Introduction to Game Theory

What is Game Theory?

- A theory of interactive decisions
- Multiple entities - players - that need to compete, cooperate, coordinate...
- Every player can choose his actions, or strategies
- The actions determine the outcome of the game

Examples of "Games"

- Games proper:
- tic-tac-toe, chess...
- Foreign policy
- Financial markets

Political
Science

- Internet and Web interactions

Example: Rock-Paper-Scissors

- 2 players
- 3 actions per player: Rock, Scissors, Paper
- possible outcomes: victory (+I), tie (0), defeat (-I)
- +I, 0, -I : payoff (or utility)

Normal Form Games

- a set N of players; often $\mathrm{N}=\{\mathrm{I}, 2, \ldots, \mathrm{n}\}$
- for each $\mathrm{i} \in \mathrm{N}$, a nonempty set S_{i} (strategies or actions of i)
- $S=S_{1} \times S_{2} \times \ldots \times S_{n}$ is the set of states
- the state determines the outcome of the game
- for each $i \in N$, a function $u_{i}: S \rightarrow \mathbb{R}$
(payoff or utility function of i)

What does it mean to analyze a game?

- Identifying equilibrium points...
- choice of "stable" actions, that confirm each other
- There are several ways of defining equilibrium ("solution concepts")
- We are not aiming to explain the players' preferences; but to discover what behavior they entail
"Reason is the slave of the passions" (D. Hume)

State notation

- Each state s has n components: $\mathrm{s}=\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{si}_{\mathrm{i}}, \ldots, \mathrm{s}_{\mathrm{n}}\right)$
- With the special notation $\left(\mathrm{t}_{\mathrm{i}}, \mathrm{r}_{-\mathrm{i}}\right)$ we denote the state $\left(r_{1}, r_{2}, \ldots, t_{i}, \ldots, r_{n}\right)$
- $\left(t_{i}, r_{-i}\right)$ is the state obtained from r by changing the action of i to t_{i}
- Example I: $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{s}_{-\mathrm{i}}\right)$ is another way to write state s
- Example 2: $\left(s^{\prime}, s_{-i}\right)$ is the state obtained from s by replacing the action of i by s_{i}

Prisoner's Dilemma M. Flood, M. Drescher, A. Tucker (1950)

- 2 suspects, separately interrogated by the police
- Cooperate with police (by naming your accomplice), or stay silent?
- cooperating implies a discount on time spent in jail
- if both talk, time in jail will be higher
- if silent, but indicated as accomplice, time in jail will be maximum

Prisoner's Dilemma:Analysis

- 2 players
- actions:
stay silent (S), confess (C)

Dominant Strategies

- In Prisoner's Dilemma, Confessing is a dominant strategy
- In general, action s_{i} is a dominant strategy for player i if - $u_{i}\left(s_{i}, s^{\prime}{ }_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}^{\prime}\right)$ for all $s^{\prime} \in S$
- In a dominant strategy equilibrium (DSE), each player chooses a dominant strategy
- In words:

The current action (s_{i}) of each player (i) is at least as good as any alternative (s_{i}^{\prime}), irrespective of what the choices of the other players (s_{-i-i}^{\prime}) are

DSE Computation

- Suppose a game is given explicitly as input
- size of input is proportional to $|S|$
- What is the complexity of finding a DSE ?
- We can enumerate each action of each player
- For each action, check whether it is dominant
- Time $O(|S|)$ suffices to check the definition
- Total complexity is $\mathrm{O}\left(\mathrm{n}|\mathrm{S}|^{2}\right)$
- If payoffs are given implicitly, much more difficult!

The Game of "Chicken"

Movie: RebelWithout a Cause (I955)

The Game of "Chicken"

- 2 players
- actions: jump ()
o drive on (D)

Movie: RebelWithout a Cause (1955)

Pure Nash equilibria

- A state $s \in S$ is a pure Nash equilibrium (PNE) if:
- $u_{i}\left(\mathrm{~s}_{\mathrm{i}}, \mathrm{s}_{-\mathrm{i}}\right) \geq \mathrm{u}_{\mathrm{i}}\left(\mathrm{s}^{\prime} \mathrm{i}, \mathrm{s}_{-\mathrm{i}}\right) \quad$ for all $\mathrm{i} \in \mathrm{N}$ and $\mathrm{s}_{\mathrm{i}} \in \mathrm{S}_{\mathrm{i}}$
- In words:

The current action (s_{i}) of each player (i) is at least as good as any other alternative she has (s_{i}^{\prime}), given the actions of the other players ($\mathrm{s}_{-\mathrm{i}}$)

- In "Chicken", there are two PNE:
(J, D) and (D, J)
- A DSE is a special type of PNE

PNE Computation

- Suppose a game is given explicitly as input
- size of input is proportional to |S|
- What is the complexity of finding a PNE ?
- We can enumerate each state of the game
- For each state, check whether it is a PNE
- Time $O(|S|)$ suffices to check the definition
- Total complexity is $\mathrm{O}\left(|\mathrm{S}|{ }^{2}\right)$
- If payoffs are given implicitly, much more difficult!

The Bandwidth Sharing Game

- n users share a common Internet connection
- each decides how much bandwidth he tries to use
- payoff depends on required bandwidth and on free bandwidth (to model latency)
- $\mathbf{N}=\{1,2, \ldots, n\}$
- $\mathrm{S}_{\mathrm{i}}=[0,1]$ (note: infinite set of actions!)
- $u_{i}(s)=s_{i} \cdot\left(1-\sum_{j} s_{j}\right)$

The Bandwidth Sharing Game

- Let $\mathrm{t}=\sum_{\mathrm{j} \neq \mathrm{i}} \mathrm{s}_{\mathrm{j}} \Rightarrow \mathrm{u}_{\mathrm{i}}(\mathrm{s})=\mathrm{s}_{\mathrm{i}} \cdot\left(\mathrm{I}-\mathrm{t}-\mathrm{s}_{\mathrm{i}}\right)$
- From perspective of player i, t is a constant
- s_{i} should optimize $u_{i}(s)$, given t :

$$
\left(\partial / \partial s_{i}\right) u_{i}(s)=0 \Rightarrow \mathrm{I}-\mathrm{t}-2 \mathrm{~s}_{\mathrm{i}}=0 \quad \Rightarrow \mathrm{~s}_{\mathrm{i}}=(\mathrm{I}-\mathrm{t}) / 2
$$

- So, all s_{i} are equal $\Rightarrow s_{i}=\left(I-(n-I) s_{i}\right) / 2$
- Solving for si_{i}, we find $\mathrm{s}_{\mathrm{i}}=\mathrm{I} /(\mathrm{n}+\mathrm{I})$ (for all i)

Tragedy of the Commons

- We found the equilibrium $s_{i}=I /(n+I)$ (for all i)
- Together, the users almost consume the entire bandwidth!
- The payoff of each user is $\Theta\left(1 / n^{2}\right)$
- If $s_{I}=\ldots=s_{n}=I / 2 n$, the payoff of each user would be much higher, $\Theta(\mathrm{I} / \mathrm{n})$
- An example of the Tragedy of the Commons: users act contrary to the common good

Equilibria

- Is there always at least one equilibrium point?
- Rock-Paper-Scissors: no PNE!
- Idea: allow mixed (random) actions
- Example:
- Rock 33,3...\%
- Scissors 33,3...\%
- Paper 33,3...\%

Mixed Strategies and States

- A mixed strategy for player i is a probability distribution on the set Si_{i}
- Function $\mathrm{P}_{\mathrm{i}}: \mathrm{Si}_{\mathrm{i}} \rightarrow[0, \mathrm{I}]$ such that $\sum_{\text {siiesi }} \mathrm{P}_{\mathrm{i}}\left(\mathrm{s}_{\mathrm{i}}\right)=1$
- A mixed state is a collection (pi) $i_{\in N}$ of mixed strategies, one for every player
- Induces a probability $p_{(s)}=p_{1}\left(s_{1}\right) \cdot p_{2}\left(s_{2}\right) \cdot \ldots \cdot p_{n}\left(s_{n}\right)$ for every pure state of the game
- Induces an expected payoff for player i:

$$
u_{i}(p)=\sum_{s \in S} p(s) \cdot u_{i}(s)
$$

Mixed Nash Equilibria

- A mixed Nash equilibrium (MNE) is a mixed state in which no player can unilaterally improve his expected payoff by switching to a different mixed strategy
- A PNE is a special type of MNE
- For any game G,
- DSE $(\mathrm{G}) \subseteq$ PNE $(G) \subseteq \operatorname{MNE}(G)$
- However, DSE(G) and PNE(G) can be empty sets!

Purely Competitive Games

- Games with zero sum: the sum of the players' payoffs is the same in all outcomes of the game

Examples:

- Rock-Paper-Scissors
- Division of a cake between two persons
- One person divides it, the other chooses a piece

A Fundamental Contribution

- John von Neumann (1903-1957)
- A father of computing...
- ...and of Game Theory
- He proved that

every zero-sum game admits an equilbrium (in 1928 for 2 players; in 1944 for many players)
- Proponent of mutually assured destruction doctrine; president of USA committee for intercontinental ballistic missiles

Dangerous Games: Cold War

- Theory of nuclear deterrence
- The "Doomsday Machine"

Movie: Dr. Strangelove (1964)

1962: Cuban Missile Crisis

- USA President - John F. Kennedy URSS Premier - Nikita Krusciov
- USA nuclear missiles in Turkey \& Italy
- URSS nuclear missiles in Cuba
- Embargo and diplomatic crisis

Hawks vs Doves

- 2 players USA, URSS
- strategies: aggressive hawk (H) or peaceful dove (D)
- same as the "Chicken" game!

Zero-Sum Games when $\mathrm{n}=2$

- Payoff matrices $A=\left(a_{i j}\right),-A=\left(-a_{i j}\right) \quad \in R^{m l} \times m^{2}$
- In this case we can compute a MNE in polynomial time!
- How? Linear programming!
- Say P. 2 knew that P.I was playing mixed strategy x
- P. 2 looks at expected payoff vector $x \cdot A$
- P. 2 chooses any column achieving minimum value
- So P.I can secure himself payoff v if all the entries of $\mathrm{X} \cdot \mathrm{A}$ are at least v

Zero-Sum Games when $\mathrm{n}=2$

- In other words, P.I wants to optimize this linear program:

$$
\begin{aligned}
v^{*}= & \max v \\
& \sum_{i \in S_{1}} x_{i} a_{i j} \geq v \quad \forall j \in S_{2}
\end{aligned}
$$

$$
\sum_{i \in S_{1}} x_{i}=1
$$

$$
x_{i} \geq 0 \quad \forall i \in S_{1} .
$$

Zero-Sum Games when $\mathrm{n}=2$

- Similarly, P. 2 wants to optimize the linear program:

$$
\begin{aligned}
u^{*}= & \min u \\
& \sum_{j \in S_{2}} y_{j} a_{i j} \leq u \quad \forall i \in S_{1} \\
& \sum_{j \in S_{2}} y_{j}=1 \\
& y_{j} \geq 0 \quad \forall j \in S_{2} .
\end{aligned}
$$

- It can be shown that $v^{*}=u^{*}$ and the LPs are each the dual of the other! Their solutions yield the equilibrium

Example

$\max v$
$x_{1} \cdot 2+x_{2} \cdot 1 \geq v$
$x_{1} \cdot(-1)+x_{2} \cdot 3 \geq v$
$x_{1}+x_{2}=1$
$x_{1}, x_{2} \geq 0$.

- Solving graphically, we get

$$
\begin{aligned}
& x_{1}=2 / 5, \\
& x_{2}=3 / 5, \\
& v^{*}=7 / 5
\end{aligned}
$$

A Beautiful Mind

- Does an equilibrium always exist in a game? (whether zero-sum or not)
- John Nash (1928-2015)
- I949: proved his famous result: every (finite) game has an equillbrium
- I96I-I970: admitted for paranoid schizophrenia
- 1994: Nobel prize for economics

Movie: A Beautiful Mind (2002)

Brouwer's Fixed Point Theorem

- Nash's Theorem is based on Brouwer's Fixed Point Theorem (I910):

Every continuous function F from a closed disk to itself has a fixed point

- A fixed point is a vector x such that $F(x)=x$
- Example: Mixing your coffee
- $x=$ location of a molecule of coffee before mixing
- $F(x)=$ location of same molecule after mixing

How Nash's Theorem is proved

Sperner's Lemma

Every valid coloring of a triangulated triangle has at least one trichromatic cell

Sperner's Lemma

Every valid coloring of a triangulated triangle has at least one trichromatic cell

MNE Computation

- Unfortunately Nash's Theorem - like Brouwer's - is essentially non constructive
- It assures the existence of an equilibrium but does not explain how to derive it algorithmically
- The area of equilibrium computation is subject of much recent research
- How can we compute a MNE ?

Best Response

- A mixed strategy $\mathrm{Pi}_{\text {i }}$ is a best response to strategies PI, ..., $\mathrm{P}_{\mathrm{i}} \mathrm{I}, \mathrm{P}_{\mathrm{i}+1}, \ldots, \mathrm{P}_{n}$ if for all mixed strategies p^{\prime} of player i ,

$$
\sum_{s \in S} p_{1}\left(s_{1}\right) \ldots p_{i}\left(s_{i}\right) \ldots p_{n}\left(s_{n}\right) \cdot u_{i}(s) \geq \sum_{s \in S} p_{1}\left(s_{1}\right) \ldots p_{i}^{\prime}\left(s_{i}\right) \ldots p_{n}\left(s_{n}\right) u_{i}(s)
$$

- That is, pi is a maximizer of i's expected payoff
- In a MNE, every player is playing a best response strategy

Support of a Mixed Strategy

- The support of mixed strategy P_{i} is the set of all actions played with nonzero probability:
- $\operatorname{supp}\left(\mathrm{P}_{\mathrm{i}}\right)=\left\{\mathrm{j} \in \mathrm{S}_{\mathrm{i}}: \mathrm{Pi}_{\mathrm{i}}(\mathrm{j})>0\right\}$
- Example:
- $P_{i}=(I / 3,0,0, I / 2, I / 6)$
- $\operatorname{supp}\left(\mathrm{pi}_{\mathrm{i}}\right)=\{\mathrm{I}, 4,5\}$

Characterization of Best Response

- Theorem:

A mixed strategy p_{i} is a best response \Leftrightarrow all pure strategies in $\operatorname{supp}\left(\mathrm{pi}_{\mathrm{i}}\right)$ are best responses

Computing MNE with given supports

- If $\mathrm{n}=2$ and we knew the support of a MNE, we could compute the MNE by solving a linear program!
- Say payoff matrices $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \quad \in R^{m l \times m 2}$
- If we knew support sets $I \subseteq S_{1}, J \subseteq S_{2}$, we could solve:

$$
\begin{array}{ll}
\sum_{j \in J} y_{j} a_{k j} \leq \sum_{j \in J} y_{j} a_{i j} & \forall k \in S_{1}, \forall i \in I \\
\sum_{i \in I} x_{i} b_{i k} \leq \sum_{i \in I} x_{i} b_{i j} & \forall k \in S_{2}, \forall j \in J \\
\sum_{i \in I} x_{i}=1, & \sum_{i \in J} y_{j}=1 \\
x_{i} \geq 0 \quad \forall i \in I, & y_{j} \geq 0 \quad \forall j \in J .
\end{array}
$$

An Algorithm for MNE when $\mathrm{n}=2$

- Of course, we don't know the supports in a MNE
- But we can enumerate them (although inefficiently)
- Try all supports $I \subseteq S_{1}, J \subseteq S_{2}$ and check if the linear constraints are feasible
- At least one pair of supports will yield a MNE
- Complexity: $2^{m l+m 2} \cdot$ poly (bits(A) + bits(B))
- Can we do better? (Open problem)

Example: Chicken

- Let's try I = \{ jump, drive \}, J = \{ jump, drive \}
- Variables $X_{j}, X_{d}, y_{j}, y_{d}$

$$
\begin{aligned}
y_{j} \cdot 0+y_{d} \cdot(-1) & =y_{j} \cdot 1+y_{d} \cdot(-100) \\
x_{j} \cdot 0+x_{d} \cdot(-1) & =x_{j} \cdot 1+x_{d} \cdot(-100) \\
y_{j}+y_{d} & =1 \\
x_{j}+x_{d} & =1 \\
x_{j}, x_{d}, y_{j}, y_{d} & \geq 0 .
\end{aligned}
$$

- We find a new (non-pure) mixed Nash equilibrium: $x_{j}=0.99, x_{d}=0.01, y_{j}=0.99, y_{d}=0.01$

Mechanism Design

- Analysis of a game:
- Game \rightarrow analysis \rightarrow forecast outcomes
- Mechanism design:
- Desired outcomes \rightarrow synthesis \rightarrow game
- Goals:
- Simplicity of equilibrium strategies
- Efficiency of resource allocation
- Fairness
- Payoff (for the "legislating" authority of the game)

Auctions

- How to sell an object via an auction by mail?
- "First price" auction:
- sealed-envelope offers
- highest bid wins and pays corresponding amount
- "Second price" auction (Vickrey auction):
- sealed-envelope offers
- highest bid wins, but pays the amount given by the second highest bid
- In use since 500 A.C. and I893 D.C., respectively

Second Price Auction

- GI's valuation $=10 €$ G2's valuation $=20 €$
- If tied, assign to Gl
- Payoff =
valuation - payment
- Second price auction induces
efficient and truthful outcomes

Applications of Auctions

- eBay: online auctions for goods
- Bidding by proxy (automatic increase)
- revenue: 16 billion $\$$ (in 2013)

- Google: online auctions for ad slots
- revenue: 42 billion $\$$ (in 2012)
- National auctions for assigning transmission frequencies

The Stable Marriage Problem

1234			1234
L N M O	Arturo	Laura	D CAB
NLOM	$\begin{aligned} & \text { Bruno } \\ & \hline \end{aligned}$	Maria	B A C D
		pair"	
L N M M	Cesare	Natalia	ABCD
	Daniele	Olga	
NLMO	-		A D B C

Stable Marriage: history \& applications

- Proposed by D. Gale and
L. Shapley in 1962
- Matching hospitals and doctors
- Matching universities and students
- Kidney transplants (A. Roth)
- Shapley \& Roth (2012): Nobel prize for Economics, in part for this work

How to Arrange Stable Marriages

- Repeat the following iteration until necessary
- Consider the next single man, i
- i proposes to the next woman j on his list from whom he has not yet been rejected
- If j is single or prefers i to her current partner, she accepts (rejecting her partner); otherwise she rejects i
- If the former partner of j is now single, restart

Stable Marriage - Example

Termination and number of steps

- Once a woman is married, she stays married (her partner can change)
- When the partner of a woman changes, this is to a more preferable partner for her: at most n-I times
- Every step, either a single woman becomes married, or a married woman changes partner: at most n^{2} steps

Stability of the final solution

- Suppose final matching is not stable:
- When B proposes to L, L has a husband C preferable to B; C is also preferable to A , but in the algorithm women, only get more preferable partners, contradiction.
- When B proposes to L, L is free but B is later replaced by someone preferable to B.
Again, L can never end up with A
- So, L prefers B to A. Two cases:

Graphical Games

- A representation of multiplayer games that exploits locality of interactions
- Described by an undirected graph G
- The players of the game are the nodes of G
- The payoff of a node only depends on its action and the actions of its neighbors
- This representation can be much more compact than the normal form representation

Graphical Games

- A graphical game is a pair (G, M) where G is a graph over $\{1,2, \ldots, n\}$ and $M=\left(M_{1}, \ldots, M_{n}\right)$ is a sequence of local game matrices
- Let si be the projection of state s onto the players in the neighborhood of $\mathrm{i}, \mathrm{N}(\mathrm{i})$
- Each local game matrix specifies the payoff Mi(si) for player i , which depends only on the actions of players in $N(i)$

Party Affiliation Game

- Support either Democratic or Republican
- If you (i) and your friend (j) both support same party, you both get + 1
- If you (i) and your friend (j) support opposite parties, you both get -I

For Further Reading

- Laszlo Mero

Calcoli morali. Teoria dei giochi, logica e fragilità umana
Edizioni Dedalo, 2000

- Laszlo Mero

Moral Calculations. Game Theory, Logic and Human Frailty
Springer, 1998

