Graph Theory:
 Basic Notions

Vincenzo Bonifaci

February 24, 2017

1 Graphs

Definition 1.1. A directed graph $G(V, E)$, or digraph, is given by a nonempty set of nodes V and a set of arcs (or edges) $E \subseteq V \times V$.

Notice that this allows loops (arcs (i, i) with $i \in V)$ and that $(i, j) \neq(j, i)$. The maximum number of arcs of a directed graph is n^{2} where $n=|V|$.

Definition 1.2. An (undirected) graph $G(V, E)$ is given by a nonempty set of vertices (or nodes) V and a set of edges $E \subseteq\binom{V}{2}$ where $\binom{V}{2}=\{\{i, j\}: i \in V, j \in V, i \neq j\}$.

Notice that this does not allow loops and that $\{i, j\}=\{j, i\}$. The maximum number of edges of a graph is $\left|\binom{V}{2}\right|=\binom{n}{2}=n(n-1) / 2$ where $n=|V|$.
If $e=\{a, b\} \in E$ then a and b are adjacent or neighbors in G. The edge e is incident to a and $b ; a$ and b are the endpoints of e. Two different edges e, e^{\prime} are incident if they share an endpoint.

For a directed graph, if $e=(a, b) \in E$ then a is the tail of e and b is the head of e.
Example 1.3. The complete graph (clique) K_{n} on n vertices has $|V|=n$ and $E=\binom{V}{2}$. It has $n(n-1) / 2$ edges. The graph K_{3} is also called a triangle.

Definition 1.4. A graph is bipartite if there exist $V_{1}, V_{2} \subseteq V$ such that $V_{1} \cup V_{2}=V, V_{1} \cap V_{2}=\emptyset$, and no edge in E has both endpoints in V_{1} or both endpoints in V_{2}.

Example 1.5. The complete bipartite graph (bipartite clique) $K_{p, q}$ has $V=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\emptyset$, $\left|V_{1}\right|=p,\left|V_{2}\right|=q, E=\left\{\{i, j\}: i \in V_{1}, j \in V_{2}\right\}$. It has $p q$ edges.

The degree of a vertex v in G, denoted $\operatorname{deg}_{G}(v)$ or simply $\operatorname{deg}(v)$, is the number of edges incident to v. For a directed graph we have two quantities, the out-degree $\operatorname{deg}^{+}(v)$ and in-degree $\operatorname{deg}^{-}(v)$, which count the arcs leaving v and entering v, respectively.

Lemma 1.1 (Handshaking lemma). $\sum_{v \in V} \operatorname{deg}(v)=2|E|$.
Proof. In the sum, every edge is counted exactly twice.

Very often, the letters n and m are used to denote the number of nodes and number of arcs of G, respectively. Any reasonable description of the graph should not use more than $O(n+m)$ words of memory (assuming that each node identifier fits in a single word, that is, the number of bits in a word is more than $\left.\log _{2} n\right)$.
Many interesting graphs are sparse, that is, they satisfy $m \ll n^{2}$. So it may be possible to represent a sparse graph with much fewer than $O\left(n^{2}\right)$ words.

2 Subgraphs

By "removing" nodes and/or edges from a graph we obtain a subgraph. If we only remove nodes (and edges incident to them, but nothing else) we obtain an induced subgraph. If we only remove edges, we obtain a spanning subgraph. The formal definitions follow.

Definition 2.1. Let $G(V, E)$ be a graph. For $V^{\prime} \subseteq V$, let $E \mid V^{\prime}=\left\{\{a, b\} \in E: a \in V^{\prime}, b \in V^{\prime}\right\}$.

- A graph of the form $G^{\prime}\left(V^{\prime}, E \mid V^{\prime}\right)$ is an induced subgraph of G (it is induced by V^{\prime}).
- A graph of the form $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime} \subseteq V, E^{\prime} \subseteq E \mid V^{\prime}$ is a subgraph of G.
- A graph of the form $G^{\prime}\left(V, E^{\prime}\right)$ with $E^{\prime} \subseteq E$ is a spanning subgraph of G.

3 Walks, paths and cycles

A walk on graph $G(V, E)$ is a sequence $x_{1}, e_{1}, x_{2}, \ldots, x_{p-1}, e_{p-1}, x_{p}$ (for some $p \geq 1$) with $x_{i} \in V$ for all $1 \leq i \leq p, e_{i}=\left\{x_{i}, x_{i+1}\right\} \in E$ for all $1 \leq i \leq p-1$.

- The endpoints of the walk are x_{1} and x_{p}.
- The length of the walk is $p-1$.
- The walk is closed if $x_{p}=x_{1}$.

A path is a walk for which the e_{i} are distinct and the x_{i} are distinct.
A cycle is a closed walk for which the e_{i} are distinct and all the x_{i} are distinct except for $x_{p}=x_{1}$.
The definitions can be easily extended to directed graphs by requiring that the direction of the walk is consistent with the direction of the arcs traversed by it.

A graph is acyclic if it contains no cycle; otherwise it is cyclic.
Whether a directed graph is acyclic or not can be determined in time $O(n+m)$, by running a complete postorder depth-first visit of the graph and marking nodes with the "time" they are visited. Say that node u gets the index t_{u}. If there is an $\operatorname{arc}(u, v)$ with $t_{u}<t_{v}$, then the graph has a cycle. Otherwise, the timestamps give a topological order of the nodes: a mapping $t: V \rightarrow\{1, \ldots, n\}$ such that, if $t_{u}<t_{v}$, then there is no arc from u to v. Topological orders are certificates of acyclicity and can be used to speed up algorithms for directed acyclic graphs.

Exercise 3.1. Show that if G has a topological order, then it is acyclic.

4 Connectivity and distances

Node $u \in V$ is connected to node $v \in V$ (equivalently, v is reachable from u) if there is a path from u to v.

A (directed) graph is (strongly) connected if for every $u, v \in V, u$ is connected to v.
Note that in any connected graph, $m \geq n-1$ (why?) and so, for example, $O(n+m)$ can be shortened to $O(m)$ for connected graphs.

Whether a graph is connected or not can be determined in time $O(n+m)$, by performing a visit of the graph from an arbitrary node: if not all nodes are visited, the graph must be disconnected. For directed graphs, determining strong connectivity also costs $O(n+m)$: from an arbitrary starting node, we perform both a "forward" visit (on the original graph) and a "backward" visit of the "reverse" graph, obtained by replacing each arc (u, v) by (v, u). The original graph is strongly connected if and only if all the nodes are touched by both visits.
A connected component of G is an induced subgraph that is connected and maximal, that is, not properly contained in any connected induced subgraph of G.
The out-component of node u in a digraph is the set of nodes reachable from u (including u). Similarly, the in-component of node v is the set of nodes from which v can be reached (including v).

The strongly connected component of node u is the intersection of the out-component of u and the in-component of u (why?).

The connected components of an undirected graph can be determined in linear time by an exhaustive visit of the graph. For directed graphs, there is also a linear time algorithm to determine the strongly connected components, but it is slightly more complicated and requires two distinct visits (Kosaraju's algorithm).

Kosaraju's algorithm for finding strong components in digraphs

1. Given G, construct its reverse graph G^{R} (each arc (u, v) in G becomes (v, u) in $\left.G^{R}\right)$.
2. Construct the node ordering σ given by a reverse post-order depth-first search of G^{R}.
3. Use the ordering σ to perform a complete depth-first search of G. Each set of nodes visited in an outer DFS call is a strongly connected component of G.

Example 4.1. Consider the graph in the right part of the following figure.

The reversed graph is depicted on the left. The post-order sequence of nodes, after being reversed, is 1023411912106785 . The third step of the algorithm yields the strongly connected components: $\{1\},\{0,5,4,3,2\},\{11,12,9,10\},\{6\},\{7,8\}$.

A tree is an undirected graph that is connected and acyclic. A tree on n nodes has $n-1$ edges.
A forest is an undirected graph that is acyclic. Each connected component of a forest is a tree.
If u is connected to v, a shortest path from u to v is a path from u to v of minimum length.
The distance $d(u, v)$ from u to v is the length of a shortest path from u to v.
The distance from u to all other nodes of the graph can be computed in linear time with a single breadth-first search from u.

The diameter of a graph is

$$
D=\max _{u, v \in V: u \text { is connected to } v} d(u, v) .
$$

Determining exactly the diameter of a graph can be costly. After ensuring that the graph is connected, we can, by using n breadth-first searches (one from every node) determine all distances between pairs of nodes (and therefore, the diameter) in $O(m n)$ time. However, if we only need a rough estimate of the diameter, we can run a breadth-first search visit from an arbitrary node u : if the highest distance from u to any other node is B, then $B \leq D \leq 2 B$. Therefore, approximating the diameter within a factor of two costs $O(n+m)$ time.

Exercise 4.1. Prove that in the special case when G is a tree, the diameter can be computed in linear time.

Exercise 4.2 (Open research problem!). Find an efficient algorithm that computes a value B such that $B \leq D \leq 1.1 B$. The algorithm should be asymptotically faster than $O(m n)$.

