further spanning links can be identified, and the process continues. We will
refer to these as divisive methods of graph partitioning, because they divide up the
network as they go.

An alternate class of methods starts from the opposite end of the problem, focusing
on the most tightly-knit parts of the network, rather than on the connections at their
boundaries. Such methods find nodes that are likely to belong to the same region and
merge them together. Once this is done, the network consists of a large number of
merged chunks, each containing the seeds of a densely connected region; the process
then looks for chunks that should be further merged together, and in this way the
regions are assembled “bottom-up.” We refer to these as agglomerative methods of
graph partitioning, because they glue nodes together into regions as they go.

To illustrate the conceptual differences between these two approaches, consider
the simple graph in Figure 3.14(a). Intuitively, as indicated in Figure 3.14(b), there
is a broad separation between one region, consisting of nodes 1–7, and another
region, consisting of nodes 8–14. Within each of these regions, there is a further split: on
the left into nodes 1–3 and nodes 4–6, and on the right into nodes 9–11 and nodes 12–14.



Girvan-Newman in practice

• Works well for moderate size networks  
(up to a few thousand nodes) 

• Recomputing the betweenness values at every 
step is the computational bottleneck 

• Option: use approximate betweenness 
(Riondato & Kornaropoulos 2014) 



Newman’s greedy method

• Example of an agglomerative hierarchical 
method  

• Produces a sequence of partitions:  
each is a coarsening of the previous one 

• At the end, return the partition with highest 
modularity score



Newman’s greedy method

1. Initialization: each node has a distinct type 

2. Join the pair of communities that results in the 
larger increase in modularity (may be 
negative!) !

3. Merge their types 

4. If there is more than one type, go back to 2 

5. Return the partition with highest modularity



Spectral modularity maximization
1. Consider the modularity matrix, B: 
 
 

2. Compute the eigenvector x of B associated to 
the largest (= most positive) eigenvalue 

3. Each node i goes in community 1 if xi ≥ 0,  
and in community 2 if xi < 0 

• Good quality solutions, but limited to 2 clusters

Bij = Aij �
deg(i)deg(j)

2m


