
Graph Theory:

Basic Notions

Vincenzo Bonifaci

February 24, 2017

1 Graphs

Definition 1.1. A directed graph G(V,E), or digraph, is given by a nonempty set of nodes V and a
set of arcs (or edges) E ⊆ V × V .

Notice that this allows loops (arcs (i, i) with i ∈ V) and that (i, j) 6= (j, i). The maximum number
of arcs of a directed graph is n2 where n = |V |.

Definition 1.2. An (undirected) graph G(V,E) is given by a nonempty set of vertices (or nodes) V
and a set of edges E ⊆

(
V
2

)
where

(
V
2

)
= {{i, j} : i ∈ V, j ∈ V, i 6= j}.

Notice that this does not allow loops and that {i, j} = {j, i}. The maximum number of edges of a
graph is |

(
V
2

)
| =

(
n
2

)
= n(n− 1)/2 where n = |V |.

If e = {a, b} ∈ E then a and b are adjacent or neighbors in G. The edge e is incident to a and b; a
and b are the endpoints of e. Two different edges e,e′ are incident if they share an endpoint.

For a directed graph, if e = (a, b) ∈ E then a is the tail of e and b is the head of e.

Example 1.3. The complete graph (clique) Kn on n vertices has |V | = n and E =
(
V
2

)
. It has

n(n− 1)/2 edges. The graph K3 is also called a triangle.

Definition 1.4. A graph is bipartite if there exist V1, V2 ⊆ V such that V1 ∪V2 = V , V1 ∩V2 = ∅, and
no edge in E has both endpoints in V1 or both endpoints in V2.

Example 1.5. The complete bipartite graph (bipartite clique) Kp,q has V = V1 ∪ V2, V1 ∩ V2 = ∅,
|V1| = p, |V2| = q, E = {{i, j} : i ∈ V1, j ∈ V2}. It has pq edges.

The degree of a vertex v in G, denoted degG(v) or simply deg(v), is the number of edges incident to
v. For a directed graph we have two quantities, the out-degree deg+(v) and in-degree deg−(v), which
count the arcs leaving v and entering v, respectively.

Lemma 1.1 (Handshaking lemma).
∑

v∈V deg(v) = 2|E|.

Proof. In the sum, every edge is counted exactly twice.

1

2 SUBGRAPHS 2

Very often, the letters n and m are used to denote the number of nodes and number of arcs of G,
respectively. Any reasonable description of the graph should not use more than O(n + m) words of
memory (assuming that each node identifier fits in a single word, that is, the number of bits in a word
is more than log2 n).

Many interesting graphs are sparse, that is, they satisfy m << n2. So it may be possible to represent
a sparse graph with much fewer than O(n2) words.

2 Subgraphs

By “removing” nodes and/or edges from a graph we obtain a subgraph. If we only remove nodes (and
edges incident to them, but nothing else) we obtain an induced subgraph. If we only remove edges, we
obtain a spanning subgraph. The formal definitions follow.

Definition 2.1. Let G(V,E) be a graph. For V ′ ⊆ V , let E|V ′ = {{a, b} ∈ E : a ∈ V ′, b ∈ V ′}.

• A graph of the form G′(V ′, E|V ′) is an induced subgraph of G (it is induced by V ′).

• A graph of the form G′(V ′, E′) with V ′ ⊆ V , E′ ⊆ E|V ′ is a subgraph of G.

• A graph of the form G′(V,E′) with E′ ⊆ E is a spanning subgraph of G.

3 Walks, paths and cycles

A walk on graph G(V,E) is a sequence x1, e1, x2, . . . , xp−1, ep−1, xp (for some p ≥ 1) with xi ∈ V for
all 1 ≤ i ≤ p, ei = {xi, xi+1} ∈ E for all 1 ≤ i ≤ p− 1.

• The endpoints of the walk are x1 and xp.

• The length of the walk is p− 1.

• The walk is closed if xp = x1.

A path is a walk for which the ei are distinct and the xi are distinct.

A cycle is a closed walk for which the ei are distinct and all the xi are distinct except for xp = x1.

The definitions can be easily extended to directed graphs by requiring that the direction of the walk
is consistent with the direction of the arcs traversed by it.

A graph is acyclic if it contains no cycle; otherwise it is cyclic.

Whether a directed graph is acyclic or not can be determined in time O(n+m), by running a complete
postorder depth-first visit of the graph and marking nodes with the “time” they are visited. Say that
node u gets the index tu. If there is an arc (u, v) with tu < tv, then the graph has a cycle. Otherwise,
the timestamps give a topological order of the nodes: a mapping t : V → {1, . . . , n} such that, if
tu < tv, then there is no arc from u to v. Topological orders are certificates of acyclicity and can be
used to speed up algorithms for directed acyclic graphs.

Exercise 3.1. Show that if G has a topological order, then it is acyclic.

4 CONNECTIVITY AND DISTANCES 3

4 Connectivity and distances

Node u ∈ V is connected to node v ∈ V (equivalently, v is reachable from u) if there is a path from u
to v.

A (directed) graph is (strongly) connected if for every u, v ∈ V , u is connected to v.

Note that in any connected graph, m ≥ n− 1 (why?) and so, for example, O(n+m) can be shortened
to O(m) for connected graphs.

Whether a graph is connected or not can be determined in time O(n + m), by performing a visit of
the graph from an arbitrary node: if not all nodes are visited, the graph must be disconnected. For
directed graphs, determining strong connectivity also costs O(n+m): from an arbitrary starting node,
we perform both a “forward” visit (on the original graph) and a “backward” visit of the “reverse”
graph, obtained by replacing each arc (u, v) by (v, u). The original graph is strongly connected if and
only if all the nodes are touched by both visits.

A connected component of G is an induced subgraph that is connected and maximal, that is, not
properly contained in any connected induced subgraph of G.

The out-component of node u in a digraph is the set of nodes reachable from u (including u). Similarly,
the in-component of node v is the set of nodes from which v can be reached (including v).

The strongly connected component of node u is the intersection of the out-component of u and the
in-component of u (why?).

The connected components of an undirected graph can be determined in linear time by an exhaustive
visit of the graph. For directed graphs, there is also a linear time algorithm to determine the strongly
connected components, but it is slightly more complicated and requires two distinct visits (Kosaraju’s
algorithm).

Kosaraju’s algorithm for finding strong components in digraphs

1. Given G, construct its reverse graph GR (each arc (u, v) in G becomes (v, u) in GR).

2. Construct the node ordering σ given by a reverse post-order depth-first search of GR.

3. Use the ordering σ to perform a complete depth-first search of G. Each set of nodes visited in
an outer DFS call is a strongly connected component of G.

Example 4.1. Consider the graph in the right part of the following figure.

The reversed graph is depicted on the left. The post-order sequence of nodes, after being reversed, is
1 0 2 3 4 11 9 12 10 6 7 8 5. The third step of the algorithm yields the strongly connected components:
{1}, {0, 5, 4, 3, 2}, {11, 12, 9, 10}, {6}, {7, 8}.

4 CONNECTIVITY AND DISTANCES 4

A tree is an undirected graph that is connected and acyclic. A tree on n nodes has n− 1 edges.

A forest is an undirected graph that is acyclic. Each connected component of a forest is a tree.

If u is connected to v, a shortest path from u to v is a path from u to v of minimum length.

The distance d(u, v) from u to v is the length of a shortest path from u to v.

The distance from u to all other nodes of the graph can be computed in linear time with a single
breadth-first search from u.

The diameter of a graph is
D = max

u,v∈V :u is connected to v
d(u, v).

Determining exactly the diameter of a graph can be costly. After ensuring that the graph is connected,
we can, by using n breadth-first searches (one from every node) determine all distances between pairs
of nodes (and therefore, the diameter) in O(mn) time. However, if we only need a rough estimate of
the diameter, we can run a breadth-first search visit from an arbitrary node u: if the highest distance
from u to any other node is B, then B ≤ D ≤ 2B. Therefore, approximating the diameter within a
factor of two costs O(n+m) time.

Exercise 4.1. Prove that in the special case when G is a tree, the diameter can be computed in linear
time.

Exercise 4.2 (Open research problem!). Find an efficient algorithm that computes a value B such
that B ≤ D ≤ 1.1B. The algorithm should be asymptotically faster than O(mn).

